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Detecting inclusion dependencies, the prerequisite of foreign keys, in relational data is a challenging task.
Detecting them among the hundreds of thousands or even millions of tables on the web is daunting. Still, such
inclusion dependencies can help connect disparate pieces of information on the Web and reveal unknown
relationships among tables.

With the algorithm MaNy, we present a novel inclusion dependency detection algorithm, specialized for
the very many—but typically small—tables found on the Web. We make use of Bloom filters and indexed
bit-vectors to show the feasibility of our approach. Our evaluation on two corpora of Web tables shows a
superior runtime over known approaches and its usefulness to reveal hidden structures on the Web.
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1 JOINING THE WEB OF TABLES

The Web consists of an almost uncountable amount of small and relational structured datasets.
We can find them in millions of tables embedded in HTML documents. If we take them on their
own, they are mostly not very expressive due to their isolation. If we combine them, however, we
might find new interesting information.

As an example, consider only the articles in the English Wikipedia category “Astronomical ob-
jects.” It consists of 37 subcategories and hundreds of articles. Many of the articles contain tables,
such as the one shown in Figure 1, which contains some interesting attributes of the planets in our
solar system. The first column, Planet, lists the entities of this table and it can be considered the
table’s primary key.

In addition to this table, a user might stumble over several other tables while browsing through
the articles, including those of Figure 2. The first one provides some more information about only
the terrestrial planets, such as their density. For users, it would be useful to have an integrated view
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Orbital Inclination Rotation

Equatorial Semi-major axis (orbit) 5 Orbital 7 Confirmed B
Planet # # # period %  to Sun's equator # S period # # Rings #

diameter!®/ (AU) s eccentricity moons

(years)™! ) (days)

Mercury 0.382 031 0.24 3.38 0.206 58.64 o no
Venus 0.949 0.72 0.62 3.86 0.007 -243.02 0 no
Earth 1.00 1.00 1.00 7.26 0.017 1.00 il no
Mars 0.532 158 1.88 5.65 0.083 1.03 2 no
Jupiter 11.209 5.20 11.86 6.09 0.048 0.41 67 yes
Saturn 9.449 9.54 29.46 5.51 0.054 0.43 62 yes
Uranus 4.007 19.22 84.01 6.48 0.047 -0.72 27 yes
Neptune 3.883 30.06 164.8 65.43 0.009 0.67 14 yes

Fig. 1. An example Web table about the solar system’s planets.

Difference in axes

Name  Satellite of % of mean
A diameter
Density (g cm™3) Mimas Saturn 33.4(204/13.0)|B.4(51/3.3)
Object Semi-major axis (AU)

Mean Uncompressed Enceladus | Saturn 16.6 33
Mercury| 5.4 53 0.39 Miranda Uranus 14.2 3.0
Venus 52 4.4 0.72 Tethys Saturn 25.8 2.4
Earth 5.5 4.4 1.0 lo Jupiter 294 08
Mars 39 38 1:5 Moon (Luna) Earth 43 0.1

Fig. 2. Atable of terrestrial planets and one of some natural satellites.

over the tabular data by joining related tables. In that way, they would see all related information
at a glance. Such an integrated overview could be achieved by building a join graph that connects
related tables and, hence, their information.

If users had an aggregated view on the data, they could also see that both underlying tables
include an attribute with nearly the same name, which is Semi-major axis. For some planets, the
values in these two attributes differ. This difference is a data quality issue within Wikipedia, which
can already be observed among only the hundreds of tables from that limited topic. The column
Satellite of in the second table of Figure 2 references the planets from the example table in Figure 1.
In the terms of the relational model, it acts as a good foreign key candidate. By joining the two
tables, users could easily query the resulting relation for “all moons of planets with rings,” for
example.

Tabular data is a great source for existing data that can be combined and queried, and it can be
found all over the Web. For instance, the Web Data Commons project! extracted 154 million tables
from the Common Web Crawl. Cafarella et al. (2008) showed interesting use cases for that dataset,
such as specialized table search and table extensions. To build systems on the basis of Web table
datasets, we need metadata, such as information about the relationships between them. Currently,
this metadata does not exist. In contrast to many other datasets, this information did not simply
get lost or outdated over the time. In fact, it never existed.

The question is how to find related tables in the extremely large number of candidates. An
ideal system finds all related tables not only from a small subset of Wikipedia articles but also
from the entire Web. However, web tables are not designed to be automatically linked and do
not provide any clear hints for doing so. Such hints could be explicitly defined key and foreign
key relationships, as we know them from Relational Database Systems (RDBMS). Additionally,

Thttp://webdatacommons.org/webtables Accessed: 05/22/2017.
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Web tables are only “quasi” relational in that data types, schema information, and other structural
information are missing. So, our goal is to analyze all of these isolated datasets to link them in a way
that their information can be combined. For this task, we propose an efficient and scalable inclusion
dependency detection algorithm. An inclusion dependency holds iff all values of one column are
included in another column (of the same table or, more interestingly, of another table). These
shared values suggest joins among the two tables. So far, IND detection has been attempted only
for datasets with much fewer tables and columns. This article focuses on the mining of INDs in
datasets with several millions of columns provided by the Web.

Contributions and structure. We solve the problem of IND detection on a very large number
of tables and show why known approaches are incapable of handling such a large amount of
tables or have poor efficiency in doing so. In particular, we introduce the MANY algorithm, a novel,
efficient, and scalable approach for this task. Based on our findings, we introduce filter criteria
on the input data as well as on the IND candidates to keep the result set size reasonable for later
human processing. In addition, we take the filtered 1ND-set to visualize the join graph, providing
exploration capabilities to the user. We finally evaluate our algorithm in comparison to known
approaches and show how parameters and implementation details affect its efficiency.

2 FOUNDATIONS AND RELATED WORK

Inclusion dependencies were identified to be one of the most important dependency types in the
field of data profiling (Marchi et al. 2002). They suggest joins among tables and can be used to
recover foreign key relationships. In the following section, we provide a common notation and
formal definition. Afterward, we cover different known detections approaches.

2.1 Foundations

Intuitively speaking, an inclusion dependency R;[X] C Ry[Y] holds for two instances of the rela-
tional schemata R; and R, with attributes X and Y if all values in the projection R;[X] are also
included in Ry[Y]. To provide a more formal definition, we adopt the following notations (Marchi
et al. 2002; Bauckmann et al. 2007; Papenbrock et al. 2015b):

Let D = {Rq, Ry, ..., Rn} be adatabase schema as a set of relational schemata R;. Letd = 7 (D) =
{ri,72,...,rm} be the instance of such a database schema. Here, r; corresponds to a set of tuples
{t1,...,tx} of schema R;. Let 7x(r;) denote the projection of r; on attribute X from R; and ¢[X]
the restriction of tuple ¢ to X so that 7x(r;) = {t[X] s.t. t € rj}. The IND Ry[X] C Rp[Y] between
the two attributes X and Y is satisfied by instance d over D iff d(R)[X] C d(R)[Y]. The left-hand
side X of an IND is called the dependent attribute and the right-hand side is called the referenced
attribute. This definition can be extended to attribute sets and thus n-ary inclusion dependencies,
which are not the focus of this article.

To verify one IND, each record of the projection on X must be proved to be contained in the pro-
jection on Y. However, the problem of detecting all INDs is inordinately harder. Ignoring trivial IND
candidates of the form R[X] C R[X], a database schema with a attributes already has a(a — 1) IND
candidates that need to be verified or falsified. When searching for n-ary inps, the candidate space
even grows exponentially (Papenbrock et al. 2015b) and is infeasible for the enormous number of
tables and attributes of our use-case (Bldsius et al. 2016).

The knowledge of INDs between relations can be used to find foreign keys in attributes of the
relations. Each 1ND, together with the knowledge about the fulfilment of the uniqueness property of
the referenced attribute or attribute sequence, forms a foreign-key candidate: Let R;[X] C R,[Y]
be a valid IND between two attributes X and Y of the relational schemata R; and R,. We then
call attribute X a foreign key candidate if attribute Y is a key candidate; that is, its values are
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unique and do not include the null value. Attribute X is truly a foreign key only if its values also
semantically reference values in Y. This latter condition is obviously not necessarily fulfilled if
only the syntactically checkable part (the foreign-key candidate property) is given.

2.2 Related Work: IND Detection

Bell and Brockhausen (1995) introduced an IND detection algorithm on the basis of SQL using
join-statements. To reduce the number of checks, they enumerated candidates from previously
collected data statistics, such as data types and value ranges. During the test phase, already known
INDs and transitivity are taken into account. However, the SQL-based 1nD validation is expensive:
Loading a large number of tables into an RDBMS takes time, and the multitude of small tables, in
particular, causes very many queries that become a dominating overhead.

De Marchi et al. proposed an algorithm that first divides the data according to its different data
types, followed by the creation of an inverted index per data type (Marchi et al. 2002). In that index,
each occurring value points to the set of all attributes containing that value. One can retrieve the
set of all valid INDs by intersecting all of those attribute sets. This approach constitutes a powerful
technique that builds the foundation for later algorithms in that field. The inverted index must,
however, fit into the machine’s main memory, which is not the case for most real-world datasets
and especially not for our Web table scenario. For large numbers of attributes, the candidate sets
also become extremely large and space-consuming. In particular, the value distributions that occur
in Web tables where some values occur extremely frequently in a huge number of columns, cause
very large candidate sets and costly intersection operations.

Based on the sort-merge-join algorithm, Bauckmann et al. proposed SPIDER (Bauckmann et al.
2007), which consists of two phases: The first phase reads all values for one attribute, sorts them,
and writes them as a duplicate-free sorted list back to disk. The second phase then reads all at-
tributes in parallel, keeping an open file handle on every sorted column file and sorting among
the attributes by their current minimal value using a min-heap. When running over all values, Sp1-
DER prunes a set of IND candidates with every set of same-value attributes, similar to de Marchi’s
algorithm. It is, however, able to prune entire attributes from the process if all their candidates
have been invalidated. Because SPIDER needs an open file for each attribute, it is not capable of
detecting INDs among several thousands of attributes. Its runtime is also often dominated by the
sorting phase because tables are read multiple times (i.e., once for each attribute). Interestingly, the
authors also evaluated the use of Bloom filters to prune the candidate space. In Bauckmann et al.
(2010), the authors recognized that Bloom filters can be used as column signatures that preserve
subset relationships. In contrast to our solution, they were not able to achieve promising efficiency
gains due to pair-wise comparisons of the bit-signatures, which we avoid.

The BINDER approach by Papenbrock et al. bucketizes the column values from the input with the
help of a hash-function (Papenbrock et al. 2015b). The algorithm assures that a single partition fits
into main memory by iterative refinement and automatic memory management. In the validation
phase, the algorithm creates for each partition two indices: One index maps the single attributes
to their value lists; and one inverted index, which is similar to de Marchi’s index, maps every
value from a partition to all the attributes it occurs in. The partitioning and the two indices allow
BINDER to circumvent memory limitations and to prune much more aggressively than other related
algorithms. We perform a comparative evaluation of our approach with both SPIDER and BINDER.

2.3 Related Work: Foreign Keys

Our main motivation for this work is to discover unknown relationships in the form of INDs among
web tables. The classification whether an IND indeed is also a foreign key is addressed in different
works.
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Rostin et al. achieved good results with a machine learning-based approach (Rostin et al. 2009).
They built a 10-dimensional feature vector for each IND and trained different classifiers on real-
world relational datasets. They show that a classifier trained on one specific dataset can achieve
a good F-measure on a different dataset as well. However, a foreign key detection approach that
relies exclusively on machine-learning and the complete set of INDs in the dataset is not applicable
for our domain. The sheer amount of valid iINDs among the relations requires some prefiltering.
To this end, we make use of several of the features described in Rostin et al. (2009).

Lopes et al. follow a different path, not relying on the knowledge of all iNDs but on a provided
SQL-workload (Lopes et al. 2002). From this workload, they deduce the set of foreign keys by
assuming that join operations are usually performed by equating a key with a foreign key. As
there is no existing workload for even a small fraction of tabular Web data, this approach is not
applicable for us.

Another approach that does not rely on the knowledge of the set of INDs is described by Zhang
et al. (2010). The main idea of their approach is to determine if the dependent side of a foreign
key candidate is a “good” sample of the referenced part. One issue with this detection process is
that it cannot well handle the small size of Web tables: Two tables might be related by an 1nD, but
this IND might not indicate a foreign key relationship according to that approach. Consider, for
example, a table collecting certain economic information about the Baltic countries. A foreign key
relationship between the “Country” column of that table and a table that collects knowledge of
all countries in the world is preferable to be detected. The approach by Zhang et al. would likely
not detect this foreign key relationship because the sample of the three Baltic states is extremely
small.

2.4 Related Work: Web Tables

Carafella et al. analyzed 14.1 billion HTML tables from Google’s general purpose Web crawl
(Cafarella et al. 2008). The authors derived the Attribute Correlation Statistics Database (AcsDB),
which stores statistics on co-occurrences of schema elements. With the help of that metadata, they
developed novel applications, such as schema auto-completion, attribute-synonyme finding, and,
most interestingly to us: join-graph traversal. The latter enables navigation between extracted
schemas based on shared attributes (with same label) across tables. In contrast, our IND-based ap-
proach finds links between two schemas in an instance-based manner and does not rely on schema
information, which is usually not available anyway.

Bhagvatula et al. extracted nearly 1.4 million tables from the English Wikipedia for the
WikiTables project (Bhagavatula et al. 2013). To join tables, the authors tailored a hybrid approach:
In a first step, they heuristically filtered most of the more than 7 million columns because they
were not considered as possible key or foreign key columns (e.g., integer columns). Then they
computed a pairwise MatchPercentage for the remaining 1.75 million columns, keeping those with
a score > 50%. When a user queries for related columns based on a particular table of interest,
their system computes a set of candidate columns and ranks them with the help of a machine
learning algorithm. The main problem with this approach is its quadratic runtime in the number
of columns. In contrast, we propose bit-signatures for the enumeration of probable candidates to
avoid a pairwise comparison of all columns.

Yakout et al. created the InfoGather system on a huge Web table dataset (Yakout et al. 2012), gath-
ering 573 million Web tables from a Bing crawl. Their goal was to augment entities by providing a
desired attribute name for a given entity (e.g., brand for a certain camera model) or by providing
other entities from the same domain together with values of the desired attribute (camera models
with their brand). For that, they developed an “attribute discovery” mechanism for entities as in-
puts. The proposed system takes entities wrapped in query-relations to augment them with related
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Table 1. Sizes of Tabular Datasets Extracted from the Web

Columns Rows
Dataset # Tables (] min-max (%] min-max
WDC 147,636,113 3.49 2-2,368 12.41 1-70,068
WikiTables 1,398,105 5.34 0-2,349 10.85 0-4,670

tables. While they also take value overlaps between the relations into account, they do not explic-
itly detect INDs. Our goal is not to find information relevant to a user-specified query-relation, but
to create a join graph for Web tables based on INDs among them that suggest meaningful joins.

Similar to the approach of Yakout et al. (2012); Abedjan et al. (2015) also utilize Web tables
to complete binary query-relations asked by the user. They evaluated two different storage and
querying approaches for Web tables: One uses a column-oriented RDBMS and the other the Lucene
information retrieval framework. The latter stores each column from the Web tables as an indexed
document vector. To detect tables that include parts of the query-relation, a single-keyword query
is issued against Lucene for each value in a column from the query-relation. For both approaches,
the reported runtimes are prohibitive for our use-case.

3 THE ANATOMY OF WEB TABLES

In terms of the numbers of attributes and relations, the WDC Webtables dataset is bigger than
any other by an order of five magnitudes (Cafarella et al. 2008). Not only the sheer amount of
tables makes such datasets so special. Their origin from thousands of authors implies heterogeneity
and poor data quality. This section first introduces the peculiarities of these tables that affect IND
detection. Then it presents our designated use-case, finding join paths that allow us to prune the
search space to a feasible size.

3.1 Web Table Properties

We focus on both already-mentioned datasets; WDC Webtables (Cafarella et al. 2008) and
WikiTables.?> Some basic statistics can be found in the Table 1.

Although the WDC Webtables dataset is larger than the WikiTables dataset by two orders of
magnitudes, their shapes are similar: On average their tables have only a handful of columns and
around a dozen rows, so are small compared to other relational real-world datasets. Nevertheless,
the range for the number of columns and rows is surprisingly large.

The average number of tuples per table is important for our later approach, because it directly
influences the algorithm’s parametrization: We generate signatures for every column in the input,
and those signatures are less expressive the higher the relation of distinct values are in the column.

We exemplarily discuss the values from the WikiTables dataset, which contains 477,074 different
attribute names and 13,742,963 distinct values. All values together occur 88,808,438 times. Figure 3
provides plots on the frequencies of the values as well as the attribute names in the WikiTables
dataset. Both distributions closely follow Zipf’s law. The by far most frequent string in the dataset
for both values and attributes is the empty string. The 25 most frequent values are the numbers
“1” (2nd) to “22” (25th) in order and the single characters “—” (6th), “-” (11th) and “-” (19th) among
them. Together, they occur 24,131,756 times and therefore ~27% of all values are numeric or some
representation of what we consider as null. As a side note: The occurrences of all integer numbers
closely follow Benford’s law (Benford 1938); that is, 1 occurs as the leading digit in numbers about
30.1% of the time, while larger digits occur less frequently as leading digits.

Zhttp://downey-n1.cs.northwestern.edu/public Accessed: 05/22/2017.
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Fig. 3. Term frequency of the 10,000 most frequent strings in the WikiTables dataset.

Table 2. Values Considered as null Values

value tfrank frequency value tfrank frequency
“ I1st 11,279,606 € 176th 27,898
€ 6th 724,917 “n/a” 182nd 26,596
€7 11th 501,114 “o” 198th 23,574
€ 19th 252,008 - 578th 6,619
“N/A” 33th 131,339 “r 604th 6,367
“” 49th 97,236 “ 645th 6,053
“Unknown”  146th 32,484 “(n/a)”  915th 4,228

Table 3. Quadratic Growth in the Number of INDs in Random
Subsets of the WikiTables Dataset
#tables 1,000 2,500 5,000 10,000 25,000 50,000
#INDs 122k 774k 2.5m 10m 63m  259m

Many Web tables suffer from missing or null values. These are manifest in many different
representations: While RDBMSs provide an explicit mechanism for such values, we consider the
empty string (“”) in tabular datasets as the most intuitive way to represent the absence of a value
in a tuple for a certain attribute. However, among the 1,000 most frequent values, we find 13 other
representations that we consider as null values, as shown in Table 2.

3.2 Finding INDs for Meaningful Joins

The number of INDs in a Web table dataset is enormous. Table 3 shows experimentally how the
result set grows for increasing sizes of sets of randomly selected input tables from the WikiTables
dataset. By extrapolating to the entire dataset, consisting of more than 1 million tables, it is obvious
that discovering (and storing) them all is infeasible.

A closer look at the result sets reveals that most 1NDs hold for two reasons: A significant portion
of columns is completely empty or contains only null values. An empty column is included in
every other column in the dataset, while a column containing only null values is included in every
other column that has at least one null value (assuming the usual null = null semantics of IND
detection). Both cases lead to a large number of INDs that can be considered useless. The second
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and even more important reason for the vast amount of INDs lies in the distribution of values:
Very many columns are lists of integer values, often starting from “1.” Consider tables containing
ordered lists of things, such as rankings, for example. Those columns frequently depend on similar
columns, but the IND is spurious. Based on these insights, we devise a set of four filter conditions
for IND candidates and valid INDs so that the remaining INDs only suggest meaningful joins or
possible foreign keys between Web tables. Note that these filters are not an essential part of the
algorithm—for smaller inputs they could, in principle, be dropped.

1. Null-column-filter. Empty columns or those containing only null values are ignored.

2. Integer-column-filter. We have shown that many columns in our considered datasets
contain integer lists. INDs among those columns are almost always of a random nature and
lead to huge result sets. While foreign key relationships over integer columns that represent
IDs are the rule for traditional RDBMS, such IDs are hardly present on web data because
there is no issuing authority. Bhagvatula et al. also apply such a filter rule (Bhagavatula
et al. 2013).

3. Non-unique-filter. The definition of a foreign key requires that the referenced attribute
is a primary key inside its relation. Hence, only attributes with unique values should be
taken into account as referenced candidates.

4. Coverage-filter. Inspired by a feature of Rostin et al. (2009), a machine learning approach
to classify INDs as foreign keys or non-foreign keys, we filter INDs with a too low coverage
of the values in the referenced attribute’s value set based on a user defined threshold (de-
fault 20%). That is, the dependent column should cover at least a certain percentage of the
distinct values in the referenced column because dependent columns with a low coverage
usually arise by accident and do not represent real foreign keys.

With these filters in mind, we now move to the actual detection algorithm.

4 BIT-SIGNATURES FOR IND DETECTION

In this section, we first provide foundations by describing how to create subset-relationship pre-
serving signatures using a probabilistic data structure. We then describe our IND detection work-
flow and show how to improve its efficiency by parallelization and other optimizations.

4.1 Bloom Filters

The main challenge we have to tackle is the number of potential candidates. Taking simple meta-
data into account alone for the candidate set generation, such as the minimal and maximum value
of each column or the data type, still would lead to a vast amount of candidates to check. Our
algorithm does not explicitly enumerate all IND candidates and thus keeps the initial candidate set
of INDs to check small. Instead, we create bit-signatures for each of the columns in the input that
act as fingerprints. Those fingerprints must fulfill one important criterion: If the value set of one
column A in an instance of R is a subset of another column B in R, (IND Ry.A C R,,.B holds), the
bit-signature of A shall also be a subset of the bit-signature of B. Similar hashing approaches are
already known as simhash (Charikar 2002).

We decided to use Bloom filters (Bloom 1970), which are space-efficient probabilistic data struc-
tures often used to test if an element already occurred in a data stream. Intuitively, a Bloom filter
is a bit-array where certain bits are set and some are not. If a value is added to a Bloom filter, a
certain number of bits representing that value are set. If we want to know if a value already oc-
curred in the data stream, we check if every bit is set to 1 that would have been set if the value
were added. Bloom filters do not produce false negatives, but false-positive matches are possible.
More formally:
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Fig. 4. Finding referenced attribute candidates for a dependent attribute candidate (dep2refs, top) and vice
versa (ref2deps, bottom).

Let B = (b1, b,,...,b,) be a binary vector of size m with all bits initially set to 0. Let H =
{hi,hy, ..., ht} be a set of k hash-functions. Let S = {s1,s2,...,5,} be a set of n different data
values. The hash-functions in H are defined as h, : S — [0, m — 1]. For every value in S each of the
k hash-functions is computed, and, accordingly, the ith bit is set in B with i being the output of
one hash-function. After all values have been added, B is the Bloom filter for S. To query a Bloom
filter with a string g, one computes all hash-functions on q and verifies whether all corresponding
bits are set. If that is the case, the string ¢ maybe in S; if not, it cannotbe in S. A Bloom filter B; is a
subset of another Bloom filter B, (denoted as B; C By) iff all bits set in B; are also set in B,. Bloom
filters fulfill the desired property of preserving subset relationships between two sets: If S; C S,
then B; C B,, but not vice versa.

So far, we generated only fingerprints for our columns in the dataset. Our initial goal is still to
efficiently enumerate the candidate set of INDs that are worthwhile to check. Currently, we would
still need to check every Bloom filter pairwise for containment. Once we observe containment in
the Bloom filters, we would propose their corresponding attributes as an IND candidate. If there is
no containment of one bit-array in another, we know that there is no IND between the signature
generating attributes.

The pairwise comparison of Bloom filters can be substituted by a much more efficient compu-
tation, as suggested in Figure 4: First, we combine all Bloom filters into an (m X n)-matrix. In this
matrix, n is the number of columns in our input dataset and m is the length chosen for our Bloom
filter signatures. If we want to know, e.g., in which other Bloom filters the Bloom filter of the at-
tribute’s table1.Planet value-set is included, we can check where the corresponding column ¢, in
the matrix is included.
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Fig. 5. Process of the IND validation in MANY.

To determine containment of a column in others in the matrix, we make use of simple and
efficient bitwise and operations. For the and operation, we must consider only those lines that
have their cy-bit set because we have to check only the existence of every element in the set to
be contained in the superset candidate. Hence, we consider only the rows 0, 1, and 3 from our
example matrix to check inclusions for c.

In the example, the result of the and operations as shown in Figure 4 (top) is 10010. It indicates
that the Bloom filter represented by the first column in the matrix is included trivially in itself
and in the Bloom filter generated by the values of attribute table2.Orb. Therefore, we propose the
IND candidate table1.Planet C table2.Orb. We do not know yet whether there is indeed an IND
between these two attributes, but it is likely.

Because our bit-based signature is a binary representation of the column values, we are able to
find not only subset relationships, but also (without greater effort) the superset relationships for
a specific column. If we want to know if an attribute is possibly referenced by others, we simply
have to check if its Bloom filter is a superset of another attribute’s Bloom filters. Figure 4 (bottom)
shows how to enumerate potentially dependent attributes for a possibly referenced attribute. We
take the same example as seen in Figure 4, but this time we want to know which columns might
be contained in the attribute table2.Orb. The Bloom filter representation of this attribute’s values
can be found in the fourth column, c3, of our bit-matrix.

Again, to find subsets of this bit-array, we have to logically link only those rows of the matrix
where c; itself is set to 0. The superset relation c3 2 ¢, can be violated merely in those rows
of the matrix where c3 is set to 0. Instead of combining all relevant rows by an and, as before,
we first take the inverse of each row and then combine them with an and. This is equivalent to
applying logical or operations, but we provide an optimization for the and operation of our bit-
vector implementation in Section 4.5.

As a result, in the example, we obtain the bit-vector 10019, indicating that the column c; of the
bit-matrix is only a superset of itself and of ¢y, which corresponds to the attribute table1.Planet.
Thus, we know that the value set of table2.Orb might be a superset of the values in table1.Planet
and propose the IND candidate table1.Planet C table2.Orb.

We refer to the two different strategies to enumerate IND candidates described in Figure 4 as
depZrefs and ref2deps, respectively. The part of our algorithm that generates the IND candidate is
in the following called IND-Proposer.

After candidate preparation, the IND-Validator checks the correctness of every candidate by
checking the subset relation of the underlying actual value sets and outputs only valid iNDs. This
part of the process from the final algorithm is sketched in Figure 5. To prevent redundant reads
(from disk) of the same data values, a cache is used. This cache stores the projections of the tables
on the single attributes.
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4.2 The MANY Algorithm

After providing the theoretical foundations, we now provide an overview of our entire IND detec-
tion process. MANY takes relational data as input. It then uses the Signature-Generator to calculate
a Bloom filter—based bit-signature for every column in the dataset. Thereafter, the IND-Proposer
determines the set of all IND candidates containing all valid and possibly some false-positive INDs.
In a final step, the IND-Validator checks every candidate for the necessary value containment of
the dependent attribute’s values. Algorithm 1 outlines this process.

ALGORITHM 1: MANY

Require: Database schema D = {R;,R;,...,Rs}, instance of database schema d =7 (D)=
{ri,r2, ..., 75}, Bloom filter size m € N, hash-function count k € {1,...,m}, strategy €
{dep2refs, ref2deps)

Ensure: All valid INDs uinds

1: collndicesMap «—BUILDCOLINDICESMAP(D)

2: function Many(D, d)

3: uinds < 0

4 sigMatrix < GENERATESIGNATURES(D, d)

5 candidates < GENERATECANDIDATES(sigMatrix)

6: for all candidate € candidates do

7

8

if 1sVALID(candidate, d) then
uinds « uinds U {candidate}

9: return uinds
10: return MANY(D, d)

MANY receives a database schema D = {Ry, R, ..., R} consisting of a finite set of relational
schemas as input as well as an instance d = 7 (D) = {ry,rs,...,rs} of this schema. Note that only
the essential data structures for each function are provided as parameters. Parameters, such as m
(Bloom filter size), k (hash-function count), or strategy ({dep2refs, ref2deps}) are provided as global
state from outside the main function MANY(D, d). Supporting data structures, such as the mapping
from column identifiers to global indices (collndicesMap), are also globally accessible.

Line 1 initializes MANY for the given schema D: It computes a mapping of column identifiers
to their later global column index in the bit-signature matrix and stores this in the global vari-
able collndicesMap. Algorithm 2 shows the implementation of BurLDCoLINDICESMAP. In Line 4,
the Signature-Generator computes the signature for each input column and puts the result in the
corresponding place inside the sigMatrix. Based on this matrix, the IND-Proposer then computes
the complete set of IND candidates. If the IND-Validator approves a candidate in Line 7, the IND is
added to the output set. After testing all candidates, MANY outputs the complete set of valid INDs
uinds.

The BUILDCOLINDICESMAP procedure in Algorithm 2 takes the database schema D as input and
first initializes the later output collndicesMap with an empty bidirectionally accessible map. This
map stores a mapping from column identifiers to global column indices in the form of key-value
pairs, such as (Ry.Ay, z). Because it is a bidirectional map, it can be queried in both directions,
either for a column index of a given column identifier or vice versa. The function mainly consists
of a nested for loop in Lines 4 and 5: The outer loop iterates over the set of relational schemata
and the inner loops over each attribute A; of such a schema R;, saving A; into the map together
with the current global counter globalColumnld, which is continuously incremented.
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ALGORITHM 2: Build Column to Indices Mapping

1: function BUILDCOLINDICESMAP(D)

2 collndicesMap < [Ry.Ay : z € N¥] > empty bidirectional map
3 globalColumnld « 0

4: for all R; € D do

5 for all Aj € R; do

6 collndicesMap([R;.A;] < globalColumnld

7 globalColumnld < globalColumnld + 1

8 return collndicesMap

The Signature-Generator is described in more detail in Algorithm 3. It takes both the database
schema D and the instance d as inputs and initializes an empty list of Bloom filters as a starting
point. Afterward, in Lines 3-7, the algorithm iterates over all columns in the dataset with the help
of the attribute set stored in the key set of the colIndicesMap. For each column, a new Bloom filter
with size m and hash-function count k is created. Subsequently, each value of the projection of r;
on the current attribute A; is added to the Bloom filter signature. The Bloom filter is finally stored
in the bloomFilters list at the corresponding global columnld position.

ALGORITHM 3: Signature-Generator

1: function GENERATESIGNATURES(D, d)
2 bloomFilters « [collndicesMap.length)

3 for all R;.A; € columnindices.keys do

4: bFilter < BloomFilter(m, k)

5 for all value € 74;)(r;) do

6 add value to bFilter

7 bloomFilter{ collndicesMap[R;.A;]] « bFilter

8: sigMatrix « [m][collndicesMap.length]
9: for all bFilter; € bloomFilters do

10: for all bit; € bFilter; do
11: sigMatrix[j][i] < bit;
12: return sigMatrix

Because we have only a list of decoupled Bloom filters after that step, we merge them together in
the sigMatrix. Hence, by looping over the bits of each Bloom filter’s backing bit-array in Lines 9-
11, the ith Bloom filter’s jth bit is written to the ith column at the jth row of the bit-signature
matrix. Finnally, the filled matrix is returned.

The sigMatrix is the foundation for the computations of the IND-Proposer (Algorithm 4), which
loops over all columns by their global column indices in the value set of the colIndicesMap. De-
pending on the chosen strategy, the IND-Proposer applies either dep2refs or ref2deps on each col-
umn. In both cases, a candidate subset is returned by DEP2REFs or REF2DEPs that is combined with
the current candidate set. Finally, the candidateSet is returned.

In the introduction of this section, we already discussed the theory behind both strategies for
IND candidate generation. We now give more detailed explanations based on the pseudo-codes
in Algorithms 5 and 6. Both shown functions have the same signature: They take the index of
a current column and the signature matrix as input and return IND candidate sets, where the
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ALGORITHM 4: IND-Proposer

1: function GENERATECANDIDATES(sigMatrix)

2 cand « 0

3 for all colldx € collndicesMap.values do

4 if strategy = depZrefs then

5: cand < cand U DEP2REFS(colldx, sigMatrix)
6

7

8

else if strategy = ref2deps then
cand < cand U ReF2DEPSs(colldx, sigMatrix)

return candidateSet

currently considered column is either the dependent attribute (dep2refs) or the referenced attribute

(ref2deps).

ALGORITHM 5: depZrefs Strategy

Require: Index of the dependent candidate column colldx, Bit-signature matrix sigMatrix
Ensure: Set of IND candidates candidateSet = {Ry. A C Ry.Ae, ...}
1: function DEP2REFS(colldx, sigMatrix)
2: referencedCandidates « (
candidateBitArray « [collndicesMap.length]
for all row; € sigMatrix do
if row;[colldx] = 1 then
if candidateBitArray = [] then
candidateBitArray < row;
else
candidateBitArray < candidateBitArray A row;

10: dep «— collndicesMap| colldx]
11 for all bit;. € candidateBitArray do

12: if bity = 1 and k # colldx then

13: ref < columniIndices[k]

14: referencedCandidates < referencedCandidates U {dep C ref}
15: return referencedCandidates

The first strategy is shown in Algorithm 5. The first two lines of function DEP2REFs initialize
the referencedCandidateSet and temporarily set the candidateBitArray to an empty bit-array. Af-
terward, we iterate over all rows in the input matrix, considering only those rows where row; has
the bit at position colldx set to 1. Figure 4 already explained the reason for that. The first matching
row is copied as the initial value for our result bit-vector candidateBitArray. It is combined with
an and with every following matching row in the matrix. The final state of this bit-vector repre-
sents the potentially referenced attributes in D. For simplicity, we store the column identifier for
the currently tested column in the variable dep. We finally iterate over all bits in our result vector
that are set to 1 and add a corresponding IND candidate to the candidates found so far. The second
condition in the if-clause of Line 12 ensures that IND candidate R,.X, C Ry.X,, which are trivial
due to the reflexivity of INDs, are not proposed.

The strategy ref2deps represented in Algorithm 6 works analogously to dep2refs. According to
the explanation in Figure 4, there are only three differences: We consider rows row; with a 0 at
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ALGORITHM 6: ref2deps Strategy

Require: Index of the referenced candidate column colldx, Bit-signature matrix sigMatrix
Ensure: Set of IND candidates candidateSet = {Rp.A; C Ry.Ae, ...}

1: function REF2DEPS(colldx, sigMatrix)

2: dependentCandidates «— (

3: candidateBitArray « [collndicesMap.length)

4 for all row; € sigMatrix do

5 if row;[colldx] = 0 then > ref2deps checks for 0
6: if candidateBitArray = [] then

7: candidateBitArray < —(row;) > ref2deps links with inverted row;
8: else

9:

candidateBitArray < candidateBitArray A =(row;)

10: ref «— collndicesMap| colldx]
11 for all bit;. € candidateBitArray do

12: if bity = 1 and k # colldx then

13: dep «— columnindices[k]

14: referencedCandidates « referencedCandidates U {dep C ref}
15: return dependentCandidates

position colldx (Line 5), we take the inverse of the rows (i.e., =(row;)) before combining them with
logical and operations (Lines 7 and 9), and the order in building candidates is reversed in the sense
that the currently evaluated column is the referenced column and the algorithm finds possibly
dependent columns (Lines 10 and 13).

The IND-Validator finally checks the validity of each IND candidate as outlined in Algorithm 7:
At first, the function stores the value sets of the dependent and referenced attribute by retrieving
the corresponding projections for ry and r;, respectively. The actual check happens in Line 4, where
the subset relation of the dependent value set is checked against the value set of the referenced
column candidate.

ALGORITHM 7: IND-Validator
Require: IND candidate Rj,. A, C Ry.A., instance of database schema d = 7 (D) = {ry,ra,...,ry}
Ensure: Validity of 1ND candidate

1: function 1sVALID(candidate)

2: dependentSet «— ma,}(rp)
3: referencedSet < m(a,)(rq)
4: return dependentSet C referencedSet

Instead of recomputing the projections for each and every validation, the projections are actually
computed only once and then stored and retrieved from a cache. Because most attribute value sets
are required for different checks, recurring I/O operations for the same values can in this way be
avoided. The value sets in the cache are maintained using a Least Recently Used (LRU) strategy, so
that values can be removed from memory if memory is exhausted. To avoid multiple reads of the
data, this cache is filled initially by the Signature-Generator when this component reads the single
values for insertion into the Bloom filter signatures. If the entire dataset fits into main memory,
which in fact was possible for almost all our evaluated datasets on our test machine, no data have to
be read again during validation. Otherwise, the cache is filled with a best-effort strategy to a certain
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memory level that still allows further computations. If during the IND-Validator computation phase
avalue set is not present inside the cache, the value set is read from disk and stored in the cache. The
LRU cache ensures that frequently needed value sets (e.g., those of frequently referenced attributes)
are kept in memory as long as possible.

When the IND-Validator finishes the last candidate from the set of candidates provided by the
IND-Proposer, the set of valid inclusion dependencies is complete and can be returned by the main
function.

4.3 Multi-Hashing

The number of false positive candidates generated by the IND-Proposer is mainly influenced by the
parameters that are chosen for the Bloom filter. Consider a relatively small Bloom filter (small m)
to which we add many values. In the worst case, every bit is set in the signature. Then, every other
signature is a subset of this particular “degenerated” Bloom filter, leading to many false-positive
candidates. For that reason, a greater length of the underlying bit-array (large m) should be used for
the Bloom filter signature. As a drawback, longer Bloom filters result in a larger signature matrix
and, in turn, to more logical operations. Furthermore, by choosing a larger k, the higher number
of logical conjunctions might decelerate the runtime of the MAaNyY algorithm. Obviously, there is
a trade-off between the false-positive rate and Bloom filter length together with hash-function
count.

We discuss the correct choice of m and k, the Bloom filter length and hash-function count, in
the evaluation. Here, we introduce an idea to improve Bloom filter performance while keeping
the false-positive rate small. The main idea is to initially create multiple smaller bit-signatures for
the columns and then combine these signatures in the signature matrix. In this way, we enforce a
more uniform distribution of set bits in the combined signatures, which on average allows MaNY’s
IND-Proposer to prune columns much earlier during bitset-intersections.

We call the method of using multiple Bloom filters multi-hashing. For its implementation, we
introduce a new parameter p (passes) in the MANY algorithm. For p > 1, multiple Bloom filter sig-
natures with different hash-function sets are generated per column. The signatures of these Bloom
filters can simply be concatenated and treated as one before they are merged into the signature
matrix by the Signature-Generator. The algorithm that we discussed so far virtually had p set to
1. Thus, the resulting signature matrix had a size of (m - n) bits, with n being the number of at-
tributes in the input and m the Bloom filter size. Through the introduction of p, the resulting matrix
is ((p - m) - n) bits large.

The technique of concatenating the p signatures into one works because the rows in the sig-
nature matrix are logically linked by and operations. Also, introducing the parameter needs
only a slight change in MANY, where an additional for-loop is introduced around Lines 3-7 in
Algorithm 3.

4.4 Parallelization

No previous IND detection approach utilizes the parallelization capabilities of modern hardware.
The two main challenges in the parallelization of algorithms is the communication overhead be-
tween the parallel tasks and the locking due to synchronization of concurrent write accesses
to shared data while concurrent read operations are lock-free. Indeed, the MANY algorithm al-
ready contains an inherent parallelization: The bit-wise and operations of methods DEP2REFSs and
REF2DEPS in Algorithms 5 and 6 check the Bloom filter containment of a particular attribute against
all other attributes at the same time. In fact, depending on the underlying hardware architec-
ture (e.g., 64-bit register width) and the used implementation strategy for the bit-vectors (e.g.,
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long-array based), this means that for one set bit in the currently checked Bloom filter it is probed
against 64 other attributes’ Bloom filters simultaneously.

But, so far, only one CPU core out of the possibly many available is used. Notably, all opera-
tions on the bit-signature matrix during the IND-Proposer phase are read-accesses only. Instead of
letting one thread sequentially check each column in the matrix, we can divide the workload and
let multiple threads check subsets of matrix columns. The necessary algorithm modifications are
shown in the following listings starting with the main function shown in Algorithm 8.

ALGORITHM 8: Parallel MANY
Require: (see Algorithm 1), number of available CPUs n
Ensure: All valid INDs uinds
1: colIndicesMap «BUILDCOLINDICESMAP(D)
2: function MANYPARALLEL(D, d)
3 uinds « ()
4 sigMatrix < GENERATESIGNATURES(D, d)
5 forallie{1,...,n}do
6: lo « [(i—1) * (colIndicesMap.length/n)]
7
8

up « Li* (collndicesMap.length/n)]
uinds < uinds U INDDETECTIONWORKER;(sigMatrix, lo, up)

9: return uinds
10: return MANYPARALLEL(D, d)

The main difference to the sequential version of the algorithm is that the generation, iteration,
and validation of IND candidates was moved into IND-Detection-Workers. The algorithm now splits
the candidate space evenly into n distinct parts and distributes these parts to n worker threads via
asynchronous calls to the IND DETECTION WORKER function. Each IND Detection Worker produces a
validated subset of the final complete set of INDs. Hence, the only blocking synchronization point
during the computation is the union of the intermediate result subsets in Line 8 after a worker
terminates. For the rest of the time the worker threads run independently.

The IND-Detection-Worker, which is shown in Algorithm 9, combines the functionality of the
IND-Proposer and IND-Validator components. We decided to integrate the validation of IND candi-
dates inside the multiple threads because it is also easily parallelizable. Inside the outer for loop
of Line 3, a worker loops over all assigned column indices and executes the candidate-generating
function depending on the chosen strategy in Line 5 or 9. Each generated candidate is then imme-
diately checked and added to the subset of the final result if the validation succeeds.

Now everything but the initialization and the bit-signature generation is parallelized. A paral-
lelization of the latter does not make sense because it is mainly I/O bound due to reading all values
from disk.

4.5 Indexed Bit-Vectors

One of the main strengths of the discussed IND detection approaches is the ability to avoid unnec-
essary checks during the computation. Checks can become unnecessary if one column includes
a value that occurs in no other column. Therefore, this column cannot depend on any other col-
umn and thus can be disregarded by further processing. We now discuss how to implement such
a pruning technique by changing the implementation of the bit-arrays that are used by the Bloom
filters and the bit-signature matrix.
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Fig. 6. After combining two matrix rows, a consecutive part of the intermediate result is already cleared (0).

To check a column for containment in other columns with MANY (depZrefs strategy), we check
which columns’ bit-signatures have the same bits set as that column. We do this check by logically
linking all rows in the signature matrix with a conjunction where the concerned signature’s bit is
set to 1. If this operation changes a bit from 1 to @ in the intermediate result vector, the column that
corresponds to the index of that cleared bit cannot be a superset of the currently checked matrix col-
umn. This is because the @ indicates that a bit is set in the signature of the currently checked column
that was not present in the signature of the column with the cleared bit in the intermediate result.

The MaNy algorithm avoids checking bit-signatures for subset relationships pairwise. Instead,
it actually checks X columns at once, where X depends on the underlying hardware architecture,
which is 64 in our case. This parallel check prevents us from omitting certain single columns
(i.e., columns whose bit in the intermediate result vector became @ during the inclusion-checking
process). However, our focus on datasets with many tables and, in particular, Web table datasets,
comes to the rescue: The often millions of columns make the lengths of the signature matrix rows
and the (intermediate) result vectors accordingly large. For this reason, we represent the bit-vectors
for the matrix rows and result vectors as multiple concatenated long values. We further observe
that the row and result vectors are mostly extremely sparse in terms of bits set to 1 because the
input tables are typically short and do not have much overlap. For this reason, not only single bits
in the bit-vectors are @, but also often long consecutive sequences. An example for this situation
is illustrated in Figure 6.

ALGORITHM 9: IND-Detection-Worker
Require: Bit-signature matrix sigMatrix, lower [ and upper u attribute index limits
Ensure: Subset of all valid INDs uinds;

1: function INDDETECTIONWORKER; (sigMatrix, I, u)

2: uinds; < 0
for all colldx € {l,...,u} do

if strategy = dep2refs then
for all candidate € DEP2REFs(colldx, sigMatrix) do
if 1sVALID(candidate) then
uinds; < uinds; U {candidate}

else if strategy = ref2deps then

for all candidate € REF2DEPS(colldx, sigMatrix) do
10: if 1sVALID(candidate) then
11: uinds; <« uinds; U {candidate}

12: return uinds;
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Fig. 7. Visualization of indexed bit-vectors. In this example, long values have a length of 4 bits.

Now, if certain long values are completely covered by a @-sequence (i.e., all their bits are ), then
the intersection algorithm can discard them from all following checks for a currently considered
column. Logically linking these empty long values by a conjunction with any other value cannot
change them. Nevertheless, a naive bit-vector implementation spends CPU cycles on these zeroes.

The main idea to implement the pruning of empty long values is to introduce an index over
the long-array vectors. In this index, we keep only those long values that are not equal to 0. We
call these values “active” in the following. The intersection process uses this index to link only
those parts of the result vector with corresponding parts from the signature matrix that are still
of interest. The idea is sketched in Figure 7.

To implement the index, we need to extend the naive bit-vectors. First, we store which long
values are still active using another simple bit-vector. Second, we extend the bit-vector methods
that influence the state of the vector. For example, if a bit in the vector is set to 1 inside an area
marked as inactive, this area must also be changed to active in the index. Furthermore, and most
importantly, the and operation must be changed: So far, the method iterated over all long values in
the backing array and logically linked them by a conjunction with the corresponding value of the
operand; now, the method searches for the next set bit in the index and performs the conjunction
only for active values.?

4.6 Applying Filters

Because the IND result sets can grow quadratically with the number of input columns, it is essential
to reduce the output set early on in the candidate detection and the validation phase. In this section,
we show when and how we apply the filters introduced in Section 3.2.

The filters (1) filterNullColumns and (2) filterIntegerColumns affect referenced candidates as well
as dependent attribute candidates. Therefore, if attributes are found that match these filters, it is
unnecessary to further check them. The filter (3) filterNonUniqueRefCandidates, in contrast, affects
only the referenced attribute of a candidate so that we can prune candidates with this rule but not
(directly) entire attributes. Filter (4) filterRefLowCoverage measures the value overlap of dependent
and referenced attributes. This is a costly operation that is useful to reduce the result size but not
to improve the discovery performance. Therefore, we implement it as a post-processing filter after
a candidate has been validated.

Algorithm 10 shows the changes made to Algorithm 8. The only difference is prior to the actual
algorithm’s function MANYPARALLEL(D, d). For the filter filterRefLowCoverage, a new parameter 7 is
introduced as the minimal fraction of coverage on the referenced attribute’s values. Furthermore,
we introduce two new bit-arrays with a length of the number of all attributes from the input
(Line 2). Those two arrays indicate if certain attributes were filtered. In the first one, filteredCols,
a bit is set if an attribute is completely excluded from further consideration. For that reason, the
results of the filterNullColumns and filterIntegerColumns filter rules are stored together inside this

3Modern x86 architectures offer special hardware instructions to efficiently find the index of the next set bit.
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variable. In filteredRefs, we mark only attributes that can still reference others but must no longer
be considered as possible referenced attributes.

ALGORITHM 10: Filtering MANYPARALLEL

Require: (same as in Algorithm 8), minimum coverage 7 € [0, 1]
Ensure: All valid INDs uinds

1: collndicesMap «INITIALIZE(D)

2. filteredCols, filteredRefs < [collndicesMap.length]

3: filteredCols «<—FILTERNULLCOLUMNS(D, d)

4: filteredCols « filteredCols V FILTERINTEGERCOLUMNS(D, d)

5. filteredRefs <~ FILTERNONUNIQUEREFCANDIDATES(D, d)

6: function MANYPARALLEL(D, d)

... see Algorithm 8

For all filters, changes are also made to the INDDETECTIONWORKER, as shown in Algorithm 11.
We still have one outer loop iterating over all assigned columns in the bit-signature matrix. If such
a column is marked in the filteredCols array, we proceed to the next one. For strategy ref2deps, the
algorithm then checks if the column is still a possible referenced candidate. As a last step, we mod-
ify the 1sVALID function: After validating a candidate, the function checks the overlap of the two
value sets, and, with the minimum coverage parameter 7, it decides whether to keep or prune the

jf 1dependentSet] 7, then the attribute pair is kept.

current inclusion dependency. More concretely, Treferencedset]

ALGORITHM 11: Filtering INDDetectionWorker

Require: Bit-signature matrix sigMatrix, lower [ and upper u attribute index limits, minimum
coverage T
Ensure: Subset of all valid INDs uinds;
1: function INDDetectionWorker;(sigMatrix, I, u, 7) {
2: uinds; < 0
3: for all colldx € {l,...,u} do

4 if filteredCols[colldx] = 1 then

5 continue

6 if strategy = ref2deps then

7: if filteredRefs[colldx] = 0 then

8: continue

9 for all cand € REr2DEPs(colldx, sigMatrix) do
10: if 1sVALID(cand, 7) then

11: uinds; « uinds; U {cand}

12: else

13: analogously to the code above

14: return uinds; }

5 EVALUATION

We first assess MANY’s behavior with respect to parameters and different input datasets to find
an optimal parametrization. Then, we show how parallelization and bit-vector indexing influence
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Table 4. Datasets Used in the Evaluation of MANY

Dataset # tables # attr. O attr. @ tuples

WikiTables 1,398,105 7,470,443 5.34 10.85
WDCWebTables1 528,106 1,849,065 3.5 12.27
PlistaStatistics 1 63 63 101,305,267
BTCFreebase 11,118 22,236 2 9,105

Table 5. Runtime of MANY and the Number of INDs on
Several Real-world Datasets

Dataset # INDS runtime in seconds
WikiTables 5,056,820 7,867
WDCWebTables1 243,224,068 10,438
PlistaStatistics 921 OutOfMemoryError
BTCFreebase 202,331 523

the algorithm’s efficiency. Finally, we compare our approach to existing inclusion dependency
detection approaches on different real-world datasets.

5.1 Test Environment and Datasets

We executed the experiments on a Dell Poweredge R620 with two Intel Xeon E5-2650 and Cen-
tOS 6.4. The Java execution environment is the 64-bit OpenJDK in version 1.7.0_65. The Java virtual
machine is granted 120GB of total 128GB main memory for heap space allocations.

All tested algorithms are implemented on the publicly available Metanome framework
(Papenbrock et al. 2015a) with its implementations of the SPIDER and BINDER algorithms. Un-
less stated otherwise, MANY’s filters are not activated. The measuring of the runtime was done
using Java’s System.nanoTime () functionality. We conducted three runs of each experiment with
empty caches and always report the minimal runtimes to remove noise.

The collection of our four evaluated real-world datasets can be found in Table 4 alongside some
basic statistics. The datasets were chosen for their quite diverse shapes.

The datasets WikiTables and WDCWebTables1 both contain a huge collection of Web tables. The
former is provided by the WikiTable project in form of an SQL dump,* which we converted to sep-
arate csv-files. WDCWebTables1 is a subset of tables from the WDC WebTable® project containing
approximately half a million relational instances as csv-files; here, we used part1-5000.° From the
Plista dataset (Kille et al. 2013), which is a collection of streamed anonymized Web log data, we
used only the Statistics relation with more than 100 million tuples. The BTCFreebase’ dataset is a
collection of RDF triples in relational representation. Each relation in BTCFreebase corresponds to
an RDF predicate and has two attributes: subject and object. Because some predicates are used more
frequently than others, the number of rows of the relations varies greatly. While nearly 11,000 of
the instances contain only 10,000 tuples or fewer, the 18 largest instances contain between 1 and
10 million tuples.

Table 5 summarizes the runtimes of the MaNy algorithm on the complete datasets. It also shows
the actual number of INDs. The counts marked with an asterisk (x) are the numbers when all filters
are activated. For the PlistaStatistics dataset, no final runtime result could be determined due to

4http://downey-n1.cs.northwestern.edu/public/ Accessed: 05/22/2017.
Shttp://webdatacommons.org/webtables Accessed: 05/22/2017.
®http://data.dws.informatik.uni-mannheim.de/webtables/2014-02/englishCorpus Accessed: 05/22/2017.
http://km.aifb.kit.edu/projects/btc-2012 Accessed: 05/22/2017.
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WikiTables WDCWebTables1
rank m k p runtimeins m k p runtimeins
1 2 32.14 500 48.13
2 32.29 550 48.28
3 32.39 500 4 2 49.67
4 32.62 50.28
5 32.68 8 50.55
6 32.74 50.76
7 32.90 5 51.09
8 32.99 51.35
9 33.07 51.61
10 33.10 51.62
2246 76.12 104.35
2247 76.61 107.39
2248 79.56 107.99
2249 80.08 117.91
2250 82.15 118.02

Fig. 8. Ranked runtimes of MANY on subsets of 10,000 tables from WikiTables and WDCWebTables1 with
different parameter combinations (m € {50,100,...,1500},k € {1,2,...,15},p € {1,2,...,5}, red=large,
yellow=medium, green=small).

the size of the dataset, which exceeded the available main memory. Here, the number of INDs was
determined with the BINDER algorithm of Papenbrock et al. (2015b), which is specialized for this
use-case.

5.2 Parametrization of MANY

The MaNy algorithm takes three different configuration parameters as its input: the size of the
Bloom filter m, the number of hash-functions k, and the number of passes p. As candidate enu-
meration strategy, we use the depZrefs strategy if not stated differently. We set the number of
worker threads to 16 because this provides the lowest runtimes, as shown later. Now, we evaluate
the influence of the three parameters and their interdependence to find an optimal parametrization
and explore MANY’s sensitivity.

In general, we expect a trade-off between the configurations. Larger Bloom filters may produce
more unique bit-signatures for single columns and might, therefore, decrease the false-positive
rate. A low false-positive rate reduces the number of unnecessary IND checks and, hence, the
runtime spent for the validation. However, large m and k result in a large bit-matrix, resulting in
a longer runtime for logical linkage of bit-signature matrix rows.

We ran experiments on two different subsets of the WikiTables and WDCWebTables1 datasets
with a sample size of 10,000 tables to achieve runtimes that are short enough to test all 2,250
parameter combinations. This sample size also guarantees runtimes with significantly measurable
differences. We choose m from {50, 100, . .., 1500}, k from {1, 2, ..., 15}, and p from {1, 2, ..., 5}.

Figure 8 shows the 10 best and 5 worst configurations for both datasets, ranked by the overall
runtime. The parameters are colored according to their relative value within the chosen range.
To gain a better understanding of the distribution of runtimes, we also plotted the runtimes in
ascending order in Figure 9.

The results for both datasets are similar: The top 10 configurations lie closely together regarding
their runtime. None of the three parameters has an obviously high or low setting, which mean that
fast runtimes can be achieved with both small and large parameter values. It is particularly surpris-
ing that also huge Bloom filters and multiple passes can result in fast overall computation times.
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Fig. 9. Distribution of runtimes of different parametrizations in ascending order.

In particular, Figure 9 shows an overall low sensitivity for the settings of all three parameters—it
is unlikely to choose a combination that performs particularly poorly.

We also observe that the use of multi-hashing is not always outperforming configurations with
only one bit-signature per input column, that is, the top 10 results for WDCWebTables1 contain
solely parametrizations with p < 3, and six times only was one pass applied. However, almost all
worst configuration settings only use p = 1 and the smallest value for m. With this observation, we
might not be able to guess the best parametrization for MANY in advance, but we can easily avoid
the worst runtimes shown in Figure 9 by setting m > 100 and p > 1. For the following evaluations,
we chose for each dataset the best available parametrization.

5.3 Scale-up Evaluation

MANY is the first inclusion dependency detection algorithm that uses multiple CPU cores through
parallelization. To evaluate the parallelization, we ran a scalability experiment on the complete
WikiTables dataset by varying MANY’s parameter n that specifies the number of “IND Detection
Workers.” We choose 32 as an upper limit for n because it equals the number of logical cores
in our machine (16 physical cores). We also activated all filters described in Section 3.2 in this
experiment to keep the result size manageable. The effect of these filters is discussed later.

Figure 10 illustrates the runtime results for the scale-up experiment: The top line in the chart
is the overall runtime, and the lower line represents the runtime of the serial (nonparallelizable)
preprocessing part, namely, the population of the Bloom filters and their merge into the signature
matrix. Compared to the overall runtime, the serial part is negligible (approximately 10 seconds in
all runs).

As we expected, the graph shows a near linear speed-up in the number of worker threads for
one to four threads because the individual worker threads are lock-free and need synchronization
only at the end of their computation life cycle, when their results are written to the set of all INDs.
This synchronization in the end, together with an increased overhead for thread creation and man-
agement, reduces the performance gains for thread numbers between four and eight. Still, MANY
gets faster here and achieves the best runtime with 16 threads. At this point, the overall speed-up
factor is approximately 6.5 (instead of the optimal speed-up of 16). With more than 16 threads,
MANY spawns more worker threads than physical cores exist, and the algorithms performance de-
creases. Because each thread makes heavy use of physical instruction units for the bit-operations,
the reason for the performance loss is probably that these instructions do not work well with
hyper-threading.
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Fig. 10. Scale-up behavior of MANY on WikiTables with m = 650, k = 6, p = 2, strategy = dep2refs, and all
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Fig. 11. The comparison of indexed long arrays and simple long arrays used as bit-vector implementations
in MANY.

In summary, we observed that MANY scales well with the number of threads and utilizes the
provided cores efficiently. The speed-up is sublinear due to thread synchronization overhead and
can be achieved only up to a thread count that equals the number of physical CPU cores on a
machine.

5.4 Evaluation of Indexed Bit-Vectors

In Section 4.5, we introduced an idea to avoid unnecessary intersect operations in the IND can-
didate enumeration phase by indexing the bit-vector implementations. The following experiment
compares the runtimes using simple long array-backed bit-vectors with the runtimes using our
indexed bit-vectors. As test sets, we take the full WikiTables and WDCWebTables1 datasets with
activated filters and the BTCFreebase dataset without any filters (because result filtering is due to
the much smaller number of results technically not necessary here). For the parameters, we chose
the ones with the best runtimes from Section 5.2 and for BTCFreebase, the same as in the previous
section.

The results of this experiment are listed in Figure 11: For all three datasets, the indexed version of
the bit-vectors leads to better runtime results. The achieved speed-ups vary only slightly between
the datasets (i.e., the runtimes are about 30% to 40% lower).
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Fig. 12. Runtime of MANY with different filters on different WikiTables subsets (m = 650,k = 6,p = 2).
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Fig. 13. INDs that MANY detects with different filters on different WikiTables subsets (m = 650,k = 6,p = 2).

5.5 Efficiency Effects of Filtering

In Section 3.2, we discussed that the number of INDs grows quadratically with the number of
columns in the input tables. Thus, we suggested different filters to decrease the number of 1NDs
early on. In the following experiment, we investigate how the use of individual filters influences
the number of discovered iNDs and also how it influences the runtime. For this purpose, we ran the
Many algorithm on different subsets of the WikiTable dataset. We increase the number of tables
and measure the runtime for each filter individually, for no filters, and for all filters together.
Figure 12 depicts the different runtime measurements, while Figure 13 shows the corresponding
number of detected INDs. We aborted measurements that exceeded more than 1 hour of runtime.

ACM Transactions on Database Systems, Vol. 42, No. 3, Article 18. Publication date: July 2017.



Detecting Inclusion Dependencies on Very Many Tables 18:25

The runtimes clearly correlate with the number of detected 1nNDs. For all filters except for the
filterIntegerColumns filter and the combination of all filters, we can observe a rapid increase of the
runtime as well as an increase in the number of found dependencies. None of those filters alone
discards enough INDs to keep the runtime reasonably small for more than 50,000 tables.

The filterIntegerColumns filter excludes so many columns from the input set from further con-
sideration that it is able to detect INDs among more than 400,000 tables in under 1 hour. For smaller
subsets, it even slightly outperforms the runtimes measured with all filters activated, due to their
own overhead.

The most important observation from that experiment is the fact that a combination of all fil-
ters clearly performs best for a large number of tables. Even if most of the single filters do not
significantly decrease the runtime, their combination, together with the most effective filter fil-
terIntegerColumns, speeds up the computation. Also, they keep the result set at a reasonable size:
Among the columns of the 409,600 tables, about 1.3 million valid INDs are detected when all filters
are applied. So the combination of all filters is the only efficient way to detect all relevant INDs
among hundreds of thousands of tables.

From this experiment, we learned that the number of valid INDs (without filtering) easily ex-
ceeds any reasonable number and therefore makes an efficient persistence in a human-readable
format for interpretation impossible. The enormous increase can be avoided only by the exclusion
of columns that merely contain integer numbers. A combination of all filters makes the MANY
algorithm capable of handling several hundreds of thousand Web tables.

5.6 Comparison to Known IND Algorithms

We compared MANY to two known inclusion dependency detection algorithms, namely BINDER
and SPIDER. We ran experiments to examine how the three algorithms scale with respect to the
number of tuples as well as with the number of attributes in the input. For a fair comparison, we
disabled all filters in the MANY algorithm in this experiment and found the same complete set of
INDs with all three algorithms.

5.6.1 Scaling the Number of Attributes. We first discuss how the approaches scale with the
overall number of attributes in the input. This is especially important for our use case because we
want to detect inclusion dependencies among thousands of tables and, thus, an immense amount
of attributes.

We start by providing each of the algorithms the same subset of 100 randomly chosen tables
from the WikiTables dataset as their input. Then, we add more and more tables to the input, always
keeping the tables from the previous run. Because of the random choice of tables and the nearly
even distribution of attribute-counts among the tables, we increase the number of attributes fairly
evenly.

The runtime results are plotted in Figure 14. As expected, the runtimes of all three algorithms
grows quadratically because the candidate set grows quadratically as well, and all algorithms spend
most of their time in checking these candidates. We see that the last measurement for SPIDER could
be obtained for an input size of only 1,000 tables. For 2,000 and more tables, the execution aborted
for too many open files. Two thousand relations contain approximately 10,680 attributes (which is
about 5.34 attributes per relation), and, therefore, SPIDER exceeds the typical number of open file
handles allowed per process in operating systems.

The BINDER algorithm scales up to an input of several thousand tables. It aborts with an
OutOfMemoryError for 4,000 tables because the generated candidate set, which BINDER repre-
sents in bulky HashMaps, exceeded 90 GB of memory. For input sizes where all three algorithms
terminated successfully, one can observe that MaNY is always the fastest algorithm, followed first
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Fig. 15. Scaling over the number of tuples. Parameters used for MANY: m = 10,000,k = 4,p = 2.

by BINDER and then by SPIDER. In fact, it is up to 10 orders of magnitude faster than BINDER. This
advantage becomes even greater when more physical cores are available so that MANY can spawn
more than the currently used 16 worker threads. Furthermore, we disabled all filters for this exper-
iment to compute the same results; enabling MaNY’s filters would also further speed the algorithm

up.

5.6.2  Scaling the Number of Tuples. We now evaluate MANY’s ability to scale with an increasing
number of tuples in comparison to SPIDER and BINDER using the PlistaStatistics dataset. In this
experiment, we incrementally increase the number of tuples of a single relation by doubling the
number of tuples from one measurement to the next. We always take the n first tuples from the
relation. The complete relation includes 921 INDs, but the number of INDs varies slightly from one
measurement to the next.

Figure 15 depicts the runtime results of the experiment. Because an increase in the number of
tuples influences the validation, but not the candidate space, we observe that all three algorithms
scale nearly linearly with the number of tuples. We stopped the experiment for SPIDER at 6.4 million
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tuples because its runtime exceeded 3 hours, which was our time limit for this experiment. Both
MANY and BINDER, then, show a small outlier between 6.4 and 12.8 million tuples because the
internal structure of the data (e.g., number of distinct values and inclusion dependencies) changed
and caused by chance more and longer validation operations.

Overall, SPIDER is more than one order of magnitude slower than MANY because it comes with
higher I/O cost due to the writing and reading of sorted value lists.

BINDER also spends additional time on writing and reading bucket files, but its pruning strate-
gies work most efficiently in a many rows experiment. For this reason, it outperforms the Many
algorithm on very long datasets and scales to larger numbers of rows. Because MANY does not
implement memory management techniques like BINDER does, it throws an OutOfMemoryError
as soon as two single columns do not fit into the limited space of the validation cache. This is at
about 100 million tuples for the PlistaStatistics dataset and 120GB of RAM. To handle such huge
numbers of tuples, a more efficient caching strategy is needed that does not rely on keeping com-
plete columns in memory for the validation. Note, however, that this extreme scenario (few very
large tables) is not the primary goal of MANY because it specializes on very many small tables.

We summarize that MANY scales linearly with the number of tuples. It is considerably faster
than SPIDER, but slightly slower than BINDER. Because of the high memory capacities of modern
machines and the use case focus on short tables, MANY works completely in-memory, but further
improvements in the caching strategy are needed if long datasets are to be analyzed.

6 VISUALIZING THE IND GRAPH

To explore the resulting INDs, we have developed a prototypical interactive graphical system of
the graph of IND relationships among tables. The system first transforms the discovered INDs into
a directed graph G = (V, E). To keep semantically related attributes together, we choose tables as
the most fine-grained elements (i.e., vertices V in the graphical representation). Figure 16 shows
the transformation of a set of INDs into such a directed graph: For every relation participating in
an IND, we add a vertex to V; for each IND, we add a directed edge from the vertex containing the
dependent attribute to the vertex containing the referenced attribute. As our evaluated datasets
contain millions of INDs, we further group them by their connected components.

Figure 17 illustrates our graphical tool to explore the resulting connected components and their
constituent graphs, tables, and columns. Here, we visualize the complete set of filtered INDs from
the WikiTables dataset. The circles to the left represent the identified connected components inside
the table relationship graph. The sizes represent the number of included tables per component. The
set of thousands of connected components is clearly dominated by a handful of outstanding huge
components. Those huge components combine tens of thousands of tables. The user can drill into
each of these components to see the actual join graphs. By selecting a vertex, she then sees the
actual INDs that link this table to others.
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Fig. 17. User exploration of IND relationships between tables extracted from the entire Wikipedia. From
left to right: All connected components (sized for number of tables); a connected component with tables as
vertices; list of tables therein.

7 CONCLUSION

We addressed the problem of IND detection on more than a million tables that were extracted
from Web pages. We provided use cases that motivate the detection of inclusion dependencies
in such datasets, such as the exploration of related information, and we analyzed the limitations
of existing approaches for IND detection on so many tables. We proposed the MaNY algorithm,
which overcomes these limitations by employing an intelligent candidate proposal strategy. MANY
creates a space-efficient bit-signature for each column in the input dataset using Bloom filters.
We showed that the subset relationships between columns in the dataset are retained by those
signatures. Furthermore, a strategy to parallelize our approach and an optimization for sparse
bit-vector intersection is introduced.

In our evaluation, we studied several aspects of our algorithm on different real-world datasets.
We found that the sensitivity to parameters that concerns the Bloom filter size is surprisingly low.
Furthermore, the algorithm scales well with the number of provided CPU cores. In comparison
with known approaches, MANY shows especially good performance in the scale over the number
of attributes.

Some issues and extensions are left for future work. First, we are working on a GPGPU-based
implementation to achieve higher efficiency. Second, we plan to apply the full set of heuristics
from Rostin et al. (2009) to classify INDs as foreign keys; in this context, we also evaluate the
semantic value of INDs in other use cases, such as query optimization, data cleaning, and schema
design, which have alternative notions of semantic relevance for INDs. Third, we plan to extend
our approach to detect not only exact INDs, but also partial INDs; that is, INDs that are not fully
valid: In a Web setting, even meaningful inclusions might be violated by incorrect or incomplete
data. An extension of our approach to multi-valued INDs is tempting but increases the problem
complexity significantly, and we do not expect meaningful multi-valued relationships among small
Web tables.
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