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Abstract
Analysis of static data is one of the best studied research areas. However, data changes over time. These changes may
reveal patterns or groups of similar values, properties, and entities. We study changes in large, publicly available data
repositories by modelling them as time series and clustering these series by their similarity. In order to perform change
exploration on real-world data we use the publicly available revision data of Wikipedia Infoboxes and weekly snapshots
of IMDB.
The changes to the data are captured as events, which we call change records. In order to extract temporal behavior
we count changes in time periods and propose a general transformation framework that aggregates groups of changes
to numerical time series of different resolutions. We use these time series to study different application scenarios of
unsupervised clustering. Our explorative results show that changes made to collaboratively edited data sources can help
find characteristic behavior, distinguish entities or properties and provide insight into the respective domains.

1 Introduction

Nowadays, data is a resource that keeps growing to stagger-
ing numbers. Every day, databases store billions of social
network interactions, transactions in e-commerce, or phys-
ical measurements. That being said, collected data is often
not static. In fact, data changes frequently in almost all sys-
tems. Entire systems (such as databases) are built for the
purpose of managing and documenting changes to the data.

However, the nature of changes is often unknown and
can raise many questions for data analysts: Why does the
data change this way? Are there regular patterns? Have
any events caused large scale changes? Are there hidden
data generation processes? It is clear that answering any of
these questions can be of great interest as insights gained
by such an analysis could help detect abnormal changes,
assess data quality or discover useful correlations that can
help to predict future changes.

While the dynamic changes of datasets from some spe-
cific domains are well understood, in many cases the data
analyst has little prior intuition or knowledge about when,
why or how the data might change. Often, the analyst does
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not even know what patterns he or she might be looking
for. This is where data exploration comes into play. The
analyst needs to be enabled to obtain a high-level under-
standing of the changes in the dataset in order to proceed
with an in-depth analysis that might answer the questions
raised above.

Clustering algorithms are a natural fit for such a task
as they group similar data-objects. The results can serve
a multitude of purposes, for example, data summarization,
data categorization or outlier detection, all of which are rel-
evant to get an understanding of previously unknown data.
Additionally, the unsupervised nature of clustering algo-
rithms makes them excellent tools for exploring unknown
data since they do not require domain knowledge or ground
truth, both of which are usually not available in an explo-
ration scenario.

While exploration and analysis of historical data have
been subject of many studies in different areas of research,
these pieces of work are mostly disconnected. The different
studies use different data formats, typically specific for a
concrete task or application area. The change-cube [3] is
an attempt to create a general data model that can represent
both changes in data as well as changes in schema. The
change-cube is a simple, yet powerful representation that
stores changes as quadruples of the following format:

htimestamp;id;property;valuei
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We refer to one of these quadruples as a change record. A
change record ht; id; p; vi describes that at a certain point
of time t an entity with id id was changed in the property
p which from then on has the new value v. As an example,
consider:

Example 1

h20.01.2013;USA;President;Barack Obamai
h01.01.2014;USA;GDP Per capita; $52,839i
h01.01.2016;USA;GDP Per capita; $54,629i
h01.01.2018;USA;GDP Per capita; $57,220i
h20.01.2017;USA;President;Donald J. Trumpi
h26.01.2018;Germany;GDP Per capita; $50,206i

This example change-cube consists of six change
records, containing two entities, two different properties,
and six distinct values. From the change records, we can
see that the value of the property GDP Per Capita was
constantly increasing for the entity USA, whereas for the
entity Germany there is only one value present for this
property.

The format can handle not only changes in the data but
also changes to the schema, as entities being deleted can
be represented by setting the values of all their properties
to null and the first appearance of a property represents
an insert. Due to its simplicity the change-cube can inte-
grate data from various different formats or domains. Thus,
change exploration or analysis frameworks that work on the
change-cube can be applied to ubiquitous sources of data.

This paper extends the original work that proposed the
change-cube format [3] by creating a framework for clus-
tering data changes. The framework we propose groups
changes by a user-supplied criterion and subsequently ag-
gregates changes in the data to numerical time series by
distributing change records into buckets and counting the
number of change records in each bucket. The resulting
time series are then clustered to provide the user with an
overview over the different temporal behaviors in the data.

Overall, the main contributions of this paper are:

● An extensible framework for clustering changes, built on
the change-cube as a general data format. We make our
implementation available as an open source project.1

● An empirical evaluation that demonstrates how our
framework can be used to uncover user behavior and
format changes.

The rest of the paper is organized as follows: Sect. 2
outlines related work and Sect. 3 follows up with a de-
tailed description of the proposed framework. Sect. 4 then

1 https://github.com/HPI-Information-Systems/
ChangeTimeSeriesClustering

briefly describes the two datasets we study in the evaluation.
Sect. 5 presents our exploratory results where we describe
how the usage of the framework helped us uncover user
behavior and events leading to systematic changes. Finally,
Sect. 6 concludes the paper and presents future research
opportunities.

2 RelatedWork

The related work for this paper encompasses two areas: ex-
ploration and analysis of changes in large scale data sources
as well as clustering time series.

2.1 Change Exploration and Analysis

Studying changes of data over time is no new research
area. In fact many researchers have been studying database
changes or update histories. The difference between our
work and existing work lies in the fact that most related
work focusses on the data and adds a temporal component,
for example through temporal databases [19], while we fo-
cus solely on the changes made to the data.

Information about data changes has been used for many
specific problems. Frequently, schema changes have been
looked at separately from data changes. Researchers tried
to detect changes in the schema [20], analyzed the impact
of schema changes on object-oriented applications [16], or
conceived methods to automatically create mappings when
schema changes occur [26]. Temporal changes have also
been studied in the research area of linked data. For ex-
ample, Dividino et al. suggested a framework to analyze
data dynamics in the Linked Open Data cloud [8]. Um-
brich et al. introduce different notions of change and define
change detection mechanisms in linked data [24].

Dasu et al. use changes to database dynamics to infer
knowledge about the database [5]. The concept is similar
to ours, but the approach differs from ours in that Dasu
et al. assume limited knowledge about the database and
want to find out more whereas we assume full knowledge
and thus are more interested in things like the data gener-
ation process. In general, our approach differs from these
earlier works because we do not focus on a specific kind
of change (for example schema changes) or a specific data
format (such as linked data).

Many researchers have focussed on changes in data while
assuming a stable schema and mentioning them all would
exceed the scope of this paper. Important research areas
when mining data changes are sequential pattern and event
mining [9] or workflow and process mining [25].

Data exploration in databases has many aspects that are
nicely summarized by Idreos et al. [11]. Important aspects
include user interaction and assistance [4] or visualiza-
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tion [6, 13]. There is not yet an interactive tool dedicated
to the exploration of changes in data, apart from the work
by Bleifuss et al. [3].

2.2 Clustering Time Series

Clustering time series is a large area of research and cov-
ering the intricacies of all subtopics is beyond the scope
of this paper. A literature review by Aghabozorgi et al. [1]
nicely summarizes its different aspects and is thus a good
source for up to date literature on specific problems.

The use cases of time series clustering are manyfold.
Researchers frequently take advantage of the unsupervised
nature of clustering algorithms and thus apply them in ex-
plorative scenarios. A common scenario is the discovery of
common or regular patterns. Patterns can be used for dif-
ferent purposes, such as summarization or prediction, for
example in the domains of energy [12] or finance [10].
In some domains, the obtained patterns themselves are the
desired result, as they represent newly discovered knowl-
edge, for example about muscle activity [17]. Time series
clustering is also frequently used to detect outliers. Appli-
cation areas include astronomy [23] and transport [14]. Yet
another scenario is finding prototypical representations of
groups, which has been used in robotics [22].

In our framework, we make use of existing clustering
techniques for time series data.

3 From Change-Cubes to Time Series
Clustering

To apply time series clustering to change-cubes, we trans-
form a change-cube into multiple time series. Figure 1 gives
an overview of the proposed transformation framework.

Each step gives the user input options in order to finely
tune the clustering. The curly brackets give examples for
possible user-supplied criteria. Optional steps are in square
brackets.

The first step when exploring or analyzing changes in a
change-cube is the grouping phase. Since a single change
record is not a time series, changes need to be grouped by
a certain criterion, which we refer to as the key. This step
thereby determines the information in the final clustering
since each key (whose group is not filtered) is one object
in the final clustering. Choices for the key thus depend on
the use case. A few typical examples:

● Group by Entity results in one group per distinct entity
name. For the change-cube in Example 1, this would re-
sult in two groups, named USA and Germany. We apply
grouping by entity when analyzing edits to Wikipedia in-
foboxes (see Sect. 5.2), which means that one object in
our clustering is comprised of all changes to an infobox
of a page.

Fig. 1 Transforming a change-cube into clusters based on temporal
behavior

● Group by Property results in one group per distinct
property name. For the change-cube in Example 1 this
would result in two groups with two and four mem-
bers respectively. A possible use case is the search for
similarly behaving properties across all entities.

● Group by Value – This will result in one group per dis-
tinct value. For the change-cube in Example 1 this would
result in as many groups as there are change records. A
possible use case is the search for events that cause in-
serts of certain values, for example, the election of US-
presidents.

● Group by {Entity, Property} results in one group for
each property of every entity. For the change-cube in Ex-
ample 1 this would result in three groups. This grouping
strategy is useful when comparing semantically identi-
cal properties of different entities. We used this strategy
when searching for patterns in the user-votes for episodes
of different TV shows in IMDB (see Sect. 5.1).

The results of this first grouping step are groups of
change records. The next step is a filtering step, which
might become necessary if there are many groups that could
obscure the result. Because we transform the groups to time
series, it is usually desirable to discard groups with a very
small number of records, since those will have little tempo-
ral behavior to be analyzed. This is especially prevalent in
data taken from the Wikipedia Infobox dataset (see Sect. 4),
as it contains many articles that rarely change. In our ex-
periments we discarded groups with fewer than 50 change
records.

When ordered by timestamp, each resulting group is
a sequence of change events S = Œ.e1; t1/; :::; .en; tn/�,
where ei are the change events and ti are the timestamps
(ti � ti+1/. In order to obtain time series data, these
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Table 1 Basic statistics about the IMDB change cube

# Change Records 85 Million

# Distinct Entities 16 Million

# Distinct Properties 20,000

# Distinct Values 5 Million

Table 2 Basic statistics about the WI change cube

# Change Records 122 Million

# Distinct Entities 99,000

# Distinct Properties 141,000

# Distinct Values 20 Million

categorical sequences need to be aggregated to numeri-
cal time series. We employ an approach that is essentially
Piecewise Aggregate Approximation (PAA) [15]. Using a
user-determined bucket size B we split the sequence into
M = d tn−t1

B
e equal parts, where each part encompasses the

same duration. We then simply sum up the number of events
in each bucket, which gives us a time series of length M .
In our experiments with the Wikipedia infobox dataset we
used varying bucket sizes between 15 days and two months
(see Sect. 5.2). The aggregation procedure can also be cus-
tomized to the data at hand. Depending on the data it might
make sense to use distance functions between adjacent val-
ues or transform the individual values to a numerical value.

The next step is time series transformation. Since the
result of the previous step is now a set of time series, it is
possible to apply established methods of time series anal-
ysis [1]. There are many possible transformations, and it
is important to keep in mind that they should serve the de-
sired result. If one is interested in structural similarity, with-
out considering absolute values, the time series should be
z-normalized. To z-normalize a time series y = Œy1; :::; yn�,
one calculates the new time series y0 = Œy0

1; :::; y0
n� with

y0
i = yi−�

�
where � is the mean and � is the standard de-

viation of y. This results in a time series, whose mean is
approximately zero and whose standard deviation is close to
one. If absolute values matter but their impact should be re-
duced, applying transforming functions like the square root
or the logarithm might be a good choice. Several transfor-
mation steps can also be chained in order to account for
many influencing factors. If the behavior of the raw time
series is of interest one can skip this step.

We suggest a second and last filtering step after the trans-
formation step to once again filter out time series that might
prove to be uninteresting.

The next phase is the feature extraction phase, in which
all input time series are mapped to equal-length numerical
vectors, based on some procedure. A large amount of lit-
erature exists on feature extraction from time series [7, 18,
27] . This step is also optional: the raw data of equal-length
time series (potentially padded with zeroes if there are no

values present) can also be used as is. In practice, the ap-
propriate feature extraction method heavily depends on the
user’s intention, so we do not give any default suggestion
here.

In the last step, it is necessary to choose a similarity
measure and a clustering algorithm. Once again the choice
heavily depends on the goal of the analysis. A few examples
include:

● Euclidean Distance – Absolute comparison of shape
● Dynamic Time Warping (DTW) – Shape comparison

that allows time shifts and time stretching
● Pearson’s Correlation Coefficient – Linear correlation

between the time series.

When choosing the distance measure, it is important
to chose a suitable clustering algorithm. For example, the
k-means algorithm implicitly uses the Euclidean distance,
whereas k-medoids or its variants can work with any dis-
tance measure.

Since our framework mainly consists of grouping, map-
ping and filtering operations, it can easily be implemented
as a Map-Reduce program. As a proof of concept, we imple-
mented the framework in Apache Spark. The implementa-
tion already supports basic possibilities for each step in the
framework and can be easily customized by implementing
the individual steps of the framework as Scala-functions.

4 The Datasets

We designed our framework as a structured approach of
clustering data changes. For our experiments, we focused
on two datasets for which the history of changes is publicly
available: the International Movie Database (IMDB) and
Wikipedia Infoboxes.

4.1 International Movie Database (IMDB)

IMDB gathers information about movies, TV shows and
their episodes, but also about involved persons, such as ac-
tors and directors. The dataset is publicly available2 as a
snapshot of the current version and diffs of previous ver-
sions. By applying the diffs in reverse order to the current
snapshot, we were able to reconstruct the data for roughly
three years and five months (2014-02-21 until 2017-07-15).
Due to the weekly resolution of the updates and some miss-
ing or broken updates, the dataset comprises data for 174
distinct timestamps. Some basic statistics about the dataset
are given in Table 1.

IMDB has a relational architecture. However, the snap-
shots available to us are in a semi-structured textual format,

2 ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/
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Fig. 2 Framework configuration for the first clustering run

which introduces difficulties when trying to reconstruct the
relational tables. In particular, the reconstruction of col-
umn headers poses some difficulty, since these are often
not given in the text files. Frequently, attribute information
is simply appended to a tuple in brackets (example: ‘‘(as
Monkey)”). For some attributes, we manually craft column
names; we heuristically generate others. For example, in-
spection showed us that the roles of an actor in a movie
were always surrounded by square brackets, so we were
able to assign a useful name to this attribute. Whenever we
were not able to infer such rules, we took the first word
of the content as the attribute name. For example the token
(as Monkey) would result in a property called ‘as’ with the
value ‘Monkey’. We wrote a parser that parses the central
tables and recursively executes patch commands in order to
obtain the change records3. We adopt the following rules to
extract change records from a tuple:

● Entities correspond to keys of the table schema. If keys
cover more than one column, the two values are concate-
nated and separated by an unambiguous separator.

● Every attribute in the tuple that is not part of a key is a
value of a property. The property name is the correspond-
ing column name.

The resulting entities are either individual works, such
as movies, TV shows, or episodes, or pairs of a person
(like directors, actors or editors) and a movie, TV show or
episode.

4.2 Wikipedia Infoboxes (WI)

In Wikipedia, infoboxes are concise, structured summariza-
tions of key facts regarding an article, usually located at its
top-right corner. This dataset contains all changes made to

3 The parser is available at: https://github.com/HPI-Information-
Systems/IMDBParser

infoboxes in the English Wikipedia. The changes are parsed
from the revisions of Wikipedia pages, which are publicly
available4. Earlier works have also used this as a data source
to extract infobox data [2].

Each change record represents the insert, update or dele-
tion of one property of an infobox. In the quadruple, the
Wikipedia page name corresponds to the entity, the key in
the infobox (for example ht; id; p; vi or ht; id; p; vi) cor-
responds to the property. In order to narrow the focus of the
dataset, we only consider pages with infoboxes that were
created using a popular infobox template. Infobox templates
are standardised infobox schemata for a certain kind of en-
tity, such as settlements, actors or companies. Templates
are hierarchically organized since there can be specialized
sub-templates. When assigning the labels, we applied the
following procedure: By default, a page is assigned to the
template that was present across the majority of revisions.
If a page is associated with both a template and a sub-tem-
plate, we pick the more specific template as the label. For
our scope, we include infoboxes of templates that have at
least 10.000 instances. There are 33 such templates.

The data encompasses roughly sixteen years and seven
months (2001-01-18 until 2017-08-02) at a resolution of
one second. Some basic statistics about this dataset are
given in Table 2.

5 Framework Application

We demonstrate the usefulness of the framework by show-
ing how its application to the two datasets helped uncover
interesting properties and correlations in the them.

5.1 IMDB

Since we didn’t know much about the data, but were inter-
ested in the behavior of entity-specific properties we con-
figured the framework as shown in Fig. 2.

We group by (Entity, Property)-pairs, because we wanted
to explore the specific behavior of different properties over
time, especially how ratings, and votes (the number of users
that gave the entity a rating) change over time. We require a
group to have at least 50 change records in order to filter out
large amounts of barely known movies or shows that would
obscure the clustering. Since the updates to IMDB occurred
weekly, we chose a bucket size of 7 days. This setting re-
sulted in binary time series (either the value of the property
changed or not), which means that we maximize the in-
formation for the clustering algorithm while still obtaining
time series of manageable dimensionality. Inspection re-
veals that the only property that was changed more than

4 https://dumps.wikimedia.org/
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Fig. 3 Different cluster centers of the first clustering

Fig. 4 Value distribution of the ht; id; p; vi property for the cluster
centers shown in Fig. 3
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Fig. 5 Cluster containing 669 objects of which 659 are episodes of
Doctor Who

50 times for each entity was ht; id; p; vi. This means that
in the following we are exploring whether there were new
ratings given to a TV show, TV episode, or movie. It is also
important to note that in the aggregation phase (which cre-
ates the time series) the framework only registers whether
the value changed. It does not consider the actual numeric
value of the attribute, since this would require prior domain
knowledge that the property ht; id; p; vi is always numeric
and thus would not be fitting for a general framework.

Figure 3 shows the different cluster centers obtained by
the k-means algorithm. The left diagram shows selected
cluster centers whose members show a strong increase
or decrease in popularity. Inspection of the clusters re-
vealed that this correlates strongly with the release dates

of these works as shown by the value distributions for the
ht; id; p; vi property in Fig. 4.

Cluster 1 is what we refer to as the popular cluster since
it encompasses all entities that were changed almost every
time. Clusters 0, 4 and 7 look like randomly distributed
noise with different probabilities of noise occurrence. Ap-
parently, the clustering algorithm was not able to find sig-
nificant patterns for these entities. The clustering also pro-
duced two other cluster centers: one outlier cluster that con-
tains just 2 objects and another cluster containing 669 ob-
jects, whose center is shown in Fig. 5.

Inspection of the cluster showed that 98% of its members
are „Doctor Who“ episodes. Seeing such a strong correla-
tion between the temporal behavior and TV show member-
ship is unexpected and warrants an explanation. Automati-
cally generated votes (by bots) seem unlikely, because the
shape of the cluster center is rather irregular. We originally
had the hypothesis of users being able to rate all episodes at
once, which would explain the common peaks in the second
half of the graph, but there are inconsistencies contradicting
this hypothesis. We have contacted the IMDB administra-
tors for possible explanations but have received no reply
yet. The fact that the Doctor Who episodes showed such a
specific pattern sparked the hypothesis that this could also
be the case for episodes of other TV shows. To explore this
new hypothesis we used the same setting as shown in Fig. 2
but pre-filtered the change-cube to only contain episodes of
ten preselected TV shows. The TV shows now give us class
labels, which means that the supervised clustering evalua-
tion metric of purity can be used. To calculate purity one
assigns each cluster ci the label lj that the majority of
its members have. Subsequently purity is calculated by di-
viding the number of correctly assigned objects (having the
same label as the cluster) by the total number of objects. The
clustering achieved a purity of 62.0%, which is suprisingly
high if you consider that we do the clustering just based
on whether the number of votes for an episode changed or
not. The complete confusion matrix is given in Table 3. The
confusion matrix shows the labels in the columns and the
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Table 3 Confusion matrix of the attempted clustering according to TV shows.

0 1 2 3 4 5 6 7 8 9

Arrow 0 46 25 0 0 1 0 0 45 0

Doctor Who 0 15 49 219 208 0 55 71 0 127

Friends 0 233 8 0 0 1 0 0 2 0

House of Cards 0 26 13 0 0 0 0 0 26 0

Lost 0 116 2 0 0 2 0 0 0 0

Star Trek 0 79 1 0 0 1 0 0 0 0

The Big Bang Theory 0 163 26 0 0 0 0 0 45 0

The Fresh Prince of
Bel Air

145 2 1 0 0 0 0 0 1 0

The Simpsons 0 526 65 0 0 26 0 0 44 0

Walker, Texas Ranger 0 0 200 0 0 0 0 0 0 0

Table 4 Purity for the different clustering attempts

Configuration Purity

N 0.433

L_N 0.440

L_N_30 0.469

L_N_15 0.481

N_DBA_60 0.321

assigned clusters in the rows, which means it gives informa-
tion about the distribution of the episodes of each TV show
among the clusters. A clustering with purity 1.0 would have
exactly one number greater zero in each column.

The confusion matrix shows that the clustering produces
mostly pure clusters with the exception of Clusters 1, 2
and 8. The cluster centers of these are shown in Fig. 6.
Similarly to the previous clustering, there is once more a
cluster that contains all popular entities (Cluster 1). Cluster
2 represents the other end of that spectrum which are those
episodes whose vote count rarely changes. Additional in-
spection showed that Cluster 8 contains the episodes that
were released in the time period we observe which leads
to the fact that they are clustered together (since they share
zeros in the beginning).

It is also notable that the Doctor Who episodes are di-
verse enough in their behavior to be assigned into five dif-
ferent clusters. Overall the clustering shows that the fre-
quency of user actions concerning individual episodes over
a longer period of time can help to identify the correspond-
ing TV show.

5.2 Wikipedia Infoboxes

Now we turn to the exploration process in the WI dataset.
For this dataset we were especially interested in uncovering
the data generation process. Specifically we wanted to look
for (potentially automated) update patterns. As we have 33
different templates (which we refer to as categories) that

categorize infoboxes appearing on pages, we can use these
as class labels and see if the temporal behavior identifies
them. If we are able to find an at least partially successful
clustering, the cluster centroids can hint at patterns in the
data. We used the configuration as shown in Fig. 7 as a
basic configuration, which we subsequently modified.

In comparison to IMDB, we increased the bucket size
to avoid the curse of dimensionality for the resulting time
series. Additionally, we z-normalized the time series. This is
necessary because in each category there are expected to be
entities that change more frequently than others of the same
category. If absolute values were to be compared, these
entities would be assigned to the same cluster. Additionally,
outliers (for example caused by vandalism or edit wars)
could dominate the clustering. In contrast, for the use case
of outlier detection, taking the absolute values would be
beneficial. The configuration shown in Fig. 7 is our first
base configuration, which we refer to as N. We modified this
configuration by exploring other transformation sequences:

● N – Basic configuration, time series z-normalized, bucket
size of 60 days.

● L_N – Logarithm of time series, then z-normalized (to
dampen the effect of outliers within a time series).

● L_N_30 – Same as L_N but with a bucket size of 30 days
instead of 60.

● L_N_15 – Same as L_N but with a bucket size of 15 days
instead of 60.

● N_DBA_60 – The same preprocessing steps as N, but
with DTW as a distance measure and a modified ver-
sion of k-means that uses the DTW Barycenter Averag-
ing method to find the average time series with respect
to the DTW distance measure for the centroid computa-
tion [21].

Table 4 gives an overview of the results of the different
approaches.

The results show that smaller bucket sizes (and thus
higher time series resolution) can help the clustering al-
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Fig. 7 Framework configuration for clustering the WI dataset
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Fig. 8 Cluster centers of run N with high F-Measure

gorithms to achieve a higher purity. It is interesting to note
that shape comparison with N_DBA_60, which allows for
time shifts and time stretching, achieves lower purity than
direct comparison of the time series via Euclidean distance.
This hints at the fact that in contrast to many other ap-
plication areas of time series similarity matching, absolute
points of time play a large role in this dataset.

It is important to note that it is not necessarily our goal
to achieve a clustering with a very high purity. High purity
simply shows that many infoboxes of the same template ac-
tually get clustered together, thus meaning that they behave
similarly. This means that there must be some characteristic

changes for most of the instances of a template, which hints
at automatic changes. After the clustering, we assigned each
cluster a label by majority voting of its members and subse-
quently calculated the F-measure for each cluster of every
clustering. Then we further investigated clusters with a high
F-measure. Run N, for example, produced a cluster with an
F-Measure of 0.820 (for the category baseball biography).
This cluster (Cluster 2) is also discovered by L_N, L_N_30
and L_N_15 with similar F-measures. Plotting the cluster
center (see Fig. 8) reveals a characteristic spike in the bucket
that contains changes between 2015-09-02 and 2015-11-01.

Reviewing the actual revision history of sample pages of
baseball players as well as the history of the template re-
vealed that on the 14th September, 2015 the template base-
ball biography was merged with the template mlb player
causing many automated changes in the pages of baseball
players. We were able to uncover similar events by look-
ing at the spikes of other cluster centers, for example a
merge between the two templates football biography and
football biography 2 between 2011-03-27 and 2011-05-26
(see Cluster 12 in Fig. 8).

Overall, the clusterings helped us to identify specific
events that caused automated changes to many data entries.

6 Conclusion

We presented a clustering framework for data change explo-
ration, which can transform change-cubes, a recently sug-
gested representation for data changes, to time series. The
time series are then subsequently transformed, and clus-
tered using user-defined transformations and clustering al-
gorithms.

Our framework offers a flexible way to obtain high-
level information about datasets, while being Map-Reduce
friendly. Our initial experiments make us believe that it
scales well. We demonstrated the usefulness of our frame-
work on two examples from our current research. Using
the framework, we were able to discover previously un-
known patterns in voting behavior of users of IMDB. In the
dataset consisting of changes made to Wikipedia infoboxes
the clustering enabled us to discover events that caused au-
tomated changes for several templates.

In the future, we plan to integrate the clustering frame-
work into the existing change exploration tool DBChEx5

in order to create a smooth exploration process, which can
enable the user to quickly discover patterns in the dataset.
Apart from additional tool functionality, there are many
more future work opportunities in this area. We plan to as-
semble the datasets we used and publish them together with

5 https://hpi.de/naumann/projects/data-profiling-and-analytics/dbchex.
html
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an assortment of tools in a later stage of our research. In
terms of clustering methods, there are many more clustering
algorithms or approaches that can be used to cluster objects
according to their temporal behavior. These could be tried
out on new or existing data sets to see if they yield new
exploration results. Furthermore, it is clear that exploration
is just the first step when confronted with a change-cube.
After exploring initial patterns in the data, a next logical
step is to perform change analytics. Use cases for analyz-
ing changes include data cleansing, prediction or process
mining.
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