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Duplicate detection algorithms produce clusters of database records, each cluster representing a single real-

world entity. As most of these algorithms use pairwise comparisons, the resulting (transitive) clusters can be

inconsistent: Not all records within a cluster are sufficiently similar to be classified as duplicate. Thus, one of

many subsequent clustering algorithms can further improve the result.

We explain in detail, compare, and evaluate many of these algorithms and introduce three new clustering

algorithms in the specific context of duplicate detection. Two of our three new algorithms use the structure

of the input graph to create consistent clusters. Our third algorithm, and many other clustering algorithms,

focus on the edge weights, instead. For evaluation, in contrast to related work, we experiment on true real-

world datasets, and in addition examine in great detail various pair-selection strategies used in practice.

While no overall winner emerges, we are able to identify best approaches for different situations. In scenarios

with larger clusters, our proposed algorithm, Extended Maximum Clique Clustering (EMCC), and Markov

Clustering show the best results. EMCC especially outperforms Markov Clustering regarding the precision

of the results and additionally has the advantage that it can also be used in scenarios where edge weights are

not available.
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1 CLUSTERS OF DUPLICATES

Duplicate detection is the process of finding multiple records in a dataset that represent the same
real-world entity [13, 26]. It is also known as entity matching, entity resolution, data matching,
record linkage, reference reconciliation, and many other terms. Duplicate detection has a high
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Fig. 1. Illustration of the duplicate detection process.

relevance in many areas, such as master data management, customer relationship management,
and data integration (e.g., data warehousing). Its challenge is the missing key to identify multiple
records representing the same entity. Rather, we deal with fuzzy duplicates: Records with similar
attribute values should be classified as duplicates, whereas different values are an indicator of
non-duplicates.

A variety of similarity measures have been proposed in recent years [8, 13, 26]. They all have
in common that their results might be erroneous. Records representing the same entity might be
assigned a low similarity and, vice versa, records representing different entities might have been
assigned a high similarity value (e.g., twins). Deciding whether a record pair is a duplicate or not is
a challenging task even for humans, and sometimes no clear decision can be reached. For example,
given two records with the same first and last name of a person, but totally different addresses, it
is difficult to decide whether these records represent two different persons or one person that has
moved to a new address. Additional information might be necessary, but is often not available in
a dataset.

There are three main algorithmic challenges for duplicate detection. First, we need effective
algorithms that support the classification of record pairs as duplicate or not, even if the records are
incomplete or erroneous. Second, the increasing size of databases leads to the necessity for efficient
algorithms that select candidate pairs from the full pair-wise comparison space. An exhaustive
comparison is in most real-world scenarios not a feasible approach [7]. This increases the problem
of uncertainty, as we do not have a complete picture on the relations between all records. Finally,
we need algorithms that create clusters, in which each record represents the same real-world entity,
although the record pair classifications might be incomplete or erroneous.

The process of duplicate detection is typically divided into three steps, which are illustrated in
Figure 1. First, a pair selection algorithm selects a set of candidate pairs from the initial dataset
or datasets (in case of linking multiple datasets). Due to the large workload for an exhaustive
comparison, usually only candidate pairs are selected that have a high chance of being duplicates
[7, 26]. Second, a classifier is used to decide for each record pair whether it represents the same
real-world entity or not. For this step, similarity functions, such as Levenshtein or Jaro-Winkler [8],
are used to calculate attribute similarities that are aggregated to an overall similarity. A threshold
can then be used to decide whether a record pair is a duplicate (D) or a non-duplicate (ND). Other
possibilities are machine learning or a rule-based classification, which scans a set of rules until
one rule finally classifies a record pair as duplicate or non-duplicate. In the third and final step, the
transitive closure is calculated to obtain a transitively closed result set. This final step considers
only positive duplicate decisions and creates additional duplicate pairs. This last step can be the
reason of many errors and is in the focus of this article.

Calculating the transitive closure disregards negative classifications (the similarity of a record
pair is below the threshold and thus classified as non-duplicate). Table 1 shows sample records
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Table 1. FreeDB Example

ID Artist Disc Genre Year
1 Nora Roberts Angels Fall Audio Book 2006
2 Nora Roberts Angels Fall-Disc04 Audiobook 2006
3 Nora Roberts Angels Fall-Disc05 Audiobook 2006
4 Nora Roberts Angels Fall-Disc06 Audiobook 2006
5 Nora Roberts Angels Fall-Disc07 Audiobook 2006

Fig. 2. Clustering of the example in Table 1, showing (i) the initial pairwise comparison graph, (ii) result of

the transitive closure, which assigns all elements to the same cluster, and (iii) the maximum clique approach

that creates one cluster with two elements and three singleton clusters.

extracted from freeDB.1 As we can see, for all records the artist and the year are the same. The
values for disc and genre have only small differences, which leads to a high string similarity for
any pair of these records. But for example disc 4 of an audio book is not the same real-world entity
as disc 5 of the same audio book. In a real application, the similarity function would be refined,
e.g., by implementing a rule that independently of the record pair similarity classifies a record
pair as non-duplicate if these are discs in a multiple CD set. Such rules are domain dependent, so
for books there might be other rules necessary. Unfortunately, the rule fails for record 1, which
does not contain any information about the disc. As a result, record 1 would possibly be classified
as duplicate of all other records and thus connect them. This example shows the challenges of
duplicate detection and the possibly negative impact of calculating the transitive closure.

Figure 2 illustrates this problem. After the pairwise comparison, we initially have a connection
between record 1 and records 2–5, with records 2–5 being classified as non-duplicates. Calculating
the transitive closure ignores that records 2–5 are classified as non-duplicates: all records are now
in the same cluster, which means they represent the same real-world entity.

The opposite approach would be to reclassify duplicates as non-duplicates, until we reach a
maximum clique. For our example in Figure 2, we could first reclassify edge 〈1, 3〉 as non-duplicate,
then edge 〈1, 4〉 and finally edge 〈1, 5〉. We now have four cliques {1, 2}, {3}, {4}, {5}. Note that the
reclassified edges are selected arbitrarily. Edge 〈1, 2〉 might also be reclassified instead of one of
the other edges.

The result of a misclassification is a reduction in quality of the duplicate detection result. In this
example, only three pairs are affected, which might be either false negatives that reduce the recall
(completeness of the result) or false positives that reduce the precision (correctness of the result).
But for other datasets with larger clusters, misclassification has a high impact on the overall result.
One often cited dataset to evaluate duplicate detection results is the CORA dataset.2 Some issues

1freedb is a database to look up CD information: http://www.freedb.org/.
2http://www.cs.umass.edu/∼mccallum/data.html.
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Fig. 3. Cluster sizes of the CORA dataset for clusters with at least two records. Due to some very large

clusters, a false connection between two clusters might result in a high number of false positives.

with this dataset and the creation of a gold standard are described in Reference [11]. In particular,
it contains clusters in a wide range of sizes.

Figure 3 shows the cluster sizes in decreasing order for the CORA dataset. The two largest
clusters have 238 and 149 records, respectively. A single misclassification of a record pair with one
element from each cluster leads to 238 ∗ 149 = 35,462 misclassified record pairs after calculating
the transitive closure. Note that this example uses a pairwise measure, because this is used in most
duplicate detection publications. There are also other cluster-based measures, e.g., the Generalized
Merge Distance, that can also be used to evaluate duplicate detection results. Menestrina et al.
describe different measures to evaluate duplicate detection result [24].

The goal of this article is the development and evaluation of several known and new clustering
algorithms for duplicate detection. This input for these clustering algorithms is the result of a pos-
sibly incomplete and inconsistent pairwise comparison of all records. The input can be described
as a graph and the clustering algorithms use a re-classification of single edges to create cliques. The
elements in each clique represent the same real-world entity. The contributions of our article are:

• Presentation of three new clustering algorithms. The first two new algorithms use the struc-
ture of the input graph and thus are, in contrast to the third new and many other existing
clustering algorithms, not dependent on edge weights.

• Detailed presentation of several existing clustering algorithms that belong to the best clus-
tering algorithms in the context of duplicate detection, as evaluated in References [19, 36].

• Comprehensive experimental evaluation of all algorithms using (i) real-world datasets and
(ii) different pair-selection strategies.

In Section 2, we formalize the problem of clustering duplicate detection result. Section 3 de-
scribes a new clustering approach that does not depend on edge weights, whereas in Section 4, we
present a new algorithm that uses edge weights for classification. Section 5 gives an overview of
existing clustering algorithms that are evaluated in Section 6 with several datasets, followed by an
overview of more general related work in Section 7 and a conclusion of our work in Section 8.

2 PROBLEM DESCRIPTION

Duplicate detection is the process of finding objects that represent the same real-world entity.
Given a set of records R = {r1, . . . , rn }, a pair selection algorithm creates candidate pairs <ri , r j>
of records that are classified as duplicate D or as non-duplicate ND. The result of a pairwise record
comparison is an undirected Graph G = {V ,E} with V as the set of vertices and E as the set of
labeled edges.
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Fig. 4. Example records and their pairwise edit distance.

Depending on the pair selection algorithm, the graph can but does not necessarily have to be
complete. As for most pair selection algorithms, not all record pairs are classified—edges between
some vertices might be missing. Especially for large datasets it is unlikely that we have a complete
graph, because of the quadratic total number of comparisons blocking would have to be applied [7].

Depending on the classifier, the edges might be weighted or just classified as duplicate or non-
duplicate. If weighted, then each edge has a weightw that represents the similarity of the records,
with 0 ≤ w ≤ 1. A high weight means a high similarity of the records. Record pairs with a similarity
higher than a threshold t are classified as duplicates, whereas pairs with a lower threshold are
classified as non-duplicates. As we examine in Section 5, some clustering algorithms require a
weighted graph. If the classifier is not based on a similarity function, then we can also usew = 1.0
for duplicates and w = 0.0 for non-duplicates.

The subgraph induced by all edges with w ≥ t comprises between 1 and n connected compo-
nents, withn ≤ |V |. In each component, we have a path from every vertex to all other vertices in the
component with a “is-duplicate-of” relation. But for most classifiers the relation is not transitive,
i.e., 〈r1, r2〉 = D and 〈r2, r3〉 = D does not imply 〈r1, r3〉 = D [3]. Transitive classifiers are discussed
in [25]. Thus, the components are not necessarily cliques.

The objective of the clustering algorithm is to change the classification of edges to create a set
of disjoint cliques C = {c1, . . . , ck }, with ci ⊆ R and ci ∩ c j = ∅, so that each clique ci is a set of
records that are assumed to represent the same real-world entity. We call a change of an edge
classification an edge switch. Each clique ci can be a singleton or contain multiple records and it
holds c1 ∪ c2 ∪ · · · ∪ ck = R. The challenge for the clustering algorithm is that it neither knows
which edges have a wrong classification, nor the correct size that each clique should have. The
knowledge of the clustering algorithm is restricted to the structure of the subgraph, and, in case
that it is a weighted subgraph, the weights of the edges. The latter information can help to decide
which edge classification should be switched. For example, if we have t = 0.7 and two edges e1

and e2 withw1 = 0.71 andw2 = 0.99, then it might be a good choice to change the classification of
e1 from duplicate to non-duplicate, as the weight is just slightly above the threshold.

Another challenge for the clustering algorithm is that the input graph is not necessarily com-
plete. Figure 4(a) shows six sample records. If we have a classifier that calculates the edit distance
(shown in Figure 4(b)) for the name and classifies a record pair as duplicate if the edit distance
ed is ed ≤ 2, then we have three clusters {1, 3, 4}, {2}, {5, 6}. Depending on the used pair selection
algorithm, we have different input graphs for the clustering step as shown in Figure 5. A solid line
edge represents a duplicate, whereas a dotted line edge represents a non-duplicate.

Note that there is not an edge between all vertices. This would only be the case for an exhaustive
comparison, as shown in Figure 5(a). Most duplicate detection algorithms select only a subset of
candidate pairs for classification to reduce costs. Thus, the classification of some record pairs is
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Fig. 5. Impact of the pair selection algorithm on the clustering input graph for the example in Figure 4.

Fig. 6. Sample graph after pairwise classification.

unknown and therefore we do not have an edge between all vertices. In Figure 5(b), we see the
input graph of disjoint blocking [7] with city as blocking criteria. Record pairs were only classified
if they are in the same block. Figure 5(c), however, shows the result of the Sorted Neighborhood
method [25]. Both pair selection strategies select only a subset of record pairs and thus make it
more complicated for the clustering algorithm to achieve good results.

Given a set of records as nodes and a set of weighted edges between the records, a clustering
algorithm should produce a set of clusters, where (i) each cluster contains only records that repre-
sent the same real-world entity and (ii) the number of clusters is equal to the number of real-world
entities in the dataset. The clustering algorithm can, on the one hand, create missing edges and,
on the other hand, reverse the classification of existing edges to fulfill these two goals.

In the output graph of the clustering algorithm, all records representing the same real-world
entity are in the same maximal clique with only edges labeled as D, while between two maximal
cliques there are only edges labeled as ND. Each maximal clique is then a cluster of elements
representing the same real-world entity. This means that if we remove all ND edges, the resulting
graph contains a set of connected components in which each component is a clique.

3 MAXIMUM CLIQUE CLUSTERING

In this section, we describe two novel clustering approaches that make use of the the structure of
the resulting graph of the pairwise classification. The idea of these clustering approaches is that
the structure of the input graph is more important than the edge weights. An edge with a similarity
just a little above the threshold is as important for the clustering as an edge with a similarity of
1.0. More important are further edges that support the classification.

Figure 6 shows a sample graph representing the result of a pairwise classification, in which
edges with a similarity ≥ 0.7 were classified as duplicates. The similarity of edges 〈A,B〉, 〈B,C〉, and
〈B,C〉 is just high enough to be classified as duplicate, whereas 〈C,D〉 has a much higher similarity.
But for example edge 〈A,C〉 is supported by the edges 〈A,B〉 and 〈B,C〉, because all three edges
confirm that elements A,B,C represent the same entity. The edge 〈C,D〉 is not supported by other
edges, because neither 〈A,D〉 nor 〈B,D〉were classified as duplicate. In Section 5, we present other
clustering algorithms that have a focus on the edge weights and would rather assign 〈C,D〉 to the
same cluster.
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3.1 Maximum Clique Clustering (MCC)

The MCC algorithm consists of two steps: First, it calculates for a component the maximum clique.
The maximum clique is the biggest maximal clique (a clique is maximal if it cannot be extended
by another vertex of a graph). We use the Bron-Kerbosh algorithm [5] to calculate the maximal
cliques. The maximum clique is the first cluster of the component and in the second step its vertices
are removed from the component. Thus, the component might be split into several smaller com-
ponents, each being a maximum clique. For all remaining components the algorithm is repeated
until all vertices are assigned to a cluster. Note that the first step is not necessary for components
with one or two vertices only, as in these cases the component itself is already a maximum clique.

3.2 Extended Maximum Clique Clustering (EMCC)

The extended maximum clique clustering is an extension of MCC. It is especially useful if we have
near-cliques, e.g., just a single or only a few edges are missing to increase a clique. As for MCC,
we start calculating the maximum clique for a component. If there are multiple possible maximum
cliques, then we have to select one. We have evaluated three strategies:

(1) Select arbitrarily the first maximum clique.
(2) Select the maximum clique with the most edges to vertices that are not in the maximum

clique. The hypothesis is that a maximum clique with many edges to outside vertices can
more likely be extended.

(3) Select the maximum clique with the fewest edges to vertices that are not in the maximum
clique. The idea of this approach is that only a small number of edges in the component
need to be deleted, if the maximum clique cannot be extended anymore.

We gained the best results with the second approach, selecting the maximum clique with the most
edges to vertices that are not in the maximum clique.

In the second step, we iteratively try to increase the selected clique with further vertices. If a
vertex that is not in the maximum clique fulfills a specific condition, then we suppose that it also
represents the same real-world entity as the vertices in the maximum clique. Note that if we add
these vertices, we do not have a clique anymore, so we now call it a cluster. We evaluated two
different conditions for adding a vertex:

(1) The vertex needs an edge to a specific percentage of vertices in the cluster. Due to the
increase of vertices in the cluster in each iteration, the number of required edges is also
rising.

(2) Like the first approach, but additionally a vertex needs a specific percentage of edges to
the vertices in the maximum clique. As with each iteration the cluster is increasing, this
additional constraint prevents that vertices are added that have no or only a few edges to
the original maximum clique.

Our experiments showed that the second condition is not necessary to obtain better results.
Thus, we use only the first condition for EMCC. The required percentage is represented by a
parameterτ . This extending step is repeated iteratively until no further vertex can be added. In each
iteration the number of vertices in the cluster is increased and thus also the number of required
edges to the cluster is increased. Algorithm 1 shows the pseudocode for EMCC.

Figure 7 shows another sample of a pairwise comparison and the calculation of EMCC with
τ = 0.5. After calculating the first maximum clique, we have V1 = {A,B,C,D}. Thus, in the first
iteration only vertices with at least two edges toV1 can be added to the cluster. In the second itera-
tion,V1 contains five vertices, so at least three edges are required to extendV1. As we cannot extend
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Fig. 7. EMCC clustering.

ALGORITHM 1: Extended Maximum Cliqe Clustering (EMCC)

Input: A set C = {c1, c2, . . . , cx } of undirected connected components (V ,E).
A threshold τ for the clique extension.

Output: A set of clusters RC in which each cluster represents a real-world entity.

1 RC ← ∅; // Result set of clusters

2 foreach cx ∈ C do // Iterate over connected components

3 V ← ∅; // Set of vertices

4 while cx � ∅ do

5 V ←MaxClique (cx ) with Max ( |E |);
6 do // Check if extension is possible

7 if ∃v ( |E (v,vy ) with v ∈ cx \V ,vy ∈ V |/|V | ≥ τ ) then

8 V ← V ∪ {v with Max ( |E (v,vy ) with v ∈ cx \V ,vy ∈ V |)}

9 while V has been extended;

10 RC ← new cluster with vertices in V ;

11 cx ← cx \V ; // Remove elements in cluster from cx

12 return RC;

V1 anymore, the vertices ofV1 represent the first cluster and are removed from the connected com-
ponent. For the remaining vertices E and F , we calculate again the maximum clique. As there are
no further vertices left to extendV2 = {E, F }, EMCC returns two clusters: {A,B,C,D,G} and {E, F }.

Please note the impact of parameter τ on the overall clustering result. In the example, with
τ > 0.5 EMCC would not add vertex G to the first maximum clique. Thus, EMCC would give the
same clustering result as algorithm Maximum Clique Clustering.

The choice of τ is important to obtain good quality clustering results. The two extreme cases
are τ = 0.0 and τ = 1.0. In the case of τ = 0.0, we are adding all vertices of a connected component
to the same cluster. Thus, the clustering result equals the result of the Transitive Closure. On the
contrary, with τ = 1.0, we are not adding any additional vertex to the maximum clique, and we get
the same result as for MCC. Our experiments showed that in most cases there is not just a single
optimal threshold, but rather a threshold range. Furthermore, even the selection of τ close to the
best range showed only a very small negative impact on the overall clustering result.

The extension of the maximum clique in EMCC is similar to the creation of δ -cliques in GCluster
[36], which we describe in Section 5.2. The main difference between these two algorithms is that
GCluster tries to maximize the edge weights within a cluster, whereas EMCC is more concerned
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Fig. 8. Additional vertices can support or contradict the classification of a record pair as a duplicate. Dotted

line edges represent a classification as non-duplicate and solid line edges as duplicates.

Fig. 9. GECG: consistent and inconsistent triangles.

Table 2. Number of Triangles in a Connected Component

v 1 2 3 4 5 6 7 8 9 10
t 0 0 1 4 10 20 35 56 84 120

about the structure of a cluster. EMCC can also be used in scenarios where no similarity values
for edges are available, but only classifications as duplicate or non-duplicate.

4 GLOBAL EDGE CONSISTENCY GAIN (GECG)

GECG is also a novel clustering approach and it is based on the idea that for each edge we can
check whether the classification as duplicate or non-duplicate is correct by taking further edges
into account. Assume we have an edge ev1,v2 for vertices v1 and v2, and the edge is classified as
duplicate. Additionally, we have a third vertex v3 and edges ev1,v3 and ev2,v3 are also classified as
duplicate, thenv3 supports thatv1 andv2 are really duplicates. However, if only ev1,v3 is classified
as duplicate, and ev2,v3 is classified as non-duplicate, thenv3 contradicts the classification of ev1,v2

as duplicate, as shown in Figure 8.
GECG tries to increase the consistency of a connected component. To measure the consistency

of a connected component, GECG considers all possible triangles, i.e., all possible sets with three
vertices. The vertices in a triangle are consistent, if no edge, one edge, or all edges are classified
as duplicate. If a triangle has no duplicate edge, then the vertices are not connected and represent
three different real-world entities. With only one duplicate edge, we have a cluster of two vertices
and a singleton. If all three edges represent a “is-duplicate-of” relation, then all three vertices
represent the same real-world entity. Only if we have two edges classified as duplicate and one
edge classified as non-duplicate is this triangle inconsistent. In this case, we can switch any edge in
this triangle to make it consistent. An edge switch either results in a pair and a singleton or a cluster
of all three vertices. Figure 9 shows the possible triangles and their classification as consistent and
inconsistent.

The authors of Reference [15] also define incomplete triangles, if two edges are classified as
duplicate and one edge is unknown (e.g., the pair selection algorithm has only created two of the
possible three record pairs). We do not consider this case, but implicitly assume that unknown
edges are classified as non-duplicate.

The number of triangles in a set of vertices can be calculated with the binomial coefficient(
v
3

)
= v ∗ (v − 1) ∗ (v − 2)/6. Table 2 shows the number of triangles t for connected components

with v vertices.

ACM Journal of Data and Information Quality, Vol. 12, No. 1, Article 3. Publication date: December 2019.



3:10 U. Draisbach et al.

Fig. 10. Connected component from a pairwise comparison and the triangles that are considered by GECG.

Table 3. Edge Switch Result for the Example in Figure 10

Switched

Edge
Consistant triangle # cons.

triangles

Cons.

gainT1 T2 T3 T4

Initial state yes no no yes 2 -
EA,B : D→ND no yes no yes 2 0
EA,C : D→ND no no yes yes 2 0
EA,D : D→ND yes yes yes yes 4 2
EB,C : D→ND no no no yes 1 −1
EB,D : ND→D yes yes no no 2 0
EC,D : ND→D yes no yes no 2 0

GECG first identifies the number of inconsistent triangles. For each edge, it calculates the con-
sistency gain if the classification of the edge is switched, i.e., the edge classification is switched
from duplicate to non-duplicate or vice versa. The consistency gain is defined as the number of
consistent triangles after the edge switch minus the number of consistent triangles before the
edge switch. Figure 10 gives an example. We have a connected component (Figure 10(a)) with four
vertices, which results into four triangles T1 to T4 (Figure 10(b)). Before GECG is executed, only
triangles T1 and T4 are consistent.

Table 3 shows for each edge the result of an edge switch. Initially, T1 and T4 are consis-
tent triangles. The consistency gain is only positive, if we switch edge EA,D from duplicate to
non-duplicate.

This step of calculating the information gain for each edge and switching the edge with the
highest consistency gain is repeated until we get a clique (or a singleton). In this case, we remove
the vertices of the clique from the connected component and return them as the next cluster,
representing a real-world entity. For the remaining vertices, we repeat the step of switching edges.
An edge is only switched, if the consistency gain is positive (>0). If no edge can be switched with
a positive consistency gain, then all remaining vertices are added to the same cluster, representing
the same real-world entity. In case we have multiple edges with the same consistency gain, we
select the edge with min(‖threshold − similarity‖).

Algorithm 2 shows the pseudocode of GECG. GECG iterates over all connected components
(line 3). As long as there exists an inconsistent triangle in the selected component and maxcд > 0
(line 7), GECG recalculates for all edges of the selected connected component the consistency gain
for an edge switch and determines the maximum consistency gain (line 8). If the consistency gain is
positive (line 9), then one of these edges with the maximum consistency gain is selected (line 12 or
14) and then switched (line 15). In case that the edge switch splits the connected component, GECG
continues with the larger component and adds the smaller component to the set of connected com-
ponents that still have to be processed (lines 16–18). If there are no more inconsistent triangles in
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ALGORITHM 2: Global edge consistency gain (GECG)

Input: A set C = {c1, c2, . . . , cx } of undirected connected components (V ,E).
A threshold τ used for a pairwise classification.

Output: A set of clusters RC in which each cluster represents a real-world entity.

1 RC ← ∅
2 maxcд ← 1 // Max. consistency gain

3 foreach cx ∈ C do // Iterate over all connected components

4 c ← cx ∈ C // Select next component to be processed

5 C ← C \ {cx }
6 while c contains inconsistent triangle with

7 ei j ≥ τ , ejk ≥ τ , and eik < τ andmaxcд > 0 do // Iteratively process selected component

8 maxcд ← max{get_cg(e,c) : e ∈ c} // Calculate max. consistency gain

9 if maxcд > 0 then // Check if max. consist. gain > 0

10 EMaxCG ← {e ∈ c : дet_cд(e, c ) =maxcд } // Get edges with max. consistency gain

11 if ‖EMaxCG ‖ = 1 then // Check number of edges with max. consist. gain

12 eswitch = e1 ∈ EMaxCG

13 else

14 eswitch = e1 ∈ {e ∈ EMaxCG ‖esim =min(‖τ − esim ‖)} // Get best edge

15 Switch edge eswitch (D→ ND or ND→ D) // Perform edge switch

16 if c is split in 2 components then // Check component split

17 c ← component with more vertices

18 add component with less vertices to C

19 RC ← new cluster with vertices in c // Create new cluster

20 return RC

21 Function get_cg(e , д): // Get consistency gain of edge e in graph д

22 count ← number of consistent triangles in д

23 countswitched ← number of consistent triangles in д with switched edge classification for e

24 return count − countswitched

the selected connected component or an edge switch would result in a negative consistency gain,
then the elements of the selected component are added as a new cluster to the result set (line 19).

5 EXISTING CLUSTERING ALGORITHMS

In this section, we describe six clustering algorithms from related work. These algorithms were
evaluated in References [19, 36] and are among the best clustering algorithms for duplicate
detection.

Some of these clustering algorithms require a similarity score for each edge (weighted edges).
The other clustering algorithms perform their clustering on the structure of the input graph (un-
weighted edges only). To illustrate the effects of the different clustering algorithms, we use the
sample result of a pairwise comparison in Figure 7(a). Table 4 gives an overview of the clustering
algorithms and shows which clustering algorithms require a similarity score and how many edge
switches are needed for clustering the sample input graph in Figure 7(a). Note that in Figure 7(a)
all missing edges mean a classification as non-duplicate. So adding a missing edge means changing
the classification from non-duplicate to duplicate and removing an edge vice versa. The different
clustering algorithm results for the sample input graph are shown in Figure 11, with Figures 11(a)–
11(c) showing the results of the previously presented algorithms.
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Table 4. Overview of the Nine Clustering Algorithms and the

Number of Edge Switches for the Example in Figure 7(a)

Clustering Alg. Needs

sim.

# edge switches

D→ND ND→D

Maximum Clique Clustering no 3 0
Extended Max. Clique Cl. no 1 2
Global Edge Consist. Gain yes 1 0
Transitive Closure no 0 11
GCluster yes 4 1
Markov Clustering yes 1 2
Merge Center Clustering yes 1 2
Modified Star Clustering no 3 4
VOTE/BOEM yes 4 1

Fig. 11. Clustering result of the different clustering algorithms for the sample graph in Figure 7(a).

5.1 Transitive Closure

The transitive closure approach is based on the observation, that the relation “is-duplicate-of” is
transitive [26]. Two vertices belong to the same cluster if a path exists. The transitive closure only
switches edges from non-duplicate to duplicate, but not vice versa. So it increases the recall at cost
of precision.

Note that there are many algorithms for calculating the transitive closure, e.g., from Warshall
[41] or Warren [40], but most of them, including the aforementioned papers, are for directed
graphs, which is more complex than for undirected graphs. Figure 11(d) shows the result of the
transitive closure for our example. Overall, 11 edges are switched from non-duplicate to duplicate.

5.2 GCluster

The concept of GCluster [36] is creating δ -cliques to maximize the cohesion of the elements in the
δ -cliques. In a δ -clique withv vertices, every vertex is connected to at least δ (v − 1) vertices in the
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Fig. 12. GCluster maximum weight matchings, with δ = 0.6. An edge implies that merging the vertices cre-

ates a new δ -clique. The thick edges show the result of the maximum weight matching.

δ -clique. Cohesion is a fitness measure for a subgraph and defined as the sum of weights of the
edges in the subgraph.

GCluster first removes all edges from the input graph that have a similarity weight below a
threshold and then calculates the maximum weight matching [16]. A maximum weight matching
for a graph is a matching, in which the edge weight sum is maximal. The result of the weighted
matching are connected components that are merged. If we have two merged components A and B,
then the edge between A and B has as weight the sum of edge weights of vertices in A to vertices in
B. The process of calculating the maximum edge weight and merging the connected components
is repeated until no components can be merged. The maximum weight matching considers only
edges between components, which is still a δ -clique after being merged.

Figure 12 shows the GCluster algorithm for our example in Figure 7(a) with a threshold θ =
0.5 and δ = 0.6. All edges are above the threshold and Figure 12(a) shows the maximum weight
matching. Each pair 〈A,B〉, 〈C,G〉, and 〈D,E〉 is merged. In the second iteration (see Figure 12(b)),
there is only one edge left that fulfills the requirement that merging the connected components
would lead to to a δ -clique. The edge weight is the sum of edge weights between 〈A,C〉, 〈A,G〉,
and 〈C,B〉. The result of GCluster for the example is shown in Figure 11(e).

In consultation with the authors of GCluster, our implementation uses an adapted version of
the GCluster pseudo-code (Algorithm 1 in Reference [36]). We adjusted in line 10 the test whether
the merged graph is a δ -cliques or not, analogous to the description in the paper.

5.3 Markov Clustering

Markov Clustering (MCL) [35] is an unsupervised clustering algorithm that simulates random
walks (or flows) in a graph by alternating an expansion and an inflation step on the associated
Markov matrix. The underlying idea is that clusters are regions in a graph with many edges. In
case a walk visits a dense cluster, it likely visits many vertices of that cluster before it finds a way
out of the cluster. Thus, there are regions with a high flow in the graph and regions with a low flow.
By applying simple algebraic operations on the associated Markov matrix, MCL strengthens areas
in the graph with a high flow and weakens areas with a low flow. The expansion step calculates the
normal matrix product, whereas the inflation step calculates the Hadamard power [23] followed
by a scaling step. For our evaluation, we used the originally implementation.3 Figure 11(f) shows
the result of Markov clustering for our example.

5.4 Merge-Center Clustering

Merge-Center [20] is an extension of Center [21], where the idea is that every cluster has a center
vertex and all other elements in that cluster are similar to this center vertex. As shown in Reference
[19], Merge-Center outperforms Center.

3http://micans.org/mcl/index.html.
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Fig. 13. Merge Center clustering with shaded center nodes.

Fig. 14. Star Clustering for the sample in Figure 7(a). The table shows the degree for each vertex and the

graphs show two possible solutions for star clustering with shaded star centers.

First, Merge-Center sorts all edges by their weight (similarity) in descending order and then
sequentially scans these vertex pairs. The first time a vertexvn occurs in the scan, it is assigned as
center vertex of a new cluster. All subsequent verticesvm that appear in pairs of the form 〈vn ,vm〉
are assigned to the cluster of vn .

The extension of Merge-Center compared to Center is that in case of processing a pair 〈vn ,vm〉,
with vm being already an element of a different cluster than vn , the clusters of vn and vm are
merged. The merged cluster then has multiple center vertices. Due to the merge step, Merge-
Center creates fewer clusters than Center.

Figure 13 shows the Merge-Center algorithm for the sample graph, with shaded center nodes.
When processing the edge 〈A,G〉, the two clusters with center nodes A and G are merged. The
result is shown in Figure 11(g).

5.5 Modified Star Clustering

Star Clustering [1] covers a similarity graph with star-shaped dense subgraphs. The star-shaped
subgraphs consist of a single star center and satellite vertices. The similarity of each satellite to its
star center is above a threshold. Applied to the duplicate detection process, this means that only
edges classified as duplicates are considered.

Star Clustering first sorts all vertices by their degree in descending order. In the beginning,
all vertices are unmarked and the algorithm iterates over the sorted list of vertices. If a vertex is
unmarked, then it becomes the star center of a new cluster. All associated vertices become satellites
in the cluster and are marked, so that they cannot become the star center of a new cluster. Note
that Star Clustering creates overlapping clusters, if a vertex is associated to multiple star centers.
This violates the goals for a clustering algorithm (see Section 2). Therefore, we are using a modified
version of Star Clustering, in which a vertex is associated only to the first star center.

Thus, there are several possible solutions for star clustering. If several vertices have the same
degree, then one is chosen as star center arbitrarily, e.g., the first one. Figure 14 shows two possible
star clusterings for our sample graph, one with vertices A and E and one with vertices D, F, and G
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as star centers. Figure 11(h) shows for the latter the created clusters of our modified star clustering
approach.

5.6 Correlation Clustering

Correlation Clustering, introduced in Reference [2], tries to find a clustering in a complete graph,
in which the edges are labeled either as + or −, depending on the classification of the vertices as
being similar or dissimilar. The goal is to find a clustering that minimizes the number of + edges
between clusters and the number of − edges within clusters. As shown in Reference [2], finding
the best clustering is NP-hard, so there is a necessity for approximation algorithms.

Elsner and Schudy [14] compare several correlation clustering algorithms and recommend
VOTE/BOEM for general problems. According to them, the input is a complete, undirected graph
G with n nodes in which each edge has a probability pi j whether nodes i and j belong to the same
cluster. For duplicate detection, the probability corresponds to the similarity that we calculated
for the pairwise classification. The goal is to find a clustering, defined as new graphG ′ with edges
xi j = 1 if nodes i and j belong to the same cluster, and otherwise xi j = 0. Additionally, xii = 1 and
xi j = x jk = 1 implies xi j = xik .

The objective according to Reference [14] is to find a clustering that is as consistent as possible
with regard to the given probabilities. Edges with a high probability should be within a cluster, but
not crossing cluster boundaries. The opposite holds for edges with a low probability. The authors
define w+i j as the cost of cutting an edge, with w+i j = loд(pi j ), and w−i j as the cost of keeping an

edge, with w−i j = loд(1 − pi j ). Mathematically, the objective is

min
∑

i j :i<j

xi jw
−
i j + (1 − xi j )w

+
i j . (1)

VOTE/BOEM consists of two algorithms, VOTE and BOEM, that are executed sequentially.
VOTE is a greedy algorithm that uses the net weight w±i j = w

+
i j −w−i j to assign elements to an

existing cluster or to create a new singleton cluster, as shown in Algorithm 3.
Elsner and Schudy [14] ran 100 random permutations and report the run with the best objective

value. In our implementation, we run the algorithm for each connected component with up to
120 permutations. Thus. for all connected components with up to five vertices we run all possible
permutations. Running the VOTE algorithm for each connected component instead on the whole
graph reduces the complexity of the algorithm and is reasonable, because if two vertices are from
different connected components, the net weight is always negative and these two vertices would
never be added to the same cluster.

The clustering result of the VOTE algorithm is then the input for the Best One Element Move
(BOEM) algorithm. This algorithm iteratively selects one element from the current clustering and
either moves this element to another cluster or creates a new singleton cluster. In each iteration,
we calculate for every element the change of the objective value for all possible moves, and finally
execute the move with the highest optimization of the objective value. Note that for calculating
the effect of an element move, we have to consider (i) the effect on the current cluster (element is
removed), and (ii) the effect of the target cluster (element is added). The algorithm runs until there
is no element move left that would improve the objective value. Figure 11(i) shows the result of
VOTE/BOEM for the sample graph.

5.7 Complexity Analysis

We give a short overview of the time complexity for the presented algorithms. As the algo-
rithms do not add vertices from different connected components to the same cluster, we can run
each algorithm (except for Markov Clustering) per connected component, reducing complexity in
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ALGORITHM 3: VOTE
Input: A complete, undirected graph G with n nodes; each edge in the graph has a probability pi j

whether nodes i and j belong to the same cluster.

Output: Clustering C

1 k ← 0 // Number of clusters created so far

2 C[k++]← {1} // Create cluster for 1st vertex

3 for i = 2..n do // Iterate over vertices

4 for c = 1..k do // Iterate over clusters

5 Qualityc ←
∑

j ∈C[c]w
±
i j // Get net weights sum

6 c∗ ← arдmax1≤c≤kQualityc // Get best cluster

7 if Qualityc > 0 then

8 C[c∗]← C[c∗] ∪ {i} // Add vertex to cluster

9 else

10 C[k++]← {i} // Form a new cluster

11 return C

practice with the worst case that all nodes are within a single component. For finding the con-
nected components, we use a depth-first search, which has a complexity of O (V + E), where V is
the number of vertices, and E is the number of edges in a connected component.

For Transitive Closure, all elements in a connected component belong to the same cluster, so
the complexity is O (1). GCluster has a complexity of O (V 3.5) [36]. For Markov Clustering, a naive
implementation has a complexity of O (V 3), but by applying a pruning scheme, it can be reduced
to O (Vk2), with k as a pruning constant that reduces the computation of a column to the k largest
entries [35]. Merge-Center Clustering first sorts all edges by their similarity and then scans all
edges, resulting in a complexity of O (E log(E) + E). Modified Star Clustering first calculates the
degree of the vertices, then sorts them by their degree, and finally scans the vertices, so the com-
plexity is O (V +V log(V ) +V ). The VOTE algorithm iterates over all vertices and calculates the
net weight for all other processed vertices. In the end, the net weight is calculated for all pairs of

vertices, so the complexity is O ( V 2−V
2 ), multiplied by the number of permutations. As mentioned

in Reference [14], BOEM can be implemented with a complexity of O (V 2) for preprocessing, and
O (V ) for each move, with at most V − 1 moves [17].

The complexity of MCC is dominated by the complexity for finding a maximum clique. For
this, the Bron-Kerbosh algorithm has a complexity of O (3V /3) [5]. As we do not have to find all
maximal cliques, the complexity can be improved to O (2V /3) [34] or O (20.276V ) [31]. For EMCC,
we additionally have to consider the complexity for the extension step, which is O (V ).

For GECG, as mentioned in Section 4, we haveV ∗ (V − 1) ∗ (V − 2)/6 triangles in each compo-
nent. Initially, we calculate in constant time for each triangle whether it is consistent. To choose the
best edge, we calculate for all V ∗ (V − 1)/2 edges the effect of an edge switch for V − 2 triangles,
and then choose the best edge to be switched. In the following iterations, under the premise that
we saved preliminary results, we recalculate only the consistency ofV − 2 triangles, and the effect
of an edge switch for (V − 2) ∗ 2 + 1 edges (two edges per triangle affected by the previous edge
switch plus the switched edge itself). As the number of inconsistent triangles is monotonically de-
creasing due to the condition that the consistency gain has to be positive (line 11 of Algorithm 2),
the number of iterations depends on the number of triangles (O (V 3)), therefore the overall com-
plexity is in O (V 5).
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Table 5. Complexity Comparison

for EMCC and GECG

V EMCC O(3V /3) GECG O(V 5)
53 268,622,364 418,195,493
54 387.420.489 459.165.024
55 558.757.034 503.284.375
56 805.867.092 550.731.776

If we compare the complexity of the new clustering approaches MCC/EMCC and GECG, then for
all three the runtime depends on the size of the connected components that result from the pairwise
comparison. For smaller connected components withV < 55, MCC and EMCC are expected to run
faster than GECG, and vice versa for larger connected components withV ≥ 55 GECG is expected
to be faster. This is shown in Table 5 and also later in our experimental evaluation.

6 EVALUATION

In this section, we evaluate all clustering algorithms presented in the previous sections, using var-
ious datasets. We employ different algorithms for the pairwise comparison. Next to an exhaustive
comparison, we also evaluate the effects of Blocking and the Sorted Neighborhood method on the
clustering result [7, 25]. Both these methods compare only record pairs with a higher chance of
being duplicates and thus reduce the pairwise comparison effort with the restriction that some
duplicates might be missed.

6.1 Baseline Clustering Algorithms

For our evaluation, we additionally use two baseline algorithms that help to measure the perfor-
mance of the clustering algorithms.

NoClustering: No clustering means that no edge is switched and the clustering result is identical
to the result of the pairwise comparison. Thus, we do not have cliques as described in Section 2,
and the result might be inconsistent regarding the “is-duplicate-of” relation, e.g., 〈A,B〉 and 〈B,C〉
are duplicates, but 〈A,C〉 is not. The result of this approach can be used to evaluate how much a
clustering algorithm can improve the result of the pairwise comparison. Due to possible inconsis-
tencies in the result, this approach should not be used in real-life scenarios.

Gold Standard Clustering: We use the gold standard to decide for each component, which vertices
belong to the same cluster. Thus, the precision of gold standard clustering is always 100%. Note
that the recall is not always 100%, because gold standard clustering only considers duplicates that
were placed in the same component by the pairwise classification. Gold standard clustering is not
suitable in real-world scenarios, because the gold standard is generally unknown. But for our ex-
periments, it is the upper bound for what can be reached without connecting different components.

6.2 Datasets

For our evaluation, we use various synthetic and real-world datasets. For each, we describe its con-
tent, our similarity measure, and other used parameters. Table 6 gives an overview of all datasets
and Table 7 describes the connected components that result from the pairwise comparison.

The Cora citation matching dataset4 comprises 1,879 references of research papers and is often
used in the duplicate detection research [4, 10]. The definition of a Cora gold standard is described
in Reference [11]. For the classification as duplicate or non-duplicate, we use a similarity measure

4http://people.cs.umass.edu/∼mccallum/data.html.
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Table 6. Overview of Datasets, Showing the Number of Records and Clusters, the

Percentage of Singleton Clusters, and for Non-singleton Clusters the Cluster sizes

Dataset Records Cluster Singleton Non-singleton Clust. Sizes
# # % Average Median Maxim.

Cora 1,879 182 35.16 % 15.38 6.0 238
CD 9,763 9,508 97.68 % 2.15 2.0 6
Febrl Small 11,000 10,000 94.99 % 3.00 3.0 4
Febrl Large 20,000 10,000 79.73 % 5.93 6.0 10
NCVoter 8,261,838 8,110,137 98.17 % 2.02 2.0 6
Birth records 17,611 5,244 41.15 % 5.01 5.0 16
Stringer 4,163 638 14.97 % 8.32 8.1 20.66

For Stringer, the table shows average values.

Table 7. Overview of Connected Components Without Singletons that Result from

the Pairwise Comparison, Showing the Different Sizes Per Dataset and Pair-selection

Algorithm (Average Values for Stringer)

Dataset
Exhaustive Blocking Sorted Neighborhood

Count Avg Median Max Count Avg Median Max Count Avg Median Max

Cora 104 17.47 5 240 107 16.98 5 240 108 16.80 5 239

CD 204 2.19 2 6 199 2.16 2 6 200 2.16 2 6

Febrl Small 505 2.95 3 4 503 2.95 3 4 497 2.96 3 4

Febrl Large 2,024 6.08 5 826 2,061 5.90 5 334 2,066 5.68 5 77

NCVoter — — — — 179,059 2.04 2 9 168,785 2.04 2 9

Birth
records

— — — — 1,978 7.67 3 6,386 — — — —

Stringer 398 20 9 614 — — — — — — — —

that calculates the average Jaccard coefficient [26] of attributes Title and Author using bigrams.
Additional rules set the similarity of a record pair to 0.0 when certain conditions are met. These
rules are (1) the year attribute has different values, (2) one reference is a technical report and
the other is not, (3) the Levenshtein edit distance of attribute Pages is greater than 2, and (4) one
reference is a journal, but the other one is a book.

We use three different blocking keys for the Blocking experiments. These are the first 2 charac-
ters of attributes ReferenceID, Title, and Author, respectively. For the Sorted Neighborhood Method
the window size is 20 and the used sorting keys are 〈Refer.ID, Title, Author〉, 〈Title, Author, Refer.ID〉,
and 〈Author, Title, Refer.ID〉.

The CD dataset5 is a randomly selected extract from freeDB.org. It contains information for
9,763 CDs, including artist, title, and songs. The dataset has been used in several papers [7, 22].
Our similarity function calculates the average Levenshtein similarity of the three attributes Artist,
Title, and Track01 but also considers null values and string-containment. For Blocking, we use again
three blocking criteria, which are the first two characters of attributes Artist, Title, and Track01.
The Sorted Neighborhood Method also uses a window size of 20 and the three sorting keys 〈Artist,

Title, Track01〉, 〈Title, Artist, Track01〉, and 〈Track01, Artist, Title〉.

5http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html.
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The Febrl dataset generator [6] was used to create two artificial datasets. Both were created with
10,000 records of unique entities. The smaller dataset (Febrl small) contains an additional 1,000
duplicate records with up to three duplicates per entity. The larger dataset (Febrl large) contains
10,000 additional duplicate records with up to nine duplicates per cluster and additionally more
modifications in the duplicates than those in the smaller one.

The similarity function aggregates the Jaro-Winkler similarities of attributes Firstname, Last-

name, Address, Suburb, and State. Blocking uses three blocking criteria Firstname, Lastname, and
Postcode (first two characters of each attribute), and the Sorted Neighborhood Method uses three
sorting keys 〈Firstname, Lastname〉, 〈Lastname, Firstname〉, and 〈Postcode, Address〉 with window
size 20.

The NCVoter dataset6 contains about 8.2M records with personal details of individuals, such
as name, address, and age. For some voter there exists more than one record, for instance, because
their personal details have changed over time, or misspellings were corrected. Ramadan et al. have
extensively deduplicated this dataset, and we use their result as gold standard [29].

Due to the high number of records, it is not feasible to perform an exhaustive pair-wise compar-
ison. Thus, we evaluate only the clustering algorithms based on Blocking and the Sorted Neigh-
borhood Method. Blocking considers the following two blocking criteria: the concatenation of the
first two letters of Firstname and Lastname and the concatenation of the first four letters of City

and Street address. The Sorted Neighborhood Method uses a window size of 20 and 〈Lastname,

Firstname, Middle name〉, and 〈Firstname, Lastname, Middle name〉 as sorting keys.
The historical Birth records dataset consists of 17,614 birth records from the Isle of Skye in

Scotland, spanning the years 1861 to 1901, where the linkage task is to group all birth records of
babies with the same parents, i.e., create one cluster per family. For each birth record, name and
address details of the baby and its parents, as well as marriage date and place, and occupation
information of the parents were used in a pair-wise comparison step. A locality-sensitive hashing-
based (LSH) blocking approach on these string attributes (converted into character bi-grams) was
applied. The Jaro-Winkler approximate string comparison function was used to calculate the sim-
ilarities between string values and an approximate numerical similarity was calculated between
year values [8]. Due to the highly skewed nature of the names and addresses in this dataset, where
the majority of people had one of only a very few common names and lived in a small number
of villages [30], the basic pair-wise linkage did not result in high linkage quality (too many false
matches) [9], and clustering is required to identify the correct groupings of birth records. Manually
prepared ground truth, based on extensive semi-automatic linkages done by domain experts [30],
was available, which allowed us to calculate the quality of the final clustering results.

The Stringer data collection7 comprises 29 datasets that were created with an enhanced version
of the UIS database generator and that were also used in the experimental evaluation in Reference
[19]. We use Stringer only for an evaluation of clustering algorithms based on an exhaustive pair-
wise comparison, as it would be too time-consuming to find good blocking criteria and sorting keys
for each of the 29 datasets. The similarity measure corresponds to the implementation in Reference
[19]. We use a weighted Jaccard similarity based on bigrams.

6.3 Evaluation Approach and Results

We used the DuDe toolkit [11] (Java-based) for our evaluation and ran all experiments on a server
with two 6-core 64-bit Intel Xeon 2.93 GHz CPUs, 96 GBytes of memory and running Ubuntu

6ftp://www.app.sboe.state.nc.us.
7http://dblab.cs.toronto.edu/project/stringer/clustering/.
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Table 8. EMCC: Best Value Ranges for τ

Dataset Exhaustive Comparison Blocking Sorted Neighborhood
Cora 0.32 - 0.38 0.07 0.04
CD 0.51 - 1.00 0.51 - 1.00 0.51 - 1.00
Febrl Small 0.00 - 0.33 0.00 - 0.33 0.00 - 0.33
Febrl Large 0.21 - 0.22 0.15 - 0.16 0.11
NCVoter — 0.41 - 0.50 —
Birth records — 0.40 & 0.48 - 0.50 —
Stringer 0.50 — —

17.04. For the clustering algorithms, we use the following configurations: GCluster with θ = 0.5
and δ = 0.6, and for EMCC, we evaluated the best values for τ , as shown in Table 8.

We use four different measures to evaluate the performance of the clustering algorithms. Next
to the most prominent measures precision (fraction of correctly detected duplicates over all de-
tected duplicates), recall (fraction of detected duplicate pairs over the overall number of existing
duplicate pairs) and f-measure (harmonic mean of precision and recall) [26], we also use the gen-

eralized merged distance (GMD) [24]. GMD is defined as the minimal number of merge (m) and
split (s) operations to transform the clustering result to the real-world classification. GMD can be
configured in different ways, and we use the costs fm = 1 and fs = 1 in our evaluation, so that all
clusters are equally important, independent of their size. The first three measures are pair-wise
measures, whereas GMD considers the quality of the clusters.

We acknowledge recent work that has identified some issues when the F-measure is used to
compare deduplication methods [18]. The harmonic mean calculation of the F-measure can be con-
verted into a weighted arithmetic mean of precision and recall, where however different weights
are assigned to precision and recall depending upon the number of classified duplicates. This can
occur, for example, when different similarity thresholds are used when deduplication methods are
compared. In our evaluation, however, as we discuss next, we do not vary such similarity thresh-
olds for the same dataset, but rather we identify the best threshold for each dataset based on the
exhaustive pairwise comparison. Therefore, our use of the F-measure is valid. Furthermore, we
present precision and recall results as well to provide the full details of the obtained deduplication
quality.

The first evaluation step is finding a suitable classification threshold for each dataset to classify
the record pairs as duplicate or non-duplicate. To give no clustering approach an advantage,
we take the f-measure result of the exhaustive pairwise comparison without any clustering as
benchmark. If for one dataset multiple thresholds lead to the same f-measure value, then we take
the threshold with the best precision value, and if there are still multiple possible thresholds, we
take the highest one. Table 9 gives an overview of the datasets and their best threshold that we
use in our evaluation. The table additionally shows precision and recall values. Due to the high
number of records for NCVoter, here we use the Sorted Neighborhood results instead.

In the second step, we use the previously evaluated thresholds to run the clustering experi-
ments. For Stringer, we have aggregated the results of the individual datasets and show only the
average results in Table 10(a). This table shows for NoClustering the absolute values for f-measure,
precision, and recall, and for all other clustering algorithms the difference in comparison to No-

Clustering. The highest improvements for each measure are highlighted, e.g., GECG has the best
f-measure value, which is 2.98% higher than the f-measure value for NoClustering. The column
for the GMD shows absolute values, not the improvements. Note that for NoClustering, we cannot
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Table 9. Best Threshold and its Result Per Dataset for a Exhaustive Pairwise

Comparison Without Clustering

Dataset Best Th. F-Meas. Precision Recall

Cora 0.64 97.66 % 98.05 % 97.28 %

CD 0.81 88.32 % 90.81 % 85.95 %

Febrl Small 0.91 97.07 % 99.24 % 95.00 %

Febrl Large 0.87 90.75 % 97.37 % 84.97 %

NCVoter 0.56 82.09 % 76.40 % 88.69 %

Birth records 0.78 67.18 % 66.40 % 67.98 %

ST. AB 0.64 99.72 % 99.80 % 99.63 %

ST. DBLPH1 0.18 87.77 % 91.59 % 84.25 %

ST. DBLPH2 0.23 86.53 % 88.76 % 84.41 %

ST. DBLPL1 0.36 99.50 % 99.75 % 99.26 %

ST. DBLPL2 0.40 99.63 % 99.61 % 99.64 %

ST. DBLPM1 0.26 89.65 % 91.14 % 88.20 %

ST. DBLPM2 0.32 94.53 % 97.77 % 91.51 %

ST. DBLPM3 0.29 99.18 % 99.03 % 99.34 %

ST. DBLPM4 0.31 99.01 % 98.69 % 99.33 %

ST. EDH 0.20 53.59 % 52.90 % 54.29 %

ST. EDL 0.35 87.98 % 89.77 % 86.27 %

ST. EDM 0.25 68.95 % 70.80 % 67.20 %

Dataset Best Th. F-Meas. Precision Recall

ST. H1 0.22 54.81 % 54.55 % 55.06 %

ST. H2 0.31 59.28 % 57.36 % 61.34 %

ST. L1 0.47 93.80 % 96.49 % 91.25 %

ST. L2 0.55 96.24 % 99.04 % 93.60 %

ST. M1 0.42 72.71 % 86.68 % 62.62 %

ST. M2 0.56 91.06 % 99.21 % 84.14 %

ST. M3 0.36 88.85 % 89.22 % 88.49 %

ST. M4 0.41 90.58 % 90.89 % 90.27 %

ST. TS 0.89 100.00 % 100.00 % 100.00 %

ST. ZH1 0.33 38.48 % 36.96 % 40.13 %

ST. ZH2 0.43 54.77 % 65.85 % 46.88 %

ST. ZL1 0.50 92.48 % 92.65 % 92.30 %

ST. ZL2 0.53 95.13 % 93.93 % 96.36 %

ST. ZM1 0.60 71.75 % 97.80 % 56.66 %

ST. ZM2 0.60 94.00 % 98.50 % 89.90 %

ST. ZM3 0.43 84.21 % 84.71 % 83.71 %

ST. ZM4 0.47 87.68 % 89.40 % 86.03 %

calculate a GMD, as we would need consistent clusters. For f-measure, precision, and recall, higher
values are better, whereas the GMD should be as low as possible. The results of the Birth records

and NCVoter datasets are shown in Tables 10(b) and 10(c), whereas Table 11 shows the results of
datasets Cora (Table 11(a)) and CD (Table 11(b)), and Table 12 shows the results for both Febrl

datasets, each with all pair selection algorithms.
For algorithm GECG, four Stringer and the Birth records dataset did not finish within 60 hours

due to very large connected components (>3,500 vertices). Thus, for GECG and Stringer, we report
only the average results of all other Stringer datasets, and for Birth records no values. We briefly
report on runtimes separately at the end of the section.

For all datasets, we observe that our classifiers alone already lead to good results (see NoCluster-
ing). The possible improvements of a perfect clustering algorithm that improves the quality only
within a component, but does not assign records of different components to the same cluster, is
very limited (see GoldStandard clustering). However, a clustering algorithm can also worsen the
results of a pairwise comparison.

We can distinguish between datasets with small cluster sizes (e.g., CD, Febrl small, NCVoter) and
datasets with large cluster sizes (e.g., Cora, Febrl large, Birth records). For the former datasets, the
clustering algorithms achieve the same or similar results and there is no single clustering algorithm
that outperforms the others.

For the latter datasets, we observe that the Transitive Closure, as expected, leads to the best recall
values; however, it also results in very low precision and thus low f-measure values. Merge-Center
Clustering and Modified Star Clustering (with the exception of Febrl large) also tend to decrease
the quality of the results. The best performing clustering algorithms are Markov clustering and
EMCC. The main difference between the results of these two algorithms is that Markov Clustering
leads to higher recall values, whereas EMCC leads to a higher precision.
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Table 10. Experimental Evaluation for Datasets Stringer, Birth Records, and NCVoter

with Different Pair-selection Strategies

(a) Results Stringer dataset (b) Results Birth records dataset

Stringer Exhaustive Comparison

Cluster Alg. F-Measure Precision Recall GMD

No Clustering 83.86 % 86.65 % 81.80 % —

Gold Standard Clust. +10.00 % +13.35 % +7.96 % 157.59

MCC −6.86 % +2.76 % −12.32 % 617.79

EMCC +0.10 % +1.13 % −0.67 % 414.76

GECG +2.98 % +3.24 % +2.84 % 275.56

Transitive Closure −19.23 % −25.16 % +7.96 % 272.79

GCluster −1.70 % +8.50 % −6.55 % 432.03

Markov Clustering +2.40 % −1.22 % +7.22 % 239.55

Merge-Center Clust. −18.39 % −24.21 % +6.84 % 288.62

Mod. Star Clustering −2.86 % −6.53 % +1.47 % 414.24

VOTE/BOEM −14.59 % +10.50 % −21.18 % 1,010.31

Birth Records LSH-based Blocking

Cluster Alg. F-Measure Precision Recall GMD

No Clustering 67.18 % 66.40 % 67.98 % —

Gold Standard Clust. +24.05 % +33.60 % +15.89 % 1,273

MCC +1.53 % +22.29 % −11.90 % 3,808

EMCC +5.45 % +14.68 % −2.21 % 3,293

GECG — — — —

Transitive Closure −66.84 % −66.23 % +15.89 % 3,366

GCluster +1.50 % +24.84 % −12.91 % 3,713

Markov Clustering −1.43 % −9.11 % +9.17 % 2,899

Merge-Center Clust. −66.76 % −66.19 % +13.21 % 3,449

Mod. Star Clustering −16.68 % −26.06 % −0.48 % 3,912

VOTE/BOEM +2.13 % +24.01 % −11.79 % 3,647

(c) Results NCVoter dataset

NCVoter Blocking Sorted Neighborhood

Clustering Alg. F-Measure Precision Recall GMD F-Measure Precision Recall GMD

No Clustering 83.37 % 75.35 % 93.31 % — 82.09 % 76.40 % 88.69 % —

Gold Standard Clust. +13.36 % +24.65 % +0.35 % 9,656 +12.05 % +23.60 % +0.25 % 16,777

MCC −0.13 % +0.21 % −0.67 % 54,331 −0.09 % +0.19 % −0.45 % 57,102

EMCC −0.11 % −0.36 % +0.28 % 54,057 −0.09 % +0.19 % −0.45 % 57,089

GECG −0.09 % +0.22 % −0.55 % 54,086 −0.07 % +0.17 % −0.38 % 56,976

Transitive Closure −0.20 % −0.55 % +0.35 % 54,099 −0.14 % −0.42 % +0.25 % 56,987

GCluster −0.05 % +0.27 % −0.55 % 54,056 −0.05 % +0.20 % −0.38 % 56,960

Markov Clustering −0.17 % −0.51 % +0.34 % 54,089 −0.13 & −0.39 % +0.23 % 56,983

Merge Center Clust. −0.11 % −0.19 % +0.01 % 54,019 −0.10 % −0.15 % −0.02 % 56,954

Mod. Star Clustering −0.17 % −0.49 % +0.33 % 54,086 −0.12 % −0.37 % +0.23 % 56,975

VOTE/BOEM −0.05 % +0.30 % −0.57 % 54,045 −0.04 % +0.24 % −0.39 % 56,937

For the difficult Cora dataset, EMCC is the only algorithm that shows a slight increase for f-
measure, while Markov Clustering shows only a slight decrease. For Febrl large, they both show the
best results and for Birth records EMCC has the highest f-measure value. GCluster shows especially
good results for precision, but yields the lowest recall values. Thus, GCluster is especially useful
in scenarios where high precision values are required.

The extension of MCC to EMCC shows a positive effect, especially on the recall values. Due
to possible false pair-wise classifications, not every component is a clique. MCC splits these com-
ponents and creates smaller clusters, wheras EMCC corrects possible false classifications, which
results in larger clusters and thus higher recall values. For Febrl large, we also observe a higher
precision.

The effect of the pair selection algorithm on the ranking of clustering algorithms is very low. If
a clustering algorithm shows the best result for an exhaustive comparison, then it is also one of the
best algorithms for this dataset with Blocking or the Sorted Neighborhood Method. In general, the
GMD values confirm our observations and interpretations for all datasets and clustering methods.
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Table 11. Experimental Evaluation for Datasets Cora and CD with

Different Pair-selection Strategies

(a) Results Cora dataset

Cora Exhaustive Comparison Blocking Sorted Neighborhood

Clustering Alg. F-Measure Precision Recall GMD F-Measure Precision Recall GMD F-Measure Precision Recall GMD

No Clustering 97.66 % 98.05 % 97.28 % — 94.88 % 98.87 % 91.20 % — 55.20 % 98.68 % 38.32 % —

Gold Standard Clust. +2.10 % +1.95 % +2.23 % 12 +4.88 % +1.13 % +8.31 % 12 +44.56 % +1.32 % +61.19 % 12

MCC −1.48 % +1.29 % −4.07 % 40 −4.98 % +0.61 % −9.19 % 59 −22.16 % +0.72 % −18.51 % 115

EMCC +0.21 % +0.21 % +0.21 % 32 +3.99 % −0.52 % +8,19 % 29 +21.74 % −0.51 % +24,94 % 40

GECG −0.77 % −1.34 % −0.21 % 33 +0.43 % +0.32 % +0.53 % 44 −5.45 % +0.57 % −5.13 % 62

Transitive Closure −9.65 % −19.15 % +2.23 % 40 −4.88 % −16.72 % +8.31 % 37 +36.06 % −14.42 % +61.19 % 33

GCluster −3.86 % +0.95 % −8.16 % 53 −26.55 % −0.05 % −38.98 % 77 −24.77 % −0.08 % −20.33 % 124

Markov Clustering −0.32 % −2.78 % +2.23 % 28 +3.63 % −1.27 % +8.24 % 28 +18.63 % −0.60 % +20.87 % 28

Merge-Center Clust. −9.65 % −19.15 % +2.23 % 40 −4.04 % −15.30 % +8.31 % 35 +36.85 % −13.05 % +61.19 % 31

Star Clustering −4.15 % −9.40 % +1.65 % 44 −1.69 % −6.32 % +2.64 % 50 +2.19 % −4.01 % +2.86 % 62

VOTE/BOEM −8.95 % +0.53 % −16.65 % 51 −10.06 % −0.09 % −16.89 % 65 −10.80 % +0.80 % −9.74 % 100

(b) Results CD dataset

CD Exhaustive Comparison Blocking Sorted Neighborhood

Clustering Alg. F-Measure Precision Recall GMD F-Measure Precision Recall GMD F-Measure Precision Recall GMD

No Clustering 88.32 % 90.81 % 85.95 % — 90.18 % 94.83 % 85.95 % — 90.02 % 94.49 % 85.95 % —

Gold Standard Clust. +4.32 % +9.19 % +0.34 % 38 +2.46 % +5.17 % +0.34 % 38 +2.62 % +5.51 % +0.34 % 38

MCC +1.19 % +2.96 % −0.33 % 56 +0.12 % +0.69 % −0.33 % 51 +0.12 % +0.68 % −0.33 % 52

EMCC +1.19 % +2.96 % −0.33 % 56 +0.12 % +0.69 % −0,33 % 51 +0.12 % +0.68 % −0.33 % 52

GECG +1.19 % +2.96 % −0.33 % 56 +0.12 % +0.69 % −0.33 % 51 +0.12 % +0.68 % −0.33 % 52

Transitive Closure −1.89 % −4.23 % +0.34 % 64 −0.13 % −0.67 % +0.34 % 52 −0.12 % −0.67 % +0.34 % 53

GCluster +1.19 % +2.96 % −0.33 % 56 +0.12 % +0.69 % −0.33 % 51 +0.12 % +0.68 % −0.33 % 52

Markov Clustering −1.89 % −4.23 % +0.34 % 64 −0.13 % −0.67 % +0.34 % 52 −0.12 % −0.67 % +0.34 % 53

Merge-Center Clust. +0.88 % +2.28 % −0.33 % 57 −0.20 % −0.01 % −0.33 % 52 −0.19 % −0.02 % −0.33 % 53

Mod. Star Clustering −1.89 % −4.23 % +0.34 % 64 −0.13 % −0.67 % +0.34 % 52 −0.12 % −0.67 % +0.34 % 53

VOTE/BOEM −1.60 % −3.65 % +0.34 % 63 −0.13 % −0.67 % +0.34 % 52 −0.12 % −0.67 % +0.34 % 53

Runtime results. To ensure a comparison that is as fair as reasonably possible, we re-
implemented all clustering approaches in Java. Only two exceptions were made: GCluster includes
a maximum weight-matching step, for which we used an existing Python library NetworkX,8 and
Markov-Clustering, for which we used the published C implementation of the author.9 Table 13
reports exemplary runtimes for each algorithm for three selected datasets, one with large clusters
(Cora) and two with small clusters (CD, Febrl small) and the exhaustive pair-selection strategy.

The reported runtimes reflect only the time needed for the clustering step itself, but not time
spent on pair classification. Each experiment was run five times, and we report average runtimes.

We observe that runtime behavior can depend on cluster sizes. The Cora dataset contains very
large clusters, while the other two datasets contain only many small clusters. Some algorithms cope
well with this difference, while others are significantly slower in the former case. This is, in par-
ticular, true for five algorithms: Large clusters lead to high complexities for calculating maximum
cliques (MCC, EMCC), triangles (GECG), matchings (GCluster), or net weight (VOTE/BOEM).

8https://networkx.github.io.
9https://micans.org/mcl.
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Table 12. Experimental Evaluation for Febrl Datasets with Different Pair-selection Strategies

(a) Results Febrl Small dataset

Febrl Small Exhaustive Comparison Blocking Sorted Neighborhood

Clustering Alg. F-Measure Precision Recall GMD F-Measure Precision Recall GMD F-Measure Precision Recall GMD

No Clustering 97.07 % 99.24 % 95.00 % — 97.10 % 99.37 % 94.94 % — 97.25 % 99.75 % 94.88 % —

Gold Standard Clust. +1.00 % +0.76 % +1.20 % 29 +0.97 % +0.63 % +1.26 % 29 +0.82 % +0.25 % +1.32 % 29

MCC −0.92 % −0.01 % −1.75 % 60 −0.99 % −0.01 % −1.87 % 59 −1.06 % −0.01 % −1.99 % 54

EMCC +0.63 % +0.01 % +1.20 % 41 +0.66 % +0.01 % +1.26 % 39 +0.69 % +0.00 % +1.32 % 33

GECG +0.04 % +0.01 % +0.06 % 50 +0.07 % +0.00 % +0.12 % 48 +0.10 % +0.00 % +0.18 % 42

Transitive Closure +0.63 % +0.01 % +1.20 % 41 +0.66 % +0.01 % +1.26 % 39 +0.69 % +0.00 % +1.32 % 33

GCluster +0.00 % +0.00 % +0.00 % 50 +0.03 % +0.00 % +0.06 % 48 +0.06 % +0.00 % +0.12 % 42

Markov Clustering +0.63 % +0.01 % +1.20 % 41 +0.66 % +0.01 % +1.26 % 39 +0.69 % +0.00 % +1.32 % 33

Merge-Center Clust. +0.45 % +0.01 % +0.84 % 44 +0.48 % +0.01 % +0.90 % 42 +0.51 % +0.00 % +0.96 % 36

Mod. Star Clustering +0.63 % +0.01 % +1.20 % 41 +0.66 % +0.01 % +1.26 % 39 +0.69 % +0.00 % +1.32 % 33

VOTE/BOEM −0.92 % −0.01 % −1.75 % 60 −0.99 % −0.01 % −1.87 % 59 −1.06 % −0.01 % −1.99 % 54

(b) Results Febrl Large dataset

Febrl Large Exhaustive Comparison Blocking Sorted Neighborhood

Clustering Alg. F-Measure Precision Recall GMD F-Measure Precision Recall GMD F-Measure Precision Recall GMD

No Clustering 90.75 % 97.37 % 84.97 % — 90.17 % 97.94 % 83.55 % — 88.31 % 99.15 % 79.62 % —

Gold Standard Clust. +6.18 % +2.63 % +9.07 % 396 +6.45 % +2.06 % +9.91 % 428 +7.21 % +0.85 % +11.81 % 545

MCC −7.81 % +1.48 % −13.53 % 1,879 −8.83 % +1.02 % −14.51 % 1,938 −10.53 % +0.34 % −15.77 % 2,089

EMCC +3.38 % −0.20 % +6.31 % 941 +3.78 % −1.20 % +7.77 % 925 +5.70 % −1.35 % +10.88 % 789

GECG +1.61 % +1.57 % +1.63 % 1,089 +1.66 % +1.15 % +2.01 % 1,122 +1.34 % +0.47 % +1.86 % 1,218

Transitive Closure −74.09 % −88.23 % +9.07 % 1,066 −38.37 % −62.11 % +9.91 % 959 +1.29 % −11.31 % +11.81 % 759

GCluster −2.71 % +1.34 % −5.52 % 1,304 −2.79 % +0.94 % −5.27 % 1,295 −4.19 % +0.30 % −6.73 % 1,340

Markov Clustering +3.86 % −1.81 % +8.70 % 883 +4.64 % −1.36 % +9.55 % 831 +6.34 % −0.63 % +11.44 % 736

Merge-Center Clust. −59.18 % −78.34 % +7.51 % 991 −16.06 % −35.80 % +8.24 % 927 +3.68 % −4.39 % +9.76 % 832

Mod. Star Clustering +0.76 % −4.89 % +5.60 % 1,107 +1.99 % −3.77 % +6.69 % 1,031 +4.59 % −1.58 % +9.03 % 884

VOTE/BOEM −8.09 % +1.54 % −13.97 % 1,820 −8.95 % +1.05 % −14.70 % 1,905 −10.66 % +0.36 % −15.95 % 2,045

The impact of the clustering step on the overall runtime depends mainly on the size of the
connected components created in the pairwise-comparison step. Table 14 shows the runtime for
the pairwise comparison. It mainly depends on the dataset size but also on the complexity of the
classifier. For Blocking and the Sorted Neighborhood Method, the runtimes are much smaller, as
expected. In case of large connected component sizes, e.g., for Cora, we can see that the selection of
the clustering algorithm has a high impact on the overall runtime. Vice versa, for small connected
component sizes the selection of the clustering algorithm has only a small impact on the overall
runtime, which is mainly dominated by the runtime of the pair-selection algorithm.

Evaluation of the effect of different classifiers on the clustering result. For the previous ex-
periments, we used high-quality classifiers, which led to good results for a pairwise comparison.
Misclassifications can, but do not necessarily, have a negative impact on the overall result. Classi-
fiers can be very restrictive, which leads to smaller connected components with a high precision,
but a low recall value. Vice versa, classifiers can classify too many record pairs as duplicate and
therefore increase the size of the connected components, which possibly leads to a higher recall
value, but a lower precision. We now experimentally evaluate the effect of misclassifications and
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Table 13. Clustering Runtimes (in ms) for an

Exhaustive Comparison of Selected Datasets

Cluster Alg. Cora CD Febrl small

MCC 767,559 86 136

EMCC 785,137 91 141

GECG 11,131 86 131

Transitive Closure 781 61 98

GCluster 155,708 98,034 354.923

Markov Clustering 598 9 33

Merge Center Clust. 399 21 35

Mod. Star Clustering 792 68 103

VOTE/BOEM 8,196 74 112

Table 14. Pair-creation Runtimes (in ms)

Dataset Exhaustive Blocking SNM

Cora 176,565 28,148 10,354

CD 280,241 18,334 5,233

Febrl Small 414,740 30,178 5,858

Febrl Large 1,240,957 100,900 9,380

NCVoter — 23,523,221 2,706,307

Stringer 100,471 — —

The table shows the average values of five runs.

Table 15. Three Classifiers for the Cora Dataset

Classifier Precision Recall F-Measure
C1 98.12 % 97.17 % 97.64 %
C2 83.27 % 99.16 % 90.52 %
C3 99.78 % 84.28 % 91.38 %

The numbers are based on an exhaustive pairwise com-

parison without clustering.

for this purpose use the CORA dataset again, but this time we use three classifiers with different
properties. These are the same three classifiers as used in Reference [12].

Table 15 gives an overview of the classifier quality, achieved by an exhaustive comparison with-
out clustering. The first classifier, C1, has both a high precision and a high recall value. The other
two classifiers have either only high recall (C2) or high precision (C3). Note that all three classi-
fiers still lead to good results of the pairwise comparison. The goal of the additional experiments
is to evaluate whether the clustering algorithms are resistant to small deviations of the classifier
quality. We use again the three pair-selection algorithms from the previous experiments for the
pairwise comparison, as well as f-measure, precision, recall, and GMD as measures.

Table 16 shows the results for the different clustering algorithms. For the exhaustive com-
parison, we can see that the Transitive Closure, Markov clustering, and Merge-Center clustering
have a much lower f-measure value for classifier C2 compared to C1, which shows that they are
very sensitive regarding the precision value of the classifier. The lower recall value of C3 does
not have such a strong impact on these clustering algorithms. In fact, the Transitive Closure and
Merge-Center clustering have significantly higher f-measure value for C3 compared to C1. How-
ever, MCC, GCluster, and VOTE/BOEM have a significantly lower f-measure value for C3, but for
C2 they show only slight differences. EMCC, Star Clustering and especially GECG show only small
divergences for both C2 and C3 compared to C1.

For Blocking, the results are similar to the exhaustive comparison as pair-selection algorithm.
The Transitive Closure and Merge-Center Clustering achieve worse results with C2 compared with
C1, but benefit from the higher precision of C3. Vice versa, MCC and VOTE/BOEM gain worse
results with C3, but benefit from the higher recall values of C2. The other clustering algorithms
have smaller differences for the three classifiers. Interestingly, GCluster this time has a higher
difference between C1 and C2, than between C1 and C3.

With the Sorted Neighborhood method as pair-selection algorithm, we can see fewer differ-
ences between the three classifiers than for the exhaustive comparison or blocking. Only for the
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Table 16. Experimental Evaluation for the Cora Dataset with Three Different Classifiers

and Different Pair-selection Algorithms

Exhaustive Comp. F-Measure in % Precision in % Recall in % GMD

Clustering Alg. C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

No Clustering 97.64 90.52 91.38 98.12 83.27 99.78 97.17 99.16 84.28 40 52 41

Gold Standard Clust. 99.76 99.81 98.22 100.00 100.00 100.00 99.51 99.61 96.50 12 8 34

MCC 96.04 93.64 80.96 99.34 92.19 99.89 92.96 95.13 68.06 44 58 116

EMCC 97.95 91.22 91.50 99.00 84.63 99.91 96.93 98.93 84.39 33 50 86

GECG 96.84 90.57 92.95 96.71 83.34 99.91 96.98 99.19 86.89 34 49 79

Transitive Closure 88.01 71.63 97.47 78.90 55.92 98.47 99.51 99.61 96.50 40 52 41

GCluster 94.68 92.60 60.45 99.09 95.74 99.92 90.64 89.65 43.33 60 71 84

Markov Clustering 97.34 87.44 95.17 95.27 77.92 98.58 99.51 99.61 91.99 28 43 44

Merge-Center Clust. 89.26 71.63 97.56 80.92 55.92 98.66 99.51 99.61 96.48 39 52 40

Mod. Star Clustering 93.77 87.07 94.49 89.19 78.39 98.50 98.84 97.92 90.80 45 65 58

VOTE/BOEM 89.83 87.85 78.90 98.70 87.51 99.01 82.43 88.20 65.58 48 55 124

Blocking F-Measure in % Precision in % Recall in % GMD

Clustering Alg. C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

No Clustering 94.85 91.14 89.13 98.93 89.39 99.77 91.09 92.97 80.54 36 49 41

Gold Standard Clust. 94.85 99.81 98.22 100.00 100.00 100.00 99.51 99.61 96.50 12 8 34

MCC 89.80 90.32 79.38 99.48 97.18 99.89 81.84 84.37 65.86 60 67 128

EMCC 94.98 93.16 88.49 99.10 93.23 99.91 91.19 93.10 79.42 49 61 101

GECG 95.27 90.56 90.46 99.19 88.20 99.91 91.64 93.04 82.64 45 59 94

Transitive Closure 91.30 72.60 97.47 84.34 57.11 98.47 99.51 99.61 96.50 36 49 41

GCluster 67.86 59.58 63.14 98.93 94.92 99.92 51.64 43.42 46.15 75 88 101

Markov Clustering 98.51 90.76 95.14 97.60 83.42 98.60 99.44 99.52 91.92 28 43 45

Merge-Center Clust. 92.17 72.60 97.64 85.84 57.11 98.83 99.51 99.61 96.47 34 49 42

Mod. Star Clustering 93.47 89.11 93.11 93.19 83.84 98.88 93.75 95.08 87.97 50 65 63

VOTE/BOEM 82.96 86.01 68.50 98.64 97.01 99.53 71.59 77.25 52.22 72 68 127

Sorted Neighborh. F-Measure in % Precision in % Recall in % GMD

Clustering Alg. C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

No Clustering 55.13 54.88 50.92 98.75 91.60 99.65 38.24 39.17 34.20 31 47 42

Gold Standard Clust. 99.76 99.81 98.19 100.00 100.00 100.00 99.51 99.61 96.43 12 8 36

MCC 32.77 33.25 30.39 99.38 96.15 99.59 19.62 20.10 17.93 120 126 169

EMCC 47.90 48.08 43.03 99.05 94.23 99.71 31.59 32.28 27.43 72 87 130

GECG 49.65 49.95 43.60 99.24 94.88 99.73 33.11 33.90 27.90 63 76 118

Transitive Closure 92.75 77.96 97.62 86.84 64.04 98.83 99.51 99.61 96.43 31 47 42

GCluster 30.72 30.00 27.92 98.72 96.50 99.82 18.19 17.76 16.23 118 143 144

Markov Clustering 73.81 71.56 66.37 98.08 95.26 99.67 59.17 57.31 49.74 28 38 55

Merge-Center Clust. 95.41 77.96 97.67 91.66 64.04 99.01 99.48 99.61 96.37 30 47 44

Mod. Star Clustering 57.30 55.85 55.15 94.66 85.89 99.05 41.09 41.38 38.21 63 96 93

VOTE/BOEM 42.13 41.16 42.09 99.01 96.16 98.83 26.75 26.19 26.74 109 127 159

Transitive Closure and Merge-Center Clustering are the results of C2 considerably smaller than
for C1.

The additional experiments show that especially the Transitive Closure, Merge-Center Cluster-
ing, and Markov clustering need a classifier with a high precision value to achieve good results. A
lower recall value has for these algorithms not necessarily a negative impact. The opposite is true
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for MCC and VOTE/BOEM. A lower precision value has a much smaller impact on the f-measure
value than a smaller recall value of the classifier. The same is true for GCluster with an exhaus-
tive comparison, but GCluster shows similar results for all three classifiers with blocking or the
Sorted Neighborhood Method. EMCC, GECG, and Star Clustering do not show big differences for
the three classifiers, so they are not very sensitive for the quality of the classifier. GCluster showed
different results for different pair-selection algorithms, thus a high-quality classifier is necessary
for GCluster.

7 RELATED WORK

This section provides an overview about related work from three areas. First, we give an overview
about related work regarding duplicate detection and its properties in general. Second, we present
two papers that evaluate several clustering algorithms for duplicate detection. Finally, we describe
alternative approaches for conflict resolution for the result of a pairwise duplicate classification.

Related work regarding Duplicate Detection. Duplicate detection was first defined by
Newcombe et al. [28] and has been researched extensively over the past decades. The challenge is
to effectively and efficiently identify clusters of records that represent the same real world entity.
Recent surveys [8, 13, 26] explain various methods for improving effectiveness and efficiency.

Benjelloun et al. define the ICAR properties (idempotence, commutativity, associativity, and
representativity) for match and merge functions in the duplicate detection process [3]. Idempo-
tence means that a record matches itself, whereas commutativity describes whether the order of
the records has an impact on the matching result or not. In our evaluation, we use classifiers that
fulfill these two properties, leading to an undirected input graph for the clustering algorithms.
Without commutativity, we would have a directed input graph. We do not have to consider asso-
ciativity and representativity, as these are properties of a merge function.

Clustering for Duplicate Detection. Hassanzadeh et al. present the Stringer Duplicate Detection
Framework [19]. They use Stringer to evaluate the performance of clustering algorithms for entity
resolution. First, they apply a similarity join to retrieve pairs of similar records with their similarity
score. They consider only record pairs with a similarity score above a threshold θ . The result of
the similarity join is then processed by the clustering algorithm that create clusters of potential
duplicates. They use the 29 Stringer datasets described in Section 6.2 for their extensive evaluation
of the clustering algorithms. Next to key figures like precision, recall, and f-measure, they also use
soft criteria (low, medium, high) to present a classification regarding scalability, ability to find the
correct number of clusters, robustness against choice of threshold, and robustness against amount
and distribution of errors.

Wang et al. also evaluate several clustering algorithms [36]. They formalize the entity reso-
lution problem as a cohesive-based clustering problem on a weighted graph. They present two
algorithms, GCluster and HCluster, that solve this problem. GCluster outperforms HCluster on ef-
fectiveness, but HCluster is more efficient and better suited for large datasets, as it avoids scanning
data frequently.

In comparison to Reference [19], our evaluation contains further datasets, including real-world
and larger ones. In comparison to Reference [36], we evaluate more clustering algorithms and also
use additional datasets. Compared to both papers, we present and evaluate new clustering algo-
rithms, and particularly evaluate the effect of different pair selection algorithms on the clustering
result.

A similar use-case for clustering is entity matching from different sources. Two proposed algo-
rithms are SplitMerge [27] and CLIP [33]. The main difference regarding clustering for duplicate
detection is their assumption that each source is already duplicate-free, i.e., for each real-world
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entity there exists only one element per source. The following two paragraphs sketch these algo-
rithms. Both use the number of sources as a criterion for the creation of the clusters. Therefore,
they cannot be adapted for duplicate detection within a single source. A comparison of both algo-
rithms, especially regarding distributed execution, can be found in Reference [32].

SplitMerge consists of four phases, namely, preprocessing, initial clustering, clustering decom-
position, and cluster merge [27]. In the preprocessing phase, the required property values for the
similarity calculation are normalized, and the initial clustering phase creates connected compo-
nents. After this phase, it is still possible that a cluster contains multiple entities of the same source.
In this case, some entities are removed based on their similarity to other entities in the cluster, so
that only the entity from one source with the highest similarity to the other entities is kept. Clus-
ter decomposition is used to separate entities that have either different or incompatible semantic
types, or their similarity to other cluster members is too low. In the end of this phase, a cluster
representative is calculated. The last step is cluster merging, which iteratively merges clusters
based on the similarity of the previous calculated cluster representatives. Only clusters with less
elements than the number of sources are considered.

CLIP uses a similarity graph as input and classifies links between elements as a strong, normal, or
weak link [33]. In the first phase, only strong links are considered to determine complete clusters,
which are clusters that contain entities from all sources. In the second phase, normal links are also
considered and CLIP iteratively clusters the remaining entities based on link priorities, so that no
source-inconsistent or overlapping clusters are generated.

Conflict Resolution by using the Crowd. Another possibility to solve conflicts of a pairwise
comparison is a manual inspection, e.g., by using the crowd. There are several crowd-sourcing
platforms, such as Amazon Mechanical Turk10 or CrowdFlower,11 which can be used to improve
duplicate detection results. The premise is that humans can solve complex tasks better than com-
puters. Recent research resulted in a variety of algorithms that use crowdsourcing for duplicate
detection [37, 39, 42]. The main problems for using the crowd are, on the one hand, the fact that
even humans are not always correct with their classification of duplicates or non-duplicates, and
on the other hand, the costs for executing classification tasks. Furthermore, for many duplicate
detection tasks crowds cannot be used due to data privacy reasons, e.g., health data.

For the first problem, worker quality can be improved by testing the workers before giving them
actual tasks. Additionally, tasks can be given to multiple humans and the final classification is the
majority answer. The second issue can be tackled by limiting the manual inspections to difficult
classifications. If record pairs have a very high or very low similarity, then it is usually unnecessary
to pay for a manual inspection. However, manual inspections are also a means to validate the
computational classifications. Another approach presented by Wang et al. uses transitive relations
to reduce the number of crowd-sourced pairs [38].

Active learning techniques use a small initial dataset to build a classification model that is iter-
atively optimized by asking a domain-expert to manually inspect record pairs that are difficult to
classify. These record pairs are added to the training set and the classification model is rebuilt [8].

8 CONCLUSION

In this article, we have formalized the problem of clustering duplicate detection results and pre-
sented several existing and three new clustering algorithms. Our comprehensive experimental
evaluation of the clustering algorithms on various datasets and under various algorithm configu-
rations shows that the commonly used Transitive Closure is inferior to most of the other clustering

10https://www.mturk.com/mturk/welcome.
11https://www.crowdflower.com.
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algorithms, especially for the precision of results. In scenarios with small cluster sizes, the choice
of the clustering algorithm has no or little effect on the overall result. In scenarios with larger
clusters, our proposed EMCC algorithm is, together with Markov Clustering, one of the two best
performing clustering approaches for duplicate detection, although its runtime is longer due to
the sub-exponential time complexity. EMCC especially outperforms Markov Clustering regarding
the precision of the results and additionally has the advantage that it can also be used in scenarios
where edge weights are not available.
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