
Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-019-00562-z

Holistic primary key and foreign key detection

Lan Jiang1 · Felix Naumann1

Received: 28 February 2019 / Revised: 20 May 2019 / Accepted: 21 May 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Primary keys (PKs) and foreign keys (FKs) are important elements of relational schemata
in various applications, such as query optimization and data integration. However, in many
cases, these constraints are unknown or not documented. Detecting them manually is time-
consuming and even infeasible in large-scale datasets. We study the problem of discovering
primary keys and foreign keys automatically and propose an algorithm to detect both,
namely Holistic Primary Key and Foreign Key Detection (HoPF). PKs and FKs are sub-
sets of the sets of unique column combinations (UCCs) and inclusion dependencies (INDs),
respectively, for which efficient discovery algorithms are known. Using score functions, our
approach is able to effectively extract the true PKs and FKs from the vast sets of valid UCCs
and INDs. Several pruning rules are employed to speed up the procedure. We evaluate pre-
cision and recall on three benchmarks and two real-world datasets. The results show that
our method is able to retrieve on average 88% of all primary keys, and 91% of all foreign
keys. We compare the performance of HoPF with two baseline approaches that both assume
the existence of primary keys.

Keywords Data profiling application · Primary key · Foreign key · Database management

1 Structuring schemata

Primary keys (a.k.a. keys) and foreign keys are two of the most important constraints for
relational databases, indicating the entity integrity and referential integrity that databases
need to follow. Both constraints are ubiquitously used in databases. In a perfect world,
these constraints should be explicitly assigned by database designers. However, in many

� Lan Jiang
lan.jiang@hpi.de

Felix Naumann
felix.naumann@hpi.de

1 Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3,
14482 Potsdam, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-019-00562-z&domain=pdf
http://orcid.org/0000-0002-4735-3845
mailto: lan.jiang@hpi.de
mailto: felix.naumann@hpi.de

Journal of Intelligent Information Systems

real-world cases, primary keys and foreign keys are either incomplete or missing, which
makes it hard to understand the structure of the schemata. The reasons for the lack of con-
straints are diverse. For example, primary keys might not be defined by schema designers
for tables that are considered fact tables and usually have multi-column primary keys. Also,
developers are reluctant to use primary key constraints for non-numeric columns that are
not automatically incremented. Foreign keys, on the other hand, are sometimes not defined
for efficiency reasons: they may affect the speed of inserting, updating, and deleting records
within the DBMS. A common practice is to control referential integrity in the application
layer. All constraint definitions may be lost when migrating databases, especially through
database dumps and flat files.

Knowledge of primary keys and foreign keys is essential for applications, such as
data cleansing, reverse engineering, query optimization, and data integration. Although
for small-scale databases, missing keys and foreign keys can still be manually labeled
by domain experts, it is extremely time-consuming or even infeasible to do so for
larger schemata. A few efforts have already been made for foreign key detection (Ros-
tin et al. 2009; Zhang et al. 2010), but they assume the presence of primary keys.
Normally, primary keys exist for data stored in RDBMS platforms since these tools
explicitly request users to specify a primary key for each table. However, this does not
always apply to databases compiled from flat files or web sources, since such constraint
information would need to be stored in a separate file. In our experience, such accom-
panying information is often not present. This lack motivates us to detect primary keys
as well and design an approach to solve the two inter-dependent problems in a holistic
fashion.

Primary keys and foreign keys, which in general can cover multiple attributes, are
essentially the particular cases of the Unique Column Combinations (UCCs) and Inclusion
dependencies (INDs). Fortunately, many algorithms to discover UCCs and INDs have been
proposed in previous works (Abedjan et al. 2015), which makes these metadata easily acces-
sible. However, those algorithms commonly generate huge amounts of UCCs and INDs –
many more than the real primary keys and foreign keys. Therefore, the task is to distinguish
true keys and foreign keys from spurious UCCs and INDs. By examining data, intuitive rules
can be found to distinguish keys from non-keys, which makes the automatic detection of
keys feasible. A foreign key must reference a primary key according to its definition. There-
fore, the detected foreign keys depend on the primary keys that we found. In this work, we
devise an algorithm to first discover primary keys for a schema and then foreign keys based
on these primary keys. In turn, the predicted foreign keys help remove some incorrectly
predicted primary keys, improving the quality of the overall result. Section 3 introduces the
problem definition more formally, but with Fig. 1 we already give a motivating example of
the difficulty of PK and FK detection.

The potentially very many unique column combinations for one table are all candi-
dates for the primary key of that table. For example, the table Trade in Fig. 1 has two
unique column combinations, namely T ID and T CA ID. Although one may also consider
T ID,T CA ID as a unique column combination, we regard only minimal unique column
combinations for simplicity (Details discussed in Section 3.2). According to the schema
documentation, only the T ID is the true primary key among these UCCs, whereas the
other one is a spurious candidate. In real world cases, there might be much more spurious
candidates, making it challenging to recognize only the true PKs.

Beside true foreign keys, we can expect many spurious inclusion dependencies. The
IND Trade.T TT ID ⊆ TradeType.TT ID, for example, is a true foreign key while the
IND Trade.T ID ⊆ Company.CO ID becomes a foreign key candidate only because the

Journal of Intelligent Information Systems

Fig. 1 A subset of tables of the TPC-E schema. For simplicity, some columns are omitted. True primary keys
are indicated by unframed grey boxes, whereas spurious UCCs by framed grey boxes. True foreign keys are
indicated by the solid arrows, while spurious INDs by dashed arrows

containment is satisfied. As is shown in Fig. 1, there may have much more spurious INDs
than true FKs.

In other cases, not shown in the figure, two column combinations might be included
in one another. For example, the TPC-E columns {Trade.T ID} and {Settlement.SE T ID}
are primary keys of tables Trade and Settlement, respectively, and they happen to contain
the same set of values. Consequently, both INDs Trade.T ID ⊆ Settlement.SE T ID and
Settlement.SE T ID ⊆ Trade.T ID are considered as foreign key candidates, whereas only
the latter one is a true foreign key.

As the results of key and foreign key discovery should be validated by an expert user,
we consider both precision and recall measures in our evaluation. However, our proposed
algorithm emphasizes recall, because we assume that it is easier for users to remove false
positives from a small result than to discovery false negatives in the large candidate set. The
contributions of our approach are the following:

– We present the first combined primary key / foreign key discovery algorithm, removing
the assumption that primary keys are known and present.

– We propose advanced pruning rules to filter out spurious unique column combinations
and inclusion dependencies.

– Comparative experiments on five different datasets show the effectiveness of our holis-
tic algorithm. Foreign keys are also generated without assigning primary keys to show
that the absence of primary keys worsens the performance of foreign key detection.

We discuss related work in Section 2 and give the formal definition of the research prob-
lem in Section 3. Section 4 lists the features used for the primary key and foreign key
detection algorithm, and Section 5 describes pruning strategies for primary and foreign key
candidates. The overall algorithm is explained in Section 6. Experimental results are shown
and compared to related work in Section 7. We conclude with Section 8.

Journal of Intelligent Information Systems

2 Related work

The algorithm proposed in this paper requires unique column combinations (UCCs) and
inclusion dependencies (INDs) as its input. While their discovery is not the focus of the
paper, we briefly summarize the latest techniques, followed by a discussion of previous
research on primary and foreign key discovery.

2.1 Metadata discovery

Efficiently discovering all UCCs and INDs for a given dataset is a challenge, due to the
combinatorial explosion of column combinations. The problems of discovering all minimal
UCCs and all maximal n-ary INDs are NP-complete (Lucchesi and Osborn 1978; Kan-
tola et al. 1992). Fortunately, there are already quite a few algorithms designed to discover
unique column combinations and inclusion dependencies (Abedjan et al. 2015), which are
efficient in practice. However, their result sizes can be formidable. It is not unusual to
discover hundreds or even thousands of UCCs and INDs even in tables with only tens
of columns. The challenge is to find out true keys and true foreign keys from such large
candidate sets.

2.2 Key constraints discovery

Surprisingly, not many efforts have been made for primary key detection. A set of sim-
ple heuristic features was proposed to distinguish true primary keys from spurious unique
column combinations for the purpose of decomposing a relation into Boyce-Codd normal
form (Papenbrock and Naumann 2017). The authors calculate and add up scores for their
features for each UCC. Lacking a human expert to view the ranked results, the UCC with
the top score for a table is assumed to be its primary key.

More efforts were made for discovering foreign keys (Lopes et al. 2002; Memari et al.
2015; Rostin et al. 2009; Zhang et al. 2010; Chen et al. 2014; Marchi et al. 2009). Here,
we briefly introduce three representative works among them. Similar to the aforementioned
primary key discovery idea, intuitive features can also be suggested for foreign key detec-
tion. Rostin et al. proposed ten features for machine learning methods to automatically
detect foreign keys from various datasets (Rostin et al. 2009). However, the method detects
only single column foreign keys. The authors list several situations in which the classifier
makes mistakes, including transitive foreign keys and one-to-one relationships. A transi-
tive foreign key represents the situation, where a primary key referenced by a foreign key
is also a foreign key. One-to-one relationships are paraphrased as “PK ⊆ PK” in this paper
and explained below. Their machine learning-based method is not able to solve these two
situations.

Assuming that the data of a foreign key should well represent a sample from the key
column it references, a state-of-art method introduces the randomness metric to discover
both single-column and multi-column foreign keys (Zhang et al. 2010). The authors used
the earth-mover distance (EMD) to measure the data distribution similarity between LHS
and RHS of foreign key candidates: it is the minimum cost of transforming one distribution
into the other by moving counts of values among buckets within a distribution (Rubner et al.
1998). The data distributions are created by choosing a fixed, same number of buckets for
both LHS and RHS, and counting the number of corresponding values for each bucket. The
closer the data distributions are, the smaller the distance is. It then ranks all foreign key
candidates with regard to their earth-mover distance and reports the performance based on

Journal of Intelligent Information Systems

top X% of the result. We experimentally show that our approach outperforms this work in
both precision and recall in most cases.

Chen et al. proposed combining heuristic features with different pruning rules to detect
foreign keys, which is most similar to our algorithm (Chen et al. 2014). However, they
assume that each table pair can hold only one foreign key, which is a too strong restriction
for real-world scenarios.

We note that all the aforementioned approaches assume that primary keys are already
known and base their heuristics on them. We drop this assumption of prior knowledge and
propose an approach that is better suited for many real-world scenarios.

3 Problem setting

Before introducing the problem, we briefly define the terms that we use in this paper.
We denote a relational schema as R, which can contain multiple relations. Each relation,
denoted as R, is a named non-empty set of attributes. Attributes are denoted as A ∈ R with
their domain dom(A). Each relation contains a set of tuples; the instance of R is denoted
as r . A tuple in r is denoted as t . Based on the aforementioned definitions, a tuple t can
be represented as

⋃
A∈R t[A], and for each attribute A the value t[A] ∈ dom(A). We use

t[X] to denote the projection of t to the values of X ⊆ R. Let U and I be the set of unique
column combinations and set of inclusion dependencies extracted from the corresponding
discovering algorithms, respectively.

3.1 Types of dependencies

There are many different dependencies to describe the characteristics of a table or relation-
ships between tables. We use only unique column combinations and inclusion dependencies
since they are the prerequisites of primary keys and foreign keys, respectively. We give the
definitions of these dependencies and their relationships to primary and foreign keys.

Definition 1 (Unique Column Combination) Given a relation R with its instance r , a
unique column combination (UCC) is a set of attributes X ⊆ R whose projection contains
only unique, non-null value entries on r , i.e., ∀ti , tj ∈ r, i �= j : ti[X] �= tj [X] and
∀t ∈ R,A ∈ X : t[A] �= ⊥.

Note that a column combination may contain one or multiple columns, as primary keys
can be composed of one or more attributes. In fact, we have observed commercial schemata
with up to 16 attributes in a primary key definition (Faust et al. 2014). A UCC is minimal,
when there are no valid UCCs in its subset. In principle, each relation R should have one
and only one primary key. While in practice, a primary key might not be definable for some
tables, we assume that each table is duplicate free, and so at least one UCC exists.

Each table in a schema contains a number of UCCs while only one among each set is the
true primary key. Picking one from each set, we can constitute a list of UCCs representing
the primary keys of R and denote it with PKR.

Definition 2 (Inclusion Dependency) Given two relations Ri , Rj ∈ R, i �= j , an inclusion
dependency (IND), denoted as Ri[X] ⊆ Rj [Y], states that all the value entries in the column
combination X are also contained in the column combination Y , i.e., ∀ti[X] ∈ ri , ∃tj [Y] ∈
rj : ti[X] = tj [Y] for the relational instances ri and rj .

Journal of Intelligent Information Systems

We call the dependent part Ri[X] the left-hand side (LHS) and the referenced part Rj [Y]
the right-hand side (RHS). Note that the definition of IND implies |X| = |Y |. When |X| =
|Y | = 1 we call the IND unary, otherwise n-ary. A foreign key must be an IND, because by
definition, each value appearing in the LHS of a foreign key must be included in the value
set of its RHS.

3.2 Problem definition

The formal problem statement of our task is:

PK/FK-Detection Problem: Given a database with schema R, its set of minimal
UCCs U and its set of IND I, find the primary key set and foreign key set, denoted as
P and F, where P ⊆ U and F ⊆ I.

The dependency between primary key and foreign key is obvious, because the right-
hand side of a foreign key must be a primary key. Although each table may have multiple
alternative keys, we assume only one of them is the true primary key. In this work, we use
only minimal UCCs for two reasons: 1) the proposed PK features (see details in Section 4)
always prefer the minimal UCCs than their non-minimal supersets; 2) the complete set of
UCCs (including both minimal and non-minimal UCCs) could contain exponentially more
UCCs than the minimal counterpart, because each column combination subsuming a UCC is
also a valid UCC. However, we are aware of a disadvantage of this choice: when predicting
primary keys on small relations, the true multi-column primary keys will not be added into
the PK candidate sets, because a subset of such a PK set is already a minimal UCC. We will
discuss it further in Section 7.

To stop suggesting too many false foreign keys, our algorithm stops foreign key detec-
tion when all relations in the schema are connected or no candidate foreign key remains.
Different automatic choices of the primary keys in a schema can lead to different choices of
foreign keys. To solve the problem holistically, we employ pruning rules on a score-based
approach as explained in the following sections.

For simplicity, we assume only exact UCCs and INDs as input, while in reality data might
be erroneous. Approximate detection algorithms address this issue and discover UCCs and
INDs that might contain violations (Ilyas et al. 2004). Our approach is indifferent to such
input variations and is still able to make good suggestions for keys and foreign keys.

4 Features for primary keys and foreign keys

Previous works have already proposed some useful features to identify either primary
keys (Papenbrock and Naumann 2017) or foreign keys (Rostin et al. 2009; Zhang et al.
2010). We adopt some of them as well as define new ones to score each candidate of pri-
mary keys and foreign keys. In this section, we introduce each feature briefly before putting
them to use in the next section.

4.1 Primary key features

Several useful heuristic features have been explored to distinguish true primary keys from
spurious UCCs (Papenbrock and Naumann 2017), including a UCC’s cardinality, average
value length, and positions of its attributes in the schema. They have been proven by the
authors to be effective in discovering primary keys for their application of normalization.

Journal of Intelligent Information Systems

We reuse the score functions for these three features in our task. Based on our observation, in
many cases, headers of primary key columns follow a different pattern than that of spurious
candidates. Therefore, we introduce an additional name-based feature.

Cardinality It is easier to understand and maintain primary keys with few attributes. Here,
the more columns are involved in a UCC, the lower its chance is to be a true primary key.
We define the cardinality score as 1

|X| , where X is the column set of the UCC.

Value length Columns used as primary keys are expected to have short value length,
because they are usually identifiers with no semantic meaning. In addition, indexing long
values of primary keys may impair efficiency. The score function used for this feature
is 1

max(1,| max(X)|−n)
, where | max(X)| is the length-average of the longest values of each

column in X, and n represents the parameter to penalize long values. It can be adjusted
according to the datasets. In our experiments we choose n = 8, reflecting typical choices
of data types for primary keys. For multiple column UCCs, we calculate the score for each
column and use the average as its overall score. While using a constant in the score function
affects our generality, the experimental result shows it is quite useful.

Position In principle, attributes are unordered in a relation, while in practice, there is an
implicit order of attribute positions when defining the schema. In most cases, primary keys
appear in the first positions of the column set. A similar observation was made for web
tables (Venetis et al. 2011). In addition, for multi-column primary keys, we expect no (or
only few) non-key columns in between the key columns. The column position score is calcu-
lated as 1

2 (1
|left(X)|+1 + 1

|between(X)|+1), where left(X) and between(X) represent the number
of columns left of the first column of X and the number of non-key columns between the
first and last columns of X, respectively.

Name suffix We notice in all datasets used for experiments, primary key columns are usu-
ally indicated by their column suffix name, e.g., “id” and “key”. Here we choose “id”, “key”,
“nr”, and “no” as our suffix set. Clearly, this list can be extended, for instance, to include for-
eign language schemata. We apply the score function as |suffix(X)|

|X| , while |suffix(X)| counts
the number of columns in the UCC whose name contains either suffix mentioned above.
We denote the average of the above feature scores as the primary key candidate scores. As
we cannot expect all schemata to be so accommodating in their labels, we also perform
experiments with this feature turned off.

4.2 Foreign key features

Rostin et al. proposed ten heuristic features to discover foreign keys among INDs (Rostin
et al. 2009). Zhang et al. suggested a randomness feature for data value distribution to sub-
sume a variety of those features except column names (Zhang et al. 2010). We validate the
effectiveness of such coverage and use the data distribution as a measure as well. However,
the profiling time is found to be quite long due to the construction of multi-dimensional
histograms for n-ary foreign key candidates in practice. Therefore, we simply treat each
dimension of n-ary foreign key candidates as single column candidates and average the
scores. Column name similarity also plays an influential role, which is not covered by the
data distribution features. Therefore, we employ two features for foreign keys discovery,
which are column name and data distribution.

Journal of Intelligent Information Systems

Column name In many cases, for the purpose of better understanding and database main-
tenance, database designers do not give arbitrary names to related columns. Given an IND
R.A ⊆ S.B, it is more likely to represent a true foreign key if the labels of R and A are sim-
ilar to those of B and S. We tested several string similarity functions and found the fuzzy
similarity function initially proposed to solve the fuzzy matching between records (Chaud-
huri et al. 2003), to be most suitable for our task. To calculate similarity using this metric,
each string is tokenized first by delimiters, such as uppercase letters, and “ ”. For each for-
eign key candidate, we combine the token sets of table name and column name for both
LHS and RHS. For example, given an IND Trade.T S SYMB ⊆ LastTrade.LT S SYMB, the
column names of LHS and RHS are turned into TL = {Trade,T, S, SYMB} and TR = {Last,
Trade, LT, S, SYMB}, respectively. When calculating the similarity of LHS and RHS, we
map each token in TR to the most similar unmapped token from TL, as calculated by the
Levenshtein distance. The similarity of L ⊆ R is calculated according to the following
formula (Chaudhuri et al. 2003):

sim(L,R) =
∑n

j=1(simj × ln(1
fj

))
∑n

j=1 ln 1
fj

where simj is the token similarity between each token in TR and the one most similar to it
in TL. If TR contains fewer tokens than TL, some tokens in TR cannot find a map. For each
such token j , we set the simj as zero. f represents the frequency of each token, and ln(1

fj
)

is the weight of each token in TR , which measures the rarity of the token. Intuitively, a rare
token is more useful to indicate the similarity between two strings, therefore should receive
a higher weight. The similarity is asymmetric, which means given two strings L and R, the
similarity of L ⊆ R is different from that of R ⊆ L . This is useful to recognize a true foreign
key when two column-sets are included in one another and thus their data distribution score
is identical.

Data distribution The data distribution of the participating columns is a good indicator to
distinguish foreign keys from spurious INDs. In Zhang et al. (2010) the authors assume
that values of the dependent column(s) should be uniformly sampled from those of the
referenced column(s) and propose the earth-mover distance as a cost measure. We verify
the effectiveness of this assumption while observing the time overhead to construct this
measure is large. Therefore, we propose a simpler yet (as our experiments show) effective
histogram difference to represent the cost: Given an IND Ri[X] ⊆ Rj [Y], we create a set
of buckets according to the value range of each column Yi in Rj [Y] and put each value into
the corresponding bucket. We choose twenty as the number of buckets by default, and in
Section 7.2 we experimentally show that it is a good choice. The buckets form a histogram,
which is denoted as Hist(Yi), and for each column Xi in X we place its values into the
buckets created for Yi . The overall data distribution score is the average of the histogram
difference score in each dimension. While there are some other alternatives, such as the
L1 norm and histogram intersection, we use the Bhattacharyya coefficient (Bhattacharyya
1943) – a known good solution to measure the similarity between two histograms.

5 Pruning PK and FK candidates

Enumerating and scoring all combinations of UCCs and INDs in the search space is the
most naive method to discover PKs and FKs. It is extremely time-consuming due to the

Journal of Intelligent Information Systems

potentially exponential number of candidates. Consider a schema with only 20 tables, each
of which contains only two UCCs and the whole database contains only 50 INDs. Then there
are 220 primary key candidate combinations and 250 candidate combinations of foreign keys
in the search space. And in practice, tables contain many more UCCs and typical databases
contain thousands of INDs.

Foreign keys are defined to reference a primary key. This motivates us to combine the
discovery of primary keys and foreign keys holistically. Specifically, a combination of UCCs
is selected from the search space and considered as the predicted primary keys. Thereafter,
we determine the foreign keys from the INDs whose RHS are among these primary keys.
The PK’s score is summed up with the FK’s score for this selection. After enumerating all
combinations of UCCs and their corresponding INDs, the selection of UCCs and INDs with
the highest overall score is the output PKs and FKs.

In order to avoid checking every UCCs and INDs, we suggest a handful of filtering
techniques for both primary key and foreign key discoveries in this chapter to help the algo-
rithm skip unnecessary checks. These techniques include foreign key candidate prefiltering,
PK ⊆ PK filtering, primary key candidate pruning, and foreign key candidate pruning. We
discuss each of them in detail in the rest of this chapter.

5.1 FK candidate prefiltering

The number of INDs typically grows quadratically with the number of tables and
columns (Tschirschnitz et al. 2017). However, not all of them are good candidates of for-
eign keys. The prefiltering step aims to keep only a small portion of the suitable INDs as
foreign key candidates. We use the following rules to refine the original IND set:

RHS uniqueness A foreign key can reference only a primary key, which is by definition a
UCC and does not contain null-values. Therefore, we prune all INDs whose RHS is not a
UCC, and thus not a primary key candidate.

Non-null column combinations We observed that columns with only null values exist,
especially in real-world datasets. In principle, these columns can be seen as included in any
other column. However, for the purpose of deriving foreign keys, they are not useful and
thus we ignore them.

Table 1 displays the number of INDs before and after prefiltering (we introduce the
datasets in more detail in Section 7.1).

5.2 PK ⊆ PK filtering

If the values of the LHS of an IND are a consecutive subsequence of the values of RHS,
it may seem like a good foreign key candidate. However, in many cases, these are in fact

Table 1 INDs before and after
FK candidate prefiltering Dataset Before After

TPC-H 90 33

TPC-E 511 175

Adwork 19,602 2,047

SCOP 6,450 2,062

MusicBrainz 236,151 28,722

Journal of Intelligent Information Systems

auto-incremented unary primary keys of the two tables. Given an IND A ⊆ B, we remove
it if the ordered values in A form a consecutive subsequence of the ordered values of B
– in such cases it is more likely that A is a key in its own right, and its inclusion in B is
spurious.

In TPC-H for example, all tables have such an auto-incremented integer primary key.
REGION contains only five tuples, whose primary key values are 1. . . 5. On the other
hand, NATION contains 24 tuples, whose primary key values are 1. . . 24. Therefore,
REGION.REGIONKEY ⊆ NATION.NATIONKEY seems to be a good foreign key candidate.
However, such a PK ⊆ PK IND is meaningless and thus should be filtered out.

Previous efforts did not deal well with such PK ⊆ PK candidates in the predicted foreign
keys (Rostin et al. 2009; Chen et al. 2014). Motivated by the fact that most tables contain
auto-incremental integer primary keys, the authors of Zhang et al. (2010) suggest a consec-
utive prefix or suffix check between LHS and RHS as a naive approach to detect foreign
keys. In our approach, we relax this restriction by considering any consecutive subsequence.

5.3 Primary key candidate pruning

Each table may possess multiple UCCs. To obtain the optimal result, we need to consider all
valid UCC combinations, i.e., the Cartesian product of the UCCs by the tables they belong
to. In practice, the search space is still quite large, even after we restrict only one out of
all the UCCs for each table to be considered as the primary key. For example, we can see
from Table 2 that for the TPC-H schema, there are more than 76 million different PKR

candidates, denoted as PKcc, i.e. Primary key combination candidates.
To reduce the number of candidates, we score each UCC by the primary key features

mentioned in Section 4.1. We rank them within each table in a descending order of their
scores with the goal of pruning poor candidates.

Figure 2 shows the score for each primary key candidate of the table Trade in the TPC-
E schema, as an example. The x-axis represents the rank of candidates with regard to their
scores. We denote Si as the score for the top-ith candidate. The score-difference is marked
as SDi = Si − Si+1 for each pair of neighboring candidates. In analogy to the notion of a
knee for continuous curves, we define a cliff for our discrete case:

Definition 3 (Cliff) Given the sorted score list of the primary key candidates of a table
S = {S1, S2, ..., Sn} and the corresponding SD list SD = {SD1, SD2, ..., SDn−1}, the cliff
is the pair of neighboring candidates Si and Si+1 with the largest SD score.

Table 2 Evaluation datasets with primary key candidate combinations before and after pruning Lower

Datasets Tables PKcc before PKs U PKs L PKcc after

TPC-H 8 7.67 × 107 8 0 1

TPC-E 32 9.03 × 1013 31 1 768

AdWork 27 6.23 × 1021 27 0 256

SCOP 42 7.25 × 1011 42 0 2

MusicBrainz 124 3.73 × 1025 122 2 576

PKs U and L indicate the number of true primary keys falling into Upper or Lower. Thus, PKs L is the
difference of the number of tables and PKs U

Journal of Intelligent Information Systems

Fig. 2 Scores of primary key candidates of tables Trade in TPC-E. The cliff appears between the first and
second candidates

The candidates of each table are separated into two subgroups, namely Upper, which
includes all the candidates before the cliff (S1, . . . , Si), and Lower, which includes the
remaining candidates (Si+1, . . . , Sn). For example, the cliff of Trade is the pair of top two
primary key candidates due to the largest SD score between them. In this case, the upper
part contains only the top candidate, while the lower part contains the remaining 15 ones.

We calculated Upper and Lower for each table in all datasets to see into which part the
true primary keys fall. Table 2 shows the result. For example, 31 out of 32 primary keys in
the TPC-E fall into Upper, which means the pruning loses only very few true positives. The
statistics in Table 2 supports this observation for also for the other datasets. To reduce the
search space of PKR, we simply drop Lower from contention for primary key, shrinking
the search space dramatically. This step is implemented as cliffPrune() in Algorithm 2. For
instance, the search space for SCOP is reduced to only two combinations of primary keys.
On the other hand, only for TPC-E and MusicBrainz do we lose primary keys. We verified
the effectiveness of filtering out poor candidates with cliff. By using this notion, there is no
need to setup a parameter to control the number of filtered out candidates.

5.4 Foreign key candidate pruning

The IND discovery algorithms, which produce the foreign key candidates, regard only value
containment between columns. However, there are two types of conflicts when searching for
the true foreign keys among the candidates. Our approach needs to validate that no conflicts
are created each time a foreign key is predicted. We explain the strategies employed by our
algorithm and visualize them in Fig. 3.

Uniqueness of foreign keys Each foreign key can reference only one primary key in a
schema, while the values of the LHS of an IND might be contained in multiple different
RHSs. If one of these INDs is a true foreign key (shown as the solid arrow in Fig. 3a), it is
clear that all others are spurious (shown as the dashed arrow).

Non-cyclic reference If a cyclic reference exists in the schema, all the involved column
combinations contain the same values, which we deem as not semantically meaningful.
Therefore, we do not predict a foreign key that causes a cyclic reference in the schema
graph. For example, the dashed arrow in Fig. 3b introduces a cyclic reference and should

Journal of Intelligent Information Systems

(a) (b)

Fig. 3 Dashed INDs are invalid foreign keys

not be predicted as a foreign key if the other three solid arrows are already classified as
foreign keys.

Schema connectivity After conducting the aforementioned processing and filtering, the
number of remaining foreign key candidates shrinks dramatically. Our algorithm proceeds
to score each candidate and choose a good set of foreign keys. To avoid specifying a score
threshold, we make the assumption that the schema graph is in fact a spanning tree. The
connectivity of all the tables is a good indicator that the majority of true foreign keys have
been found, as shown by the recall in Fig. 5. To this end, HoPF checks whether the schema
connectivity has been fulfilled each time a new foreign key is predicted.

6 Holistic algorithmHoPF

Figure 4 shows the overall process of our proposed algorithm HoPF (Holistic Primary
Key and Foreign Key Detection). It refines the set of UCCs and INDs first, decreasing the

Fig. 4 Overview of the HoPF algorithm

Journal of Intelligent Information Systems

number of primary key and foreign key candidates needed to be processed in the next
step. For all surviving candidates, HoPF enumerates all primary key candidate sets and
their corresponding INDs, scoring each of them with regard to the features proposed in
Section 4 and selecting the proposed true primary keys and foreign keys. PK ⊆ PK candi-
dates are removed during this procedure. Conflict checking is integrated into the process of
foreign key detection to remove further spurious INDs. Before producing the final result,
a primary key reduction step simplifies the predicted primary keys and amends the cor-
responding foreign keys. Note that the used candidate pruning techniques are described
in Chapter 5.

The general algorithm to holistically determine primary keys and foreign keys from
UCCs and INDs is displayed in Algorithm 1, which in turn calls various methods that are
shown separately.

In line 1.2, i.e., line 2 of Algorithm 1, the search space of primary key combinations is
generated and saved in PKcc (Primary Key combination candidates). The loop from 1.3
calculates the scores of these primary key combinations in a row along with their corre-
sponding foreign keys, determining the one with the highest score as the predicted primary
key set and foreign key set. In line 1.4 only the foreign key candidates that reference a pre-
dicted primary key are retained in FKCands. We restrict the minimal number of FKs to be
|PKc| − 1 in line 1.5, otherwise it is certain to break the rule of schema connectivity. In
line 1.6 the algorithm searches for the INDs to form the foreign keys given the detected pri-
mary keys PKc. Here, D represents the discarded inclusion dependencies that are used to
restore some foreign keys later in line 1.7. The lines 1.8-1.12 simply select the primary keys
and their corresponding foreign keys as the final prediction.

Algorithm 1 Holistic PK/FK detection (HoPF).

Input: UCC set U, IND set I
Output: predicted primary keys P, predicted foreign keys F

1 P = , F = , Q = 0;

2 PKcc = GetPKCombinations(U);
3 forall PKc of PKcc do
4 FKCands = I PruneCands(I,PKc);
5 if FKCands PKc 1 then
6 (FKCands, D) = GetFKCandidates(FKCands);
7 (PKc, FKs) = PKReduce(PKc,FKCands,D);
8 score = Score(PKc) + Score(FKs);
9 if Q score then

10 P = PKc;
11 F = FKs;
12 Q = score;

13 Return (P, F)

Algorithm 2 displays the procedure of finding all suitable primary key combination can-
didates. It first groups UCCs by the tables they belong to, and filters out poor primary key
candidates with the cliff-technique described in Section 5.3. To compose a primary key
combination, one candidate from each table’s leftover UCC set is selected.

Journal of Intelligent Information Systems

Algorithm 2 GetPKCombinations().

Input: UCC set U, relations R
Output: primary key combinations PKcc

1 PKcc = ;

2 forall Ti of R do
3 gi u u U Tu Ti ;
4 cliffPrune();

5 forall PKc 1 do
6 PKcc PKc ;

7 return PKcc

The procedure of generating foreign keys given the primary keys is shown in Algo-
rithm 3. All foreign key candidates in I are ranked by their score. In line 3.3 we initialize a
graph to represent the tables of a schema and the predicted foreign keys among them. Each
node represents a single table. An edge is added between the two corresponding nodes if
there is a foreign key connecting two tables. From line 3.4 to line 3.15 qualified INDs are
greedily added to the graph as predicted foreign keys from top to bottom w.r.t. their scores.
Each time a new foreign key is predicted, the algorithm checks whether the schema connec-
tivity is met and stops if the graph is connected. The circle-reference conflict is checked in
line 3.6, followed by the PK ⊆ PK check. Candidates failing the PK ⊆ PK check are added
into the discard set D and used in the primary key reduction phrase. Once a foreign key is
predicted, all other candidates that share the same LHS are excluded (lines 3.14 and 3.15).

Algorithm 3 GetFKCCandidates().

Input: inclusion dependencies I
Output: foreign key candidates FKCands, discard set D

1 FKCands = ; D = ; maxFKsScore = 0;

2 I’ = SortByScoreDescending(I);
3 G(I’) = G(N=T,E=);

4 while I’ is not empty do
5 FKCand =

6 if FKCand causes no circle reference then
7 if FKCand is not a PK PK then
8 FKCands = FKCands FKCand ;

9 E=E Edge(FKCand);
10 if I’ is connected then
11 break;

12 else
13 D = D FKCand ;

14 FKCand FKCand’ FKCand’ FKCand FKCand’ I’ ;
15 I’ I’ FKCand ;

16 return (FKCands, D)

In principle, each table should define a primary key to keep entity integrity. In prac-
tice, however, primary keys are not always defined, especially for so-called join tables,
which represent m : n relationships. Although an indexed primary key helps to query more
efficiently, it becomes an encumbrance under frequent data modifications, leading schema

Journal of Intelligent Information Systems

designers to avoid defining primary keys. We observe that the two largest datasets used in
our experiments, i.e., SCOP and Musicbrainz both contain a few join tables without primary
key definitions. Because we are using only minimal UCCs as input to generate primary key
candidates, a true multi-column primary key of a join table may not be included in the can-
didate set, if a subset of these columns is already a UCC. If our algorithm marks it as the
primary key for such a table, it is definitely a false positive. A true foreign key, whose LHS
is such a false positive primary key, may be marked as spurious IND with the PK ⊆ PK
filtering described above.

A naı̈ve solution to avoid this loss of true foreign key is to use the set of full UCCs as
input to produce primary keys. However, we found this approach has two disadvantages.
First, a full set of UCCs contains exponentially more UCCs than its minimal set counterpart,
because each column combination subsuming a UCC is also a valid UCC. Second, the
primary key features selected for HoPF does not prefer non-minimal UCCs than minimal
ones. To boost the recall of foreign keys, we propose primary key reduction as a post-process
as shown in Algorithm 4. We observe that by removing these inappropriate primary keys, we
can rediscover some true foreign keys that were discarded when iterating the FK candidates.
For each predicted primary key, we exclude it from PKC and update the corresponding
foreign key candidates. We assume that a predicted primary key is not true (and should be
removed) if the overall score rises with its absence. This process consequently leads to two
advantages. On the one hand, some false positive primary keys are ultimately removed, and
previously discarded PK ⊆ PK candidates referencing one of them are restored, because
their LHSs are no longer primary keys. On the other hand, the false positive foreign keys
referencing one of these removed primary keys are not conceived as foreign keys anymore.

Algorithm 4 PKReduce().

Input: primary key combination PKC, predicted foreign keys FKCands, discarded
foreign key candidates D

Output: updated primary keys PKC, updated foreign keys FKs
1 FKs= ;

2 score = scorePKC + scoreFKCands;
3 for each PK in PKC do
4 PKC’ = PKC PK;
5 FKCands’ = UpdateFKCands(PKC’,FKCands, D);
6 if score scorePKC’ + scoreFKCands’ then
7 PKC = PKC’;
8 FKs = FKCands’;
9 score = scorePKC scoreFKs;

10 PKC = PKC P;
11 return PKC, FKs

7 Experiments and analysis

We now evaluate the effectiveness of the proposed algorithm HoPF. After introducing the
setup of the experiments, we first present the precision and recall that HoPF achieves on
various datasets, followed by an analysis of incurred errors of three different types, i.e.,
incorrect primary key, empty LHS column, and PK ⊆ PK. Next, we explore and report the

Journal of Intelligent Information Systems

Table 3 Datasets and their statistics

Name Tables Columns UCCs PKs INDs FKs

TPC-H 8 61 435 8 90 8

TPC-E 32 185 167 32 411 45

AdvWorks 27 321 1,434 27 4,300 45

SCOP 65 282 120 42 5,244 90

MusicBrainz 124 682 252 124 236,151 168

influence on F-1 score with different size of buckets used for data distribution feature. After
that, we explore the performance of foreign key discovery without assigning primary keys,
showing the necessity of detecting primary keys. Finally, we conclude this section with the
performance comparison between HoPF and the state-of-art algorithm (Zhang et al. 2010).

7.1 Experimental setup

Because HoPF consumes UCCs and INDs as input, we assume that the datasets at hand have
already been profiled so that these dependencies, along with basic statistics are available.
Given many efficient profiling algorithms (Abedjan et al. 2015), we can readily acquire
these dependencies, making this assumption reasonable. We extracted all these metadata
with Metanome (www.metanome.de), a data profiling platform which provides a wide
spectrum of interfaces for different profiling algorithms (Papenbrock et al. 2015).

We conducted our experiments on multiple datasets, including two benchmark datasets
TPC-H and TPC-E,1 a generated dataset AdventureWorksDW,2 as well as the two real-world
datasets SCOP3 and MusicBrainz.4 All datasets contain complete key and foreign key defi-
nitions, which we used as gold standard for precision and recall evaluation. Also, all datasets
contain header names for each column. Details of the datasets are shown in Table 3. As our
algorithm is data-driven, we removed empty tables, which appeared only in MusicBrainz,
reducing the number of tables there from 206 to 124. Both TPC-H and TPC-E have sev-
eral parameters to control their scales. To ease comparison with existing work, we set the
parameters as in Zhang et al. (2010).

The number of inclusion dependencies includes both unary and n-ary ones. HoPF
attempts to discover both single-column and multi-column foreign keys out of them, respec-
tively. After double-checking the datasets, we notice that only 42 true primary keys are
defined in SCOP although the schema contains 65 tables. We observed that all the tables
without defined primary keys are join tables. We attempt to remove these from our result by
employing primary key reduction, which is described in Section 7.2.

7.2 Precision and recall analysis

We executed HoPF on the entire schema of each dataset. The algorithm takes UCCs, INDs,
and basic statistics as input, and outputs a subset of UCCs/INDs respectively as the predicted

1http://www.tpc.org
2https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
3http://scop.berkeley.edu
4https://musicbrainz.org

http://www.tpc.org
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
http://scop.berkeley.edu
https://musicbrainz.org

Journal of Intelligent Information Systems

PKs/FKs. We compared the output sets with the gold standard of each dataset, respectively,
and report precision and recall, i.e., the amount of predicted true foreign keys divided by the
amount of predicted foreign keys, and the amount of predicted true foreign keys divided by
the amount of foreign keys in the gold standard. Figure 5 illustrates the precision and recall
of foreign key discovery for each dataset for top X predicted foreign keys. As we can see
from the figure, recall increases gradually, whereas precision does not see an apparent drop.
That is to say, for each dataset, the true foreign keys usually appear in the top part of the
predicted list, which means they have higher scores than spurious foreign key candidates.
And when checking more predicted entries to the bottom of the list, we see fewer foreign
keys while more spurious INDs. This proves the effectiveness of the foreign key features
we select for HoPF.

Table 5 lists the number of primary keys and foreign keys discovered by HoPF. It man-
ages to discover most true primary keys for all datasets. After inspecting the sets of predicted
primary keys, we found that errors occur for two reasons. First, the primary key features
do not cover those erroneous cases well. For example, the algorithm failed to find the true
primary key for the Financial table in TPC-E, because the table contains a three-column pri-
mary key and several spurious unary UCCs. This contrasts to our hypothesis that a primary
key shall have small cardinality. In addition, the names of the true primary key columns do
not follow the suffix name rule we employ. These two factors contribute to the failure of
predicting the correct primary key for this relation. However, this error accounts for only
a small portion. We do not find out other failures with the same reason, indicating that the
features we employ for primary key discovery are in general effective. More errors stem
from the primary key reduction step. We will discuss the influence of this strategy on the
performance of both PK and FK discovery below. We also studied the actual false negative
and false positive cases of predicted foreign keys that caused by HoPF, and found they fall
into the following three categories:

Fig. 5 Effectiveness of HoPF on the five datasets. The x-axis reflects choosing the top X predicted foreign
keys

Journal of Intelligent Information Systems

Table 4 True primary keys and true foreign keys predicted with and w/o primary key reduction

Dataset # PKs w (w/o) reduction # FKs w (w/o) reduction

TPC-H 8 (8) 7 (7)

TPC-E 27 (30) 42 (40)

AdvWorks 25 (25) 40 (42)

SCOP 35 (41) 88 (77)

MusicBrainz 93 (109) 161 (137)

Incorrect primary key An incorrectly predicted primary key could largely hurt the for-
eign key discovery results, because foreign keys must reference a particular primary key.
Therefore, once HoPF obtains a false positive/negative primary key, it might possibly pre-
dict multiple false positive/negative foreign keys. In practice, however, we did not witness
many errors caused by incorrect primary keys. After inspecting the results, we found out
that the spurious primary key candidates usually have low scores and are thus filtered by
conflict rules and the connectivity restriction.

Empty LHS column If the LHS of an IND is empty, all attributes in the LHS contain only
null-values. An IND with an empty LHS can still be a valid foreign key, especially in real-
world datasets. However, our data distribution feature is not able to establish an evaluation
of such an inclusion dependency and we filter them out in an early stage. For example, in
MusicBrainz, artist type.parent ⊆ artist type.id is a true foreign key that cannot be detected,
since the LHS is an empty column. We observed 24 other foreign keys with an empty LHS
only in MusicBrainz, which reduces recall of largely.

PK ⊆ PK Although we employ the PK ⊆ PK filter in an early stage to remove these
candidates, some of them may be added back to the predicted result when the algorithm
removes redundant primary keys with primary key reduction. In MusicBrainz, for example,
place alias type.id ⊆ label alias type.id is reconsidered as a foreign key after the algorithm
no longer holds {place alias type.id} as a primary key. Nevertheless, as we can see from
Table 4, because primary key reduction works well in most cases, HoPF is still able to block
most PK ⊆ PK candidates.

By removing those primary keys that are referenced by some predicted foreign keys
with a low score, the discovered foreign keys receive a higher overall score. Therefore,
HoPF considers them as non-primary keys. Nevertheless, the loss of the performance of
primary key discovery improves the performance of foreign key discovery, as displayed

Table 5 Gold standard and number of primary keys and foreign keys discovered by HoPF, marked as ‘true’
and ‘disc.’, respectively. ‘undoc.’ represents the undocumented foreign keys discovered by HoPF

Datasets True PKs Disc. PKs True FKs Disc. FKs Undoc. FKs

TPC-H 8 8 8 7 0

TPC-E 32 27 45 42 0

AdvWorks 27 25 45 40 2

SCOP 42 35 90 88 2

MusicBrainz 124 101 168 161 0

Journal of Intelligent Information Systems

and explained below. It brings back a group of true foreign keys that were considered as
PK ⊆ PK in the previous step (Table 5).

Table 4 displays the number of true primary keys and foreign keys predicted by HoPF
with and without primary key reduction. For example, HoPF retrieves 35 primary keys and
88 foreign keys for SCOP with primary key reduction. The respective numbers are 41 and
77 for the same dataset without primary key reduction. As we can see from the results,
applying primary key reduction helps to predict more foreign keys at the price of losing
some true primary keys for all datasets, except for AdvWorks where two more true foreign
keys were removed from predictions after primary key reduction. After double-checking
the results, we found that primary key reduction falsely removed the true primary key of a
table, which has a unary primary key, which is referenced by the two missing foreign keys.
Therefore, we suggest employing the primary key reduction strategy for datasets containing
join tables without primary key definitions. In these cases, this strategy helps discover more
foreign keys at the price of a small loss of ture primary keys. Nevertheless, we believe it is
easier for users to notice the missing primary keys compared to finding the missing foreign
keys, which necessitates to collectively consider multiple tables. In our experiments, we
employed primary key reduction for all datasets.

We also tested the influence of choosing different bucket numbers on our histogram
difference feature. Figure 6a illustrates the F-1 score for each dataset under different bucket
numbers. The scores fluctuate a little when we choose bucket size smaller than 20, but
keep stable in general. Figure 6b shows the time consumption for each dataset. For easy
reading, the time is united by second and displayed logarithmically. As we can see, the time
overhead to construct this data structure increases significantly when using more buckets.
For all participant datasets, the optimal bucket size is between 10 and 20, and we choose 20
as our default value.

Using only minimal UCCs as the input of HoPF to produce primary key candidates can
possibly miss true n-ary primary keys, if a subset of a n-ary primary key is already a UCC.
This problem and the problem it causes on join tables has been discussed early in the section,
for which we proposed the primary key reduction strategy. In addition, the lack of complete
UCC sets also causes a similar consequence for very small datasets, with only few records
per relation. In these cases, relations can more readily have unary UCCs, thus shadowing
larger UCCs that are the true PKs as we regard only minimal UCCs as our input.

To gauge this effect, we apply HoPF on a TPC-H instance of scale factor to 0.001. In this
case, all relations in the dataset contain only dozens of records. The result confirms our sus-
picion: HoPF is not able to discover the true primary keys of table lineitem and partsupp who

(a) (b)

Fig. 6 The F-1 score under different bucket number and their corresponding time spent

Journal of Intelligent Information Systems

have n-ary primary keys, because both of them also have unary UCCs that are part of the
true PK. Unfortunately, our algorithm cannot solve this very-small-table dilemma without
changing the prerequisite of only consuming minimal UCCs. As mentioned in Section 3.2,
changing the prerequisite so as to use also non-minimal UCCs does not solve this dilemma,
because the proposed PK features favors UCC candidates with small cardinality, and thus
HoPF is more liable to refer to them as true primary keys.

7.3 Foreign key detection without primary keys

Previous works all assume that primary keys are at present. However, this assumption is too
optimistic for many databases, especially for those stored as dumps and flat files, whose
constraint definition might not be tightly attached to data themselves. In these cases, for-
eign key discovery algorithms based on this assumption might break or predict possibly
many erroneous foreign keys. Here, we use HoPF to explore the influence on the quality
of discovered foreign keys without the presence of primary keys. Fortunately, even without
discovering the primary keys, our method can still rank the list of INDs by their foreign key
score. Instead of predicting primary keys holistically with foreign keys, we let HoPF output
a predicted foreign key, as long as its RHS is a UCC.

Table 6 displays the detected foreign keys with and without knowledge of primary keys.
Consistent to our assumption, without the primary keys, HoPF obtains fewer true positive
foreign keys, at the price of searching in even larger foreign key candidate sets. For example,
if we ignore the primary keys and rank only the foreign key candidates by their score, we
obtain 141 true foreign keys out of 1079 candidates in Musicbrainz, whereas we obtain 161
true foreign keys out of only 296 candidates if we detect the primary keys first and use them
as the input for foreign key detection.

In general, we conceive only those inclusion dependencies whose RHS is among the
primary key set into the foreign key candidate set. Without knowledge of primary keys,
HoPF would consider each IND whose RHS is a UCC as a foreign key candidate. This
explains why the number of foreign key candidates grows without considering primary keys;
each table typically contains many UCCs, and each of them may contribute several valid
INDs into the candidate set.

Restricted by the uniqueness of foreign key rule, a true foreign key sharing the same
LHS with another foreign key candidate is excluded if the latter one has a higher score
and is predicted as a foreign key. However, if an incorrect foreign key is predicted, adding
a true foreign key to the final result may cause a circle-reference, and thus be rejected.
This explains why fewer true positive foreign keys are acquired without the knowledge of
primary keys.

Table 6 Detected foreign keys without and with knowledge of primary keys

Datasets FKs FKs disc. w/o PKs Cand. FKs w/o PKs FKs disc. with PKs Cand. FKs with PKs

TPC-H 8 2 18 7 8

TPC-E 45 41 77 42 57

AdvWorks 45 39 369 40 118

SCOP 90 88 167 88 121

MusicBrainz 168 141 1,079 161 296

Journal of Intelligent Information Systems

7.4 Undocumented foreign key discovery

In addition to discovering documented foreign keys, further potential foreign keys were
found in AdventureWorksDW and SCOP in spite of their absence in the gold standard.
These uncertain foreign keys fall into two categories: missing ones and erroneous ones. For
instance, pdb release author.pdb author id ⊆ pdb author.id in SCOP was counted as a false
positive while we believe it is in fact a true foreign key. On the other hand, cdd.release id ⊆
pfam release.id is a documented foreign key while we believe it to be incorrectly docu-
mented; the correct foreign key should likely be cdd.release id ⊆ cdd release.id, which was
predicted by HoPF.

We can imagine several reasons for these undocumented foreign keys, e.g., loss during
data migration or removal by schema designers for query efficiency. The number of undoc-
umented foreign keys predicted by HoPF for each dataset is shown in the last column in
Table 5. Such a discovery may provide us with an insight for further database application
such as data integration.

7.5 Comparison

We re-implemented the state-of-art algorithms of Zhang et al. (2010) and Chen et al.
(2014), which we dub Randomness and FastFK, respectively, and compared their perfor-
mances with HoPF. As explained in more detail in Section 2, the Randomness algorithm

Table 7 Comparison of foreign key detection among HoPF and other two previous work (Zhang et al. 2010;
Chen et al. 2014). The bold number indicates the better performance of the algorithm against the counterparts

Data-set True FKs Algorithm With column names Without column names

P R F-1 Predicted FKs P R F-1 Predicted FKs

TPC-H 8 FastFK .56 .90 .69 16 .56 .90 .69 16

Randomness 1 1 1 8 .21 1 .35 39

HoPF .88 .88 .88 8 .88 .88 .88 8

TPC-E 45 FastFK .72 .95 .82 59 .59 .78 .67 59

Randomness 1 .89 .94 45 .57 .82 .67 308

HoPF .72 .91 .80 57 .64 .82 .72 57

AdvWorks 45 FastFK .32 .97 .49 131 .24 .72 .37 131

Randomness .90 .41 .56 122 .21 .58 .31 122

HoPF .31 .84 .46 118 .27 .72 .39 120

SCOP 90 FastFK .57 .94 .71 149 .53 .87 .66 149

Randomness .36 .61 .45 151 .36 .61 .45 151

HoPF .70 .94 .80 121 .63 .82 .71 118

MusicBrainz 168 FastFK .33 .74 .46 368 .28 .62 .39 367

Randomness .24 .49 .32 341 .24 .49 .32 341

HoPF .54 .96 .69 296 .28 .50 .36 289

In HoPF and Chen et al. (2014), column name similarity between LHS and RHS of a foreign key candidate
is set as a foreign key feature while non-matching column names of LHS and RHS is used as a postpro-
cessing (Zhang et al. 2010). We use four metrics to measure the performances: precision (P), recall (R), F-1
score, and the number of predicted foreign keys (Predicted FKs)

Journal of Intelligent Information Systems

measures the data distribution between LHS and RHS with a so-called randomness mea-
sure. FastFK, which assumes that there exists only single-attribute foreign keys, employs
a few features to score foreign key candidates, as well as some pruning rules to decrease
the search space. For Randomness, we applied θ = 0.9, and bottom 256 sketches, 256
and 16 quantiles for unary and n-ary foreign keys candidates, respectively, – the sweet
spots determined by the original authors. As both previous works assume that primary
keys are present and known, we provide them with true primary keys in this experiment
setting.

To improve results, Randomness also considers column names, keeping only candidates
with exactly matched names. The authors apply this technique only to TPC-H and TPC-E,
relying on external documentation to guide a manual trimming of column labels before the
matching. We compared their results with HoPF and FastFK when switching on the column
name features. We also compared the result of the Randomness without conducting this
postprocessing with the other two when switching off the column name features. Table 7
displays the details of this comparison.

As seen in the table, without knowledge of column names, all three algorithms experi-
ence a drop in precision and recall, proving that column names are indicative in recognizing
foreign keys. While using the column names, the performances of the three algorithms are
quite similar on synthetic datasets (TPC-H, TPC-E, and AdventureWorks), while HoPF out-
performs the two baseline approaches in the real-world datasets (SCOP and MusicBrainz).
We also notice that HoPF produces smaller predicted foreign key sets for all the datasets
compared to the two baseline approaches, making any post-processing by a human expert
easier.

8 Conclusions

Primary keys and foreign keys are important integrity constraints to keep databases con-
sistent. However, data stored as flat files or dumps do not always carry these constraint
definitions and in many cases, it is up to the user of the data to identify them and thus under-
stand the data better and enforce its quality. As schemata can be quite large and complex,
automatic discovery of primary and foreign keys is a relevant (and challenging) research
topic.

Previous efforts were made to discover foreign keys and primary keys separately. In
this work, we have proposed the HoPF algorithm to integrate primary key and foreign key
detection holistically. We employ a set of carefully designed features to score and distin-
guish both the true primary keys and foreign keys from the spurious UCCs and INDs. We
employ several useful pruning rules to effectively reduce the search spaces of both PKs
and FKs.

In performance experiments on five diverse datasets, our algorithm reaches an average
recall of 88% and 91% in primary keys and foreign keys discovery, respectively. We show
with an experiment that without knowledge of primary keys (which is assumed in related
work), the performance of foreign key discovery is much worse, indicating the necessity to
discover primary keys in advance or simultaneously. We compared precision and recall with
the state-of-art algorithms.

As future work we plan to mesh our work on choosing good keys and foreign keys into
the lattice-based UCC and IND detection algorithms mentioned in Section 2.1, providing a
powerful (yet inexact) pruning mechanism for their large spaces.

Journal of Intelligent Information Systems

References

Abedjan, Z., Golab, L., Naumann, F. (2015). Profiling relational data: a survey. VLDB Journal, 24(4), 557–
581.

Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their
probability distributions. Bulletin of the Calcutta Mathematical Society, 35, 99–109.

Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R. (2003). Robust and efficient fuzzy match for online
data cleaning. In Proceedings of the international conference on management of data (SIGMOD) (pp.
313–324).

Chen, Z., Narasayya, V.R., Chaudhuri, S. (2014). Fast foreign-key detection in microsoft SQL server
powerpivot for excel. Proceedings of the VLDB Endowment, 7(13), 1417–1428.

Faust, M., Schwalb, D., Plattner, H. (2014). Composite group-keys – space-efficient indexing of multiple
columns for compressed in-memory column stores. In Memory data management and analysis - first
and second international workshops, revised selected papers (pp. 139–150).

Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A. (2004). CORDS: automatic discovery of correla-
tions and soft functional dependencies. In Proceedings of the international conference on management
of data (SIGMOD) (pp. 647–658).

Kantola, M., Mannila, H., Räihä, K., Siirtola, H. (1992). Discovering functional and inclusion dependencies
in relational databases. International Journal of Intelligence Systems, 7(7), 591–607.

Lopes, S., Petit, J., Toumani, F. (2002). Discovering interesting inclusion dependencies: application to logical
database tuning. Information Systems (IS), 27(1), 1–19.

Lucchesi, C.L., & Osborn, S.L. (1978). Candidate keys for relations. Journal of Computer and System
Sciences, 17(2), 270–279.

Marchi, F.D., Lopes, S., Petit, J. (2009). Unary and n-ary inclusion dependency discovery in relational
databases. Journal of Intelligent Information System, 32(1), 53–73.

Memari, M., Link, S., Dobbie, G. (2015). SQL data profiling of foreign keys. In Proceedings of the
international conference on conceptual modeling (ER) (pp. 229–243).

Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F. (2015). Data profiling with metanome.
Proceedings of the VLDB Endowment, 8(12), 1860–1863.

Papenbrock, T., & Naumann, F. (2017). Data-driven schema normalization. In Proceedings of the interna-
tional conference on extending database technology (EDBT) (pp. 342–353).

Rostin, A., Albrecht, O., Bauckmann, J., Naumann, F., Leser, U. (2009). A machine learning approach
to foreign key discovery. In Proceedings of the ACM SIGMOD workshop on the web and databases
(WebDB).

Rubner, Y., Tomasi, C., Guibas, L.J. (1998). A metric for distributions with applications to image databases.
In Procedings of the international conference on computer vision (ICCV) (pp. 59–66).

Tschirschnitz, F., Papenbrock, T., Naumann, F. (2017). Detecting inclusion dependencies on very many
tables. ACM Transactions on Database Systems (TODS), 42(3), 18:1–18,29.

Venetis, P., Halevy, A.Y., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G., Wu, C. (2011). Recovering
semantics of tables on the web. Proceedings of the VLDB Endowment, 4(9), 528–538.

Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Srivastava, D. (2010). On multi-column foreign
key discovery. Proceedings of the VLDB Endowment, 3(1–2), 805–814.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Holistic primary key and foreign key detection
	Abstract
	Structuring schemata
	Related work
	Metadata discovery
	Key constraints discovery

	Problem setting
	Types of dependencies
	Problem definition

	Features for primary keys and foreign keys
	Primary key features
	Cardinality
	Value length
	Position
	Name suffix

	Foreign key features
	Column name
	Data distribution

	Pruning PK and FK candidates
	FK candidate prefiltering
	RHS uniqueness
	Non-null column combinations

	PKPK filtering
	Primary key candidate pruning
	Foreign key candidate pruning
	Uniqueness of foreign keys
	Non-cyclic reference
	Schema connectivity

	Holistic algorithm HoPF
	Experiments and analysis
	Experimental setup
	Precision and recall analysis
	Incorrect primary key
	Empty LHS column
	PKPK

	Foreign key detection without primary keys
	Undocumented foreign key discovery
	Comparison

	Conclusions
	References

