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Abstract. Knowledge graph (KG) embedding models have emerged as power-
ful means for KG completion. To learn the representation of KGs, entities and
relations are projected in a low-dimensional vector space so that not only existing
triples in the KG are preserved but also new triples can be predicted. Embed-
ding models might learn a good representation of the input KG, but due to the
nature of machine learning approaches, they often lose the semantics of entities
and relations, which might lead to nonsensical predictions. To address this issue
we propose to improve the accuracy of embeddings using ontological reasoning.
More specifically, we present a novel iterative approach ReasonKGE that iden-
tifies dynamically via symbolic reasoning inconsistent predictions produced by
a given embedding model and feeds them as negative samples for retraining this
model. In order to address the scalability problem that arises when integrating on-
tological reasoning into the training process, we propose an advanced technique
to generalize the inconsistent predictions to other semantically similar negative
samples during retraining. Experimental results demonstrate the improvements in
accuracy of facts produced by our method compared to the state-of-the-art.

1 Introduction

Motivation. Knowledge Graphs (KG) describe facts about a certain domain of interest
by representing them using entities interconnected via relations. Prominent examples of
large KGs are DBpedia [4], Yago [31], and WikiData [34]. KGs are widely used for nat-
ural question answering, web search and data analytics. Modern KGs store information
about millions of facts, however, since they are typically constructed semi-automatically
or using crowd-sourcing methods, KGs are often bound to be incomplete.

To address this issue, knowledge graph embedding methods have been proposed
for the knowledge completion task, i.e. predicting links between entities. Embedding
methods learn the representation of the input KG by projecting entities and relations
in a low-dimensional vector space so that not only existing triples in the KG are pre-
served but also new triples can be predicted (see, e.g., [36] for overview of existing
approaches). Typically, the training of KG embedding models aims at discerning be-
tween correct (positive) and incorrect (negative) triples. A completion model then as-
sociates a score with every input triple. The goal of the embedding models is to rank
every positive triple higher than all its negative alternatives. Therefore, the quality of
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embedding models is heavily impacted by the generated negative triples. Since KGs
store explicitly only positive triples, proper negative triple generation is acknowledged
to be a challenging problem [11,21,40,39].

State-of-the-Art and Limitations. In the majority of existing methods the generation
of negative triples is done either completely at random [9], relying on the (local) closed
world assumption [27], or by exploiting the KG structure for the generation of likely
true negative samples (e.g. [1,40,2]). However, these methods do not guarantee that the
generated negative samples are actually incorrect ones. In [11] this issue is partially ad-
dressed by taking as negative examples precomputed triples that are inconsistent with
the KG and the accompanied ontology. Since the generation of all such possible incon-
sistent triples as negative samples is clearly infeasible in practice, only a subset of them
is precomputed, and hence certain important inconsistent triples might be missing in the
set obtained in [11]. Furthermore, as embedding models rely purely on the data in the
input KGs, they often lose the real semantics of entities and relations, and hence pro-
vide undesired predictions [37]. This calls for more goal-oriented approaches in which
ontological reasoning is used to verify and improve the actual predictions made by em-
bedding models.

Approach and Contributions. To address the presented shortcomings, in this work
we propose an iterative method that dynamically identifies inconsistent predictions pro-
duced by a given embedding model via symbolic reasoning and feeds them as negative
samples for retraining this model. We first start with any available negative sampling
procedure (e.g., [21,40]) and train the embedding model as usual. Then, among predic-
tions made by the model, we select those that cause inconsistency when being added to
the KG, as negative samples for the next iteration of our method. To avoid predicting
similar wrong triples, along with the inconsistent triples explicitly inferred by the em-
bedding model, we also generate triples that are semantically similar via a generaliza-
tion procedure. To address the scalability problem that arises when integrating ontolog-
ical reasoning into the training process of embedding models, we consider ontologies in
an extension of the Description Logic (DL) DL-Lite [3] so that consistency checking
and the generalization procedure can be performed efficiently. Our method can support
any embedding model, and with the increasing number of iterations it yields better em-
beddings that make less inconsistent predictions and achieve higher prediction accuracy
w.r.t. standard metrics.

The salient contributions of our work can be summarized as follows.

– We introduce the ReasonKGE framework for exploiting ontological reasoning to
improve existing embedding models by advancing their negative sampling.

– To efficiently filter inconsistent embedding-based predictions, we exploit the local-
ity property of light-weight ontologies. Moreover, in the spirit of [32] we generalize
the computed inconsistent facts to a set of other similar ones to be fed back to the
embedding model as negative samples.

– The evaluation of the proposed method on a set of state-of-the-art KGs equipped
with ontologies, demonstrates that ontological reasoning exploited in the suggested
way indeed improves the existing embedding models with respect to the quality of
fact prediction.
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Fig. 1: Example knowledge graph with its ontology, where solid links correspond to the
true facts, while the dashed one to a spurious predicted fact.

Organization. The rest of the paper is structured as follows. In Sec. 2 we present nec-
essary background on KGs, ontologies and embedding models. In Sec. 3 our approach
is described in detail, and then in Sec. 4 the results of our empirical evaluation are
discussed. Finally, in Sec. 5 we present the related work, and conclude in Sec. 6. An
extended version of this work1 contains additional experimental details.

2 Preliminaries

We assume countable pairwise disjoint sets NC,NP and NI of class names (a.k.a. types),
property names (a.k.a. relations), and individuals (a.k.a. entities). We also assume the
standard relation rdf :type (abbreviated as type) to be included in NP. A knowledge
graph (KG) G is a finite set of triples of the form 〈s, p, o〉, where s ∈ NI, p ∈ NP, o ∈
NI, if p 6= type , and o ∈ NC otherwise. KGs typically follow Open World Assumption
(OWA), meaning that they store only a fraction of positive facts. For instance, given the
KG from Fig. 1 〈john, type, person〉 and 〈john, livesIn, germany〉 are true KG facts;
however, whether 〈john,worksAt , bosch〉 holds or not is unknown. Given a triple α,
we denote by Ent(α) a set of all entities occurring in α and extend this notation to a set
of triples as Ent(G) =

⋃
α∈G Ent(α).

An ontology O (a.k.a. TBox) is a set of axioms expressed in a certain Description
Logic (DL) [5]. In this work we focus on DL-LiteSt, i.e., extension of DL-Lite [3]
with transitive roles and concept disjunctions. Classes C denoting sets of entities, and
roles R denoting binary relations between entities, obey the following syntax:

C ::=A | ∃R | A tB | A uB | ¬C
R ::=P | P−

Here, A,B ∈ NC are atomic classes and P ∈ NP is an atomic property (i.e., binary
relation). An ontology O is a finite set of axioms of the form C1 v C2, R1 v R2,
R ◦R v R, reflecting the transitivity of the relation R. The summary of the DL syntax

1 https://github.com/nitishajain/ReasonKGE

https://github.com/nitishajain/ReasonKGE
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DL Syntax OWL Syntax Semantics

R R RI ⊆ ∆I ×∆I
R− ObjectInverseOf(R) {〈e, d〉 | 〈d, e〉 ∈ RI}

A A AI ⊆ ∆I
> owl:Thing ∆I

⊥ owl:NoThing ∅
¬C ObjectComplementOf(C) ∆I \ CI
C uD ObjectIntersectionOf(C,D) CI ∩DI
C tD ObjectUnionOf(C,D) CI ∪DI
∃P ObjectSomeValuesFrom(P,owl:Thing) {d | ∃e ∈∆I:〈d, e〉 ∈ P I}

C v D SubClassOf(C,D) CI ⊆ DI
P v S SubObjectPropertyOf(P, S) P I ⊆ SI
P ◦ P v P TransitiveObjectProperty(P ) P I ◦ P I ⊆ P I
〈a, type, c〉 ClassAssertion(C, a) aI ∈ CI
〈a, p, b〉 ObjectPropertyAssertion(P, a, b) 〈aI , bI〉 ∈ P I

Table 1: Syntax and semantics of the ontology language considered in this paper where
A,R are a class name and property name, respectively; C and D are class expressions,
P, S are property expressions, and a, b are entities.

in DL-LiteSt and its translation to OWL 22 is presented in Table 1. In the rest of the
paper, we assume that all ontologies in this work are expressed in DL-LiteSt.

Our running example of a KG with an ontology given in Figure 1 reflects the do-
main knowledge about people and their working places. The ontology states that (1) the
domain of worksAt relation is person , (2) the range of locatedIn is location , and (3)
person is disjoint with location .

Inconsistency and Explanations. The semantics of knowledge graphs and ontologies
is defined using the direct model-theoretic semantics via interpretations [26]. An in-
terpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain of I, and an
interpretation function ·I , that assigns to each A ∈ NC a subset AI ⊆ ∆I , to each
R ∈ NR a binary relation RI ⊆ ∆I ×∆I , and to each a ∈ NI an element aI ∈ ∆I .
This assignment is extended to (complex) classes and roles as shown in Table 1.

An interpretation I satisfies an axiom α (written I |= α) if the corresponding con-
dition in Table 1 holds. Given a KG G and an ontologyO, I is a model of G∪O (written
I |= G ∪ O) if I |= α for all axioms α ∈ G ∪ O. We say that G ∪ O entails an axiom
α (written G ∪ O |= α), if every model of G ∪ O satisfies α. A KG G is inconsistent
w.r.t. an ontology O if no model for G ∪ O exists. In this case, G ∪ O is inconsistent.
Intuitively, G ∪ O is inconsistent when some facts of G contradict some axioms of O.

Under the considered ontology language, KG inconsistency has a locality property,
i.e., the problem of checking inconsistency for a KG (w.r.t. an ontology O) can be
reduced to checking inconsistency for separated KG modules (w.r.t. O) [32].

2 https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/owl2-overview/
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Definition 1 (Modules). Given a KG G and an entity e ∈ Ent(G), the module of e
w.r.t. G is defined asM(e,G) = {α | α ∈ G and e occurs in α}. We denote the set of
all modules for individuals occurring in G asMG = {M(e,G) | e ∈ Ent(G)}.

Lemma 1 (Consistency Local Property). Let G be a KG and O an ontology. Then
G ∪ O is consistent iffM(a,G) ∪ O is consistent for every a ∈ Ent(G).

An explanation for inconsistency of G ∪ O [20], denoted by E = EG ∪ EO with
EG ⊆ G and EO ⊆ O, is a (subset-inclusion) smallest inconsistent subset of G ∪ O.

Example 1. The KG from Fig. 1 with all facts including the dashed red one is inconsis-
tent with the ontologyO, and a possible explanation for that is E = EG ∪EO with EG =
{〈bosch, locatedIn, john〉, 〈john, type, person〉} and EO = {∃locatedIn− v location,
person u location v ⊥}.

KG Embeddings. KG embeddings (see [36] for overview) aim at representing all en-
tities and relations in a continuous vector space, usually as vectors or matrices called
embeddings. Embeddings can be used to estimate the likelihood of a triple to be true
via a scoring function: f : NI × NP × NI → R. Concrete scoring functions are defined
based on various vector space assumptions. The likelihood that the respective assump-
tions of the embedding methods hold, should be higher for triples in the KG than for
negative samples outside the KG. The learning process is done through minimizing the
error induced from the assumptions given by their respective loss functions. Below we
describe widely-used assumptions for KG embeddings:

(i) The translation-based assumption, e.g., TransE [9] embeds entities and relations as
vectors and assumes vs+vp ≈ vo for true triples, where vs,vp,vo are vector em-
beddings for subject s, predicate p and object o, respectively. The models that rely
on the translation assumption are generally optimised by minimizing the following
ranking-based loss function∑

〈si,pi,oi〉∈S+

∑
〈s′i,pi,o′i〉∈S−

[γ − f(si, pi, oi) + f(s′i, pi, o
′
i)]+ (1)

where f(s, p, o) = −‖vs + vp − vo‖1, S+ and S− correspond to the sets of pos-
itive and negative training triples respectively, that are typically disjoint.

(ii) The linear map assumption, e.g., ComplEx [33] embeds entities as vectors and
relations as matrices. It assumes that for true triples, the linear mapping Mp of the
subject embedding vs is close to the object embedding vo: vsMp ≈ vo. The loss
function used for training the linear-map embedding models is given as follows:∑

〈si,pi,oi〉∈S+

∑
〈s′i,pi,o′i〉∈S−

l(1, f(si, pi, oi)) + l(−1, f(s′i, pi, o′i))) (2)

where f(s, p, o) = vsMpvo and l(α, β) = log(1− exp(−αβ)).
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3 Ontological Reasoning for Iterative Negative Sampling

While a variety of embedding models exist in the literature [36], one of the major chal-
lenges for them to perform accurate fact predictions is finding an effective way for gen-
eration of relevant negative samples [29,11,35]. Commonly used approaches for nega-
tive sampling randomly corrupt existing triples by perturbing their subject, predicate or
object [9,30,13] or rely on the (local) closed world assumption (LCWA). Based on CWA
all triples not present in the KG are assumed to be false, while LCWA is a variation of
CWA, in which for every 〈s, p, o〉, only facts of the form 〈s, p, o′〉 6∈ G are assumed to
be false. For instance, given the facts in Figure 1, the corrupted negative triples obtained
based on the LCWA could be 〈john, livesIn, hpi〉 or 〈bob,worksAt , bosch〉.

However, since KGs follow OWA, the standard sampling methods might often turn
out to be sub-optimal, resulting in false positive negative samples [11]. For example,
the corrupted triple 〈bob,worksAt , bosch〉 from above might actually be true in reality.

A natural method to avoid false positives and generate only relevant negative sam-
ples is by relying on ontologies with which KGs are typically equipped. A naive ap-
proach for that is to generate all facts that can be formed using relations and entities in
G (i.e., construct the Herbrand base) and check which among the resulting candidates
are inconsistent with G ∪O. As modern KGs store millions of facts, the described pro-
cedure is infeasible in practice. To still sample some inconsistent triples, in [11] facts
p(s, o) ∈ G are corrupted by substituting s (resp. o) with s′ (resp. o′) s.t. s and s′ (resp.
o and o′) belong to disjoint classes and the resulting corrupted triple is inconsistent.
For example, given G and O in Fig 1, from 〈bob,worksAt , germany〉 we can obtain
α1 = 〈germany ,worksAt , germany〉 or α2 = 〈bob,worksAt , john〉, as person is
disjoint with location . However, this method might fail to avoid the inconsistent triples
that the model actually predicts. E.g., 〈bosch, locatedIn, john〉 is not generated by this
method as a negative example, and the model can in principle still predict it.

Therefore, instead of pre–computing a static set of negative examples, we propose to
iteratively generate and improve this set (and subsequently also the embedding model)
dynamically by computing a collection of negative samples in a guided fashion from
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embedding model based on its predictions that are inconsistent with the ontology. We
refer to this negative sampling strategy as dynamic sampling. On the one hand, this
intuitively allows us to overcome the computational challenge of generating all possi-
ble negative examples at once, but rather add the most relevant ones on demand to the
embedding training process. On the other hand, this approach is capable of reducing
frequently encountered errors (in terms of inconsistent predictions) for particularly dif-
ficult triples by directly incorporating feedback from incorrect predictions back to the
model for further training. Indeed, when trained for increasing number of iterations,
such method is capable of generating embeddings that predict fewer inconsistent facts,
as empirically demonstrated in Section 4.

3.1 Approach Overview

Next we describe in more details the proposed framework referred to as ReasonKGE,
whose main steps are depicted in Figure 2. Given a KG, ontology and an embedding
method, we aim at generating an enhanced KG embedding, which is trained for predict-
ing facts that are consistent with the KG and the ontology at hand.

The input to our method (represented by blue dashed boxes) is the KG and the
ontology, while the output (the red dashed box) is the set of negative samples that is
incorporated during the iterative training and tuning of a KG embedding model in each
iteration. As negative samples are obtained based on predictions made by an existing
embedding, a baseline model is required in the first iteration. For this, in step (1) we
obtain the negative samples with standard negative sampling using any of the existing
methods [11,9,30,13]. We then perform embedding training in step (2) to construct the
initial KG embedding model.

This model is used for obtaining predictions and computing the set of negative sam-
ples for the next training iteration. Specifically, in step (3) the model is used for fact
prediction as follows. For every triple in the training set, given its subject s and pred-
icate p, we retrieve the top ranked object and obtain the fact 〈s, p, o〉 as the respective
prediction. The same is done inversely for computing the top ranked subject given the
object o and predicate p in the training set. Note that only triples that are not in the
training set are considered as predictions. In step (4) we check whether the predicted
triple complies with the ontology relying on the consistency checking procedure. In
case the respective triple is found to be inconsistent, in step (5) we generalize it to other
semantically similar triples using the generalization procedure to obtain an extended
set of negative samples. Finally, the computed negative samples, both for subject and
object predictions are fed back as input to the next iteration of the embedding training
process. The detailed steps are presented in Algorithm 1 and explained in what follows.

3.2 Consistency Checking

The goal of the consistency checking procedure is to verify which predictions made by
the embedding model in step (3) are inconsistent with the ontology O and the original
KG G. In principle, any reasoner capable of performing consistency checking effec-
tively for ontologies in the considered DL-LiteSt language can be used in this step. As
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Algorithm 1: Training embedding models with negative samples using onto-
logical reasoning

Input : Baseline embedding model E, a knowledge graph G, and an ontology O
/* Step 1 and Step 2 */

1 Train the baseline embedding model E for a certain number of epochs.
/* Retrain the baseline model with negative samples derived

from reasoning */
2 Loop

/* Step 3 */
3 foreach triple α = 〈s, p, o〉 ∈ G do
4 Get a set Predictions(α) of predicted triples of the form 〈s, p, ô〉 and 〈ŝ, p, o〉

by giving 〈s, p〉 and 〈p, o〉 as inputs to E and obtaining predicted entities ô
and ŝ, respectively.
/* Step 4 */

5 NegSamples(α)← ∅
6 foreach predicted triple β ∈ Predictions(α) do
7 Compute the relevant set Relv(β,G) of β w.r.t. G.
8 if Relv(β,G) ∪ O is inconsistent then

/* Step 5 */
9 Compute explanations for inconsistency.

10 foreach inconsistency explanation EG ∪ EO do
11 Compute GeneralizedSamples(β) as defined in Definition 4.
12 NegSamples(α)← NegSamples(α) ∪ GeneralizedSamples(β)

13 Retrain E in which, for each training step that considers α ∈ G, NegSamples(α) is
used as negative samples in the loss function, e.g. Equation 1 or Equation 2.

the task that we consider concerns verifying whether a particular triple causes incon-
sistency, for the target DL when performing the consistency check one does not need
to account for the whole KG, but only a small subset of relevant facts. To this end, we
define the relevant sets as follows.

Definition 2 (Relevant set). Let G be a KG andα be a triple. The relevant set Relv(α,G)
of α w.r.t. G is defined as Relv(α,G) = {α} ∪ {β ∈ G |Ent(β) ∩ Ent(α) 6= ∅}.

Example 2. For α = 〈bosch, locatedIn, john〉 and G in Fig. 1, we have the following
relevant set Relv(α,G) = {α} ∪ {〈john, livesIn, germany〉, 〈john, friendOf , bob〉,
〈john, type, person〉, 〈bosch, type, company〉}.

The following proposition allows us to reduce the consistency checking of α∪G∪O
to the consistency checking of Relv(α,G) ∪ O.

Proposition 1. Let G be a knowledge graph, O an ontology such that G ∪ O is consis-
tent, and α a triple. Then, α ∪ G ∪ O is consistent iff Relv(α,G) ∪ O is consistent.

Proof. Since Relv(α,G) ⊆ G, we haveα∪G∪O being consistent implies that Relv(α,G)
∪O is also consistent. We start showing the remaining direction by assuming that
Relv(α,G) ∪ O is consistent and then show that α ∪ G ∪ O is also consistent. Let
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α = 〈s, p, o〉, by Definition 2, we have Relv(α,G) = M(s, α ∪ G) ∪M(o, α ∪ G).
Since G ∪ O is consistent, by Lemma 1, we haveM(e,G) ∪ O is consistent for every
entity in Ent(G) \ {s, o}. Since e /∈ {s, o}, we haveM(e,G) =M(e, α ∪ G), which
impliesM(e, α ∪ G) ∪ O is consistent (?). From the assumption that Relv(α,G) ∪ O
is consistent and Relv(α,G) =M(s, α ∪ G) ∪M(o, α ∪ G), we obtainM(s, α ∪ G)
and M(o, α ∪ G) are consistent w.r.t. O (†). From (?) and (†) we have α ∪ G ∪ O is
consistent using Lemma 1. ut

Relying on Proposition 1, it is sufficient to check the consistency of a triple α with
respect to G ∪ O using Relv(α,G) rather than the whole KG. We make use of this
property in step (4), and for every prediction produced by the embedding model, we first
construct the relevant set for the respective prediction, and then perform the consistency
check relying only on the corresponding relevant sets.

Example 3. Assume that the fact α = 〈bosch, locatedIn, john〉 has been predicted by
the embedding model in step (3). Then in the consistency checking step (4) we first
construct the relevant set for α as Relv(α,G) given in Example 2 and check the consis-
tency of Relv(α,G)∪O. Clearly, we have Relv(α,G)∪O= {〈bosch, locatedIn, john〉}∪
{〈john, livesIn, germany〉, 〈john, type, person〉, 〈john, friendOf , bob〉, 〈bosch, type,
company〉} ∪ O is inconsistent, since 〈bosch, locatedIn, john〉 and {∃locatedIn− v
location} ∈ O imply that 〈john, type, location〉, which contradicts the fact that 〈john,
type, person〉 ∈ G and person u location v ⊥ ∈ O. Thus, we have that α ∪ G ∪ O
is inconsistent by monotonicity. Proposition 1 further guarantees that it is sufficient to
check the consistency of α ∪ G ∪ O this way.

3.3 Negative Sample Generalization

Given each triple of the input KG in the training step, one needs to sample not a single
corrupted triple but a set of such triples to train the embedding model at hand. In other
words, the inconsistent prediction needs to be generalized to obtain a set of similar in-
consistent facts within the KG, which ideally have the same structure. Therefore, once
an inconsistent prediction for a triple is identified, we proceed with detecting the incon-
sistency pattern from that prediction and relying on the respective pattern we generate
other similar incorrect triples (in step 5 of our method). This allows us to compute suffi-
cient number of negative samples for retraining the embedding model, and to give hints
to the embedding model about the wrong patterns that it learned, subsequently avoiding
the prediction of similar incorrect triples in next iterations.

A naive approach to obtain the generalized triples of an inconsistent predicted triple,
e.g. 〈s, p, ô〉, is to replace ô by another entity o in the input KG such that o has similar
KG neighborhood as ô. However, it might happen that only a subset of triples containing
ô is inconsistent w.r.t. the ontology. Therefore, it is sufficient to find such o that it has
similar triples as in that subset. This will increase the number of generalized triples as
demonstrated in Example 4. To compute a subset of triples of ô that is inconsistent w.r.t.
the ontology, we compute explanations for the inconsistency of Relv(〈s, p, ô〉,G) ∪O.

Example 4. Consider the KG G and ontology O as in Figure 1. Assume that α =
〈bosch, locatedIn, john〉 is the predicted triple, i.e., the embedding model predicted
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john as the object entity for the given subject bosch and relation locatedIn. The expla-
nation for inconsistency of Relv(α,G)∪O is E = EG ∪EO, for which it holds that EG =
{〈bosch, locatedIn, john〉, 〈john, type, person〉} and EO = {∃located− v location,
person u location v ⊥}. Note that there is no other entity in G that has similar triples
as those for john . However, if we restrict to the triples in the explanation for inconsis-
tency of Relv(α,G)∪O, then bob has the same neighborhood triple 〈bob, type, person〉
as john (the predicted triple is ignored). Therefore, we can take 〈bosch, locatedIn, bob〉
as another negative sample, which together with G is clearly inconsistent w.r.t. O.

To formally obtain generalized triples as in Example 4, we rely on the notion of
local type of an entity [16,17,32] as follows.

Definition 3 (Local Types). Let T be a set of triples and e an entity occurring in T.
Then, the local type of e w.r.t. T, written as τ(e,T) or τ(e) when T is clear from the
context, is defined as a tuple τ(e) = 〈τi(e), τc(e), τo(e)〉, where τi(e) = {p | 〈s, p, e〉 ∈
G}, τc(e) = {t | 〈e, type, t〉 ∈ G}, and τo(e) = {p′ | 〈e, p′, o〉 ∈ G}.The local type
t = 〈ti, tc, to〉 is smaller than or equal to the local type t′ = 〈t′i, t′c, t′o〉, written as
t � t′, iff ti ⊆ t′i, tc ⊆ t′c, and to ⊆ t′o.

Intuitively, a local type of an entity represents a set of types (τc) as well as the incoming
relations (τi) and outgoing relations (τo) for that entity in a set of triples.

Example 5 (Example 4 continued). For bob in Fig. 1, we have the local type of bobw.r.t.
G being τ(bob) = 〈{friendOf }, {person}, {worksAt}〉. The local type of john w.r.t.
EG \ α is τ(john) = 〈∅, {person}, ∅〉 and it holds that τ(john) � τ(bob).

We now define the set of generalized samples of a given inconsistent predicted triple.

Definition 4 (Generalized Samples). Let G be a KG,O an ontology, and α = 〈s, p, ô〉
be a triple in which ô is predicted by an embedding model given the subject entity
s and relation p. Furthermore, let E = EG ∪ EO be an inconsistency explanation of
Relv(α,G)∪O. Then, the set of generalized samples of α (w.r.t. ô, E , and G) is defined
as GeneralizedSamples(α, ô) = {〈s, p, o〉 | τ(ô, EG \ α) � τ(o,G)}. The generalized
samples GeneralizedSamples(β, ŝ) of β = 〈ŝ, p, o〉, in which ŝ is predicted by an em-
bedding model, is defined analogously. When it is clear from the context, we often write
GeneralizedSamples(α) without mentioning the corresponding entity.

Example 6 (Example 5 continued). According to Definition 4 and the local types of
john and bob computed in Example 5, we have GeneralizedSamples(α) = {α} ∪
{〈bosch,LocatedIn, bob〉}.

The following Lemma guarantees that if a triple is inconsistent (together with the input
KG) w.r.t. an ontologyO then all generalized triples of that triple are also inconsistent.

Lemma 2. Let G be a KG, O an ontology, α a triple such that Relv(α,G) ∪ O is
inconsistent with an explanation E = EG ∪ EO, and GeneralizedSamples(α) is the set
of generalized triples of α w.r.t. E , G, and some entity occurring in α. Then, we have
Relv(β,G) ∪ O is inconsistent for every β ∈ GeneralizedSamples(α).
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Table 2: Knowledge graph statistics.
LUBM3U Yago3-10 DBPedia15K

# Entities 127,645 123,182 12,842
# Predicates 28 37 279
# Training Facts 621,516 1,079,040 69,320
# Validation Facts 77,689 5,000 9,902
# Test Facts 77,689 5,000 19,805
# TBox Axioms 325 4,551 3,006

Proof (Sketch). W.l.o.g. let α = 〈s, p, ô〉, GeneralizedSamples(α) is w.r.t. ô, and β =
〈s, p, o〉. Using the result in [32], one can show that if 〈s, p, ô〉 ∈ EG then EG does
not contain 〈s′, p, o〉, where s 6= s′ due to the minimality of explanations. Together
with the condition τ(ô) � τ(o), we can construct a homomorphism from Relv(α,G) to
Relv(β,G), which implies that Relv(β,G) ∪ O is inconsistent. ut

We now describe the details of step (5). For each predicted triple that is inconsistent
w.r.t. the input KG and the ontology, we compute explanations for inconsistency, and for
each such explanation, we obtain the generalized triples using Def. 4. These generalized
triples are then used as negative samples to retrain the embedding model.

4 Experiments

We have implemented the proposed method in a prototype system ReasonKGE and
evaluated its performance on the commonly used datasets enriched with ontologies. In
this section, we present the results of the evaluation in terms of the impact of our method
on the quality of fact predictions compared to the baselines.

4.1 Experimental Setup

Datasets. Among commonly used datasets for evaluating embedding models, we chose
those datasets that are equipped with ontologies. More specifically, the following datasets
with their respective ontologies have been selected.

– LUBM3U: A synthesized dataset derived from the Lehigh University Benchmark
[18]. The ontology describing the university domain contains 325 axioms. The re-
spective KG stores data for 3 universities.

– Yago3-10: A subset of the widely used Yago dataset. We use the ontology with
4551 axioms introduced in [31] based on Yago schema and class hierarchy.

– DBPedia15K: A subset of DBPedia KG proposed in [24]. We exploit the general
DBPedia ontology enriched with axioms reflecting the disjointness of classes. The
ontology comprises of 3006 axioms.

The statistics of the respective datasets is presented in Table 2.
Embedding Models. To demonstrate the benefits of the proposed iterative ontology-
driven negative sampling, we apply our method over the following widely used embed-
dings: ComplEx [33] and TransE [9]. These models have been selected as prominent
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examples of translation-based and linear-map embeddings. While more recent embed-
ding models exist in the literature, as shown in [29] classical embeddings are in fact
very competitive when combined with effective parameter search. Thus, as baselines
we have selected the most widely used and popular embedding models with the best
parameters found using the LibKGE library [29].

We also consider another baseline [11] that incorporates background knowledge
into the embedding models. We refer to such technique as static sampling because in
contrast to our proposed dynamic sampling method, the approach from [11] generates
the negative samples for all triples of the KG in the pre-processing step. Since the
authors of [11] only mentioned that they utilized such ontology axioms as Domain,
Range, Functional, and Disjointness, but have not described the exact procedure of
how these have been exploited for generating negative samples, we have implemented
such static sampling strategy based on our best knowledge, and present the details of
the implementation in the extended version.3

Measures. We evaluate the performance of the embedding models in terms of the
traditional metrics i.e MRR and Hits@k in the filtered setting [9]. In addition, we also
compute the proportion of inconsistent facts (Inc@k) ranked in the top-k predictions
produced by the presented methods. The measure Inc@k intuitively reflects how well
the model is capable of avoiding inconsistent predictions (the lower the better).

System Configuration. In the experiments, we used HermiT [15] as the reasoner and
the explanation method in [20] to compute inconsistency explanations. We run Rea-
sonKGE for multiple iterations. In every iteration, the model is trained for n = 100
epochs during which, for each subject and object of a triple, m >= 1 negative exam-
ples are generated. We exploit the optimal value of m tuned for the respective baseline
model. In the first iteration, m negative samples are generated using the default random
sampling strategy4. In the subsequent iterations, we use the trained model to obtain the
top k = 1 subject and object predictions and compute the inconsistent negative samples
to be used for the next iteration of the embedding training as described in Section 3. The
number m of negative samples for the next iteration is dynamically computed based on
the statistical mean of the size of the generalized samples sets as an indicator.

4.2 Results

The results of the conducted experiments illustrate the benefit of ReasonKGE in pro-
ducing higher quality predictions with less inconsistencies compared to the baselines.

Link Prediction Quality. Table 3 reports the results for the link prediction task ob-
tained by our method and the baselines. Both TransE and ComplEx were trained us-
ing the default random sampling strategy [9], the static sampling [11], and using Rea-
sonKGE for 3 iterations. For fair comparison, the number of the training epochs was
kept the same as for ReasonKGE in all cases (i.e., 300 epochs).

One can observe that reasoning-based sampling consistently achieves better re-
sults than random sampling for training all considered embeddings on all KGs. For the

3 available at https://github.com/nitishajain/ReasonKGE
4 For each triple the subject (resp. object) is randomly perturbed to obtain m samples [9]

https://github.com/nitishajain/ReasonKGE
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Table 3: Link prediction results

Model KG Default Training Static Sampling ReasonKGE

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TransE LUBM3U 0.119 0.069 0.214 0.125 0.082 0.213 0.135 0.079 0.256
Yago3-10 0.226 0.044 0.537 0.351 0.183 0.621 0.367 0.197 0.629
DBPedia15k 0.109 0.061 0.206 0.101 0.073 0.254 0.118 0.101 0.299

ComplEx LUBM3U 0.159 0.119 0.242 0.229 0.190 0.310 0.233 0.195 0.313
Yago3-10 0.482 0.400 0.643 0.521 0.442 0.664 0.530 0.453 0.668
DBPedia15k 0.099 0.061 0.174 0.111 0.119 0.216 0.115 0.125 0.221

Table 4: Ratio of inconsistent predictions (the lower, the better).

Model KG Prediction Default Training Static Sampling ReasonKGE

Inc@1 Inc@10 Inc@1 Inc@10 Inc@1 Inc@10

TransE

LUBM3U subject 0.169 0.270 0.428 0.250 0.037 0.133
object 0.095 0.097 0.212 0.104 0.005 0.007

YAGO3-10 subject 0.075 0.280 0.629 0.492 0.075 0.273
object 0.026 0.136 0.114 0.089 0.020 0.117

DBPedia15K subject 0.311 0.652 0.401 0.663 0.217 0.585
object 0.413 0.538 0.428 0.544 0.170 0.460

ComplEx

LUBM3U subject 0.041 0.097 0.177 0.136 0.036 0.069
object 0.008 0.012 0.003 0.007 0.005 0.007

YAGO3-10 subject 0.113 0.198 0.169 0.128 0.071 0.143
object 0.037 0.115 0.065 0.084 0.015 0.074

DBPedia15K subject 0.488 0.667 0.436 0.695 0.344 0.583
object 0.397 0.585 0.365 0.528 0.318 0.533

Yago3-10 dataset the improvements are the most significant, achieving more than 10%
enhancement for all measures over TransE. This indicates the advantage of ontology-
based reasoning for enhancing the existing KG embeddings.

The comparison of our dynamic sampling method against static sampling [11] pre-
sented in Table 3 reveals that ReasonKGE outperforms the static sampling approach in
almost all cases, which illustrates the benefits of exploiting inconsistent predictions as
negative samples dynamically using our method, as opposed to their pre-computation.

By keeping the same training configuration and total number of training epochs, we
ensure that the reflected performance gains are not merely due to additional training
steps, but rather a result of the proposed reasoning-based approach.

Consistency of Predictions. In Table 4, we measure the proportion of inconsistent facts
that were obtained when retrieving top-k (k = {1, 10}) predictions for the triples in the
test set. We report the inconsistency values both for the prediction of the subject and
the object of the triple separately. From the results, we can observe that for all models
in the majority of the cases ReasonKGE managed to reduce the ratio of inconsistent
predictions over the test sets compared to the results of training the models using default
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random and static sampling. This illustrates that the proposed procedure is effective for
improving embeddings with respect to the overall consistency of their predictions.

5 Related Work

Negative Sampling Strategies. The closest to our method is the work [11], in which
ontologies are used to generate a selection of negative samples in the pre-processing
step for training a certain embedding model. While we use this pre-processing based
sampling as a baseline for comparison in Section 4, our method is different in that we
do not generate all negative examples at once, but rather compute them iteratively on
demand relying on the inconsistent predictions produced by the given embedding. The
major advantage of the ReasonKGE method compared to [11] is the dynamic and adapt-
able nature of negative sample generation, wherein, the method is able to specifically
target the weaknesses of the previously trained model by leveraging inconsistent pre-
dictions to derive negative samples, and use them for re-training of the model in next
iterations. This is in contrast to the process of precomputing negative samples using
ontology axioms as suggested in in [11].

Another related method is concerned with type-constrained negative sampling [22].
Given a triple from the KG, the negative candidates (subjects or objects) are mined by
constraining the entities to belong to the same type as that of the subject or object of the
original triple. However, unlike our inconsistency-driven method, the typed-constrained
sampling can generate false negatives. This sampling method can be in principle also
used as the starting point for our method instead of the random sampling.

More distant random negative samplings generate false candidate triples based on
the (local) closed world assumption [27]. Alternatives include Distributional Negative
Sampling (DNS) [12] and its variation [2], where during training, given a positive triple,
negative examples are generated by replacing it’s entity with other similar entities. Un-
like in our method, no ontological information is considered in these sampling strate-
gies. The same holds for the triple perturbation or triple corruption approach [30].

Nearest Neighbor and Near Miss sampling [21] resp. exploit a pre-trained embed-
ding model for generating negative samples by selecting triples that are close to the
positive target triple in vector space. Intuitively, this strategy is supposed to help the
model to learn to discriminate between positives and negatives that are very similar to
each other. These approaches are similar to ours, in that the embedding training pro-
cedure itself is exploited for the generation of negative samples. However, in [21] no
ontological knowledge is taken into account which is in contrast to our work.

Another research direction concerns making use of Generative Adversarial Net-
works (GANs) [39,35,10] for negative sampling. The work [1] presents structure-aware
negative sampling (SANS), which utilizes the graph structure by selecting negative
samples from a node’s neighborhood. The NSCaching sampling method [40] suggests
to sample negatives from a cache that can dynamically hold large-gradient samples.
While in these works negative triples are updated dynamically like in our method, these
approaches are totally different from ours, as they rely purely on the machine learning
techniques, and do not consider any extra ontological knowledge. Thus, the proposals
are rather complementary in nature.
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Integration of Ontological Knowledge into KG Embeddings. Another relevant line
of work concerns the integration of ontological knowledge directly into embedding
models (e.g., [14,11,25,41,37,22,19]), which is typically done via changes in the loss
function, rather than negative sampling.

For example, a related method Embed2Reason (E2R) has been proposed by Garg et
al. [14]. E2R relies on the quantum logic, and injects ontology axioms via the loss func-
tion, by summing up the terms relevant for these axioms. However, it is unclear how
this method captures the interaction among the axioms, which is often the reason for in-
consistency. Since the available code of [14] only supports a limited set of axioms, i.e.,
SubClassOf, SubPropertyOf, Domain, Range, which are insufficient for gener-
ating inconsistencies, we could not perform a direct comparison of our method to E2R.
Note that in general, our method is conceptually different from E2R. Indeed, in contrast
to [14], we focus on ontology-driven targeted improvements of the negative sampling
procedure with the goal of teaching a given embedding model to make only consistent
predictions, and interactions among the axioms are key to our method. Moreover, our
proposed approach can be built on top of any embedding model including [14], making
the two methods rather complementary in nature.

The recent work [37] suggests to exploit ontological reasoning for verifying con-
sistency of predictions made by a machine learning method (e.g., embedding or rule
learning). However, instead of feeding inconsistent predictions back to the given em-
bedding model, the authors propose to get rid of them and feed other consistent predic-
tions along with the original KG as input to a further KG completion method. In [19]
the ontology is explicitly included in the training data to jointly embed entities and con-
cepts. By treating the ontology and KG in the same way, only very restricted ontological
knowledge is accounted for.

Our work can be also positioned broadly within neural-symbolic methods, and we
refer the reader to [38,6] for other less related neural-symbolic approaches.
Inconsistency in Ontologies. The problems of explaining and handling inconsistency
in ontologies have been tackled in different settings [20,8,28,32,7,23]. However, typi-
cally these works focus on detecting inconsistency [20,8], scalable reasoning [28,32],
or performing reasoning in the presence of such inconsistency [7,23] assuming that the
KG is constructed and complete. In other words, these approaches deal purely with data
cleaning rather than KG completion. In contrast, our method integrates the reasoning
process into the embedding models to improve the accuracy of predicted triples.

6 Conclusion

We have presented a method for ontology-driven negative sampling that proceeds in
an iterative fashion by providing at each iteration negative samples to the embedding
model on demand from its inconsistent predictions along with their generalizations.
The main takeaway message of this work is that targeted negative example generation is
beneficial for training the model to predict consistent facts as witnessed by our empirical
evaluation on state-of-the-art KGs equipped with ontologies.

While in this work we focused on ontologies in DL-Lite, our method can be adapted
to support more expressive ontologies. In this case, the soundness will still be preserved,
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but the completeness of the generalized negative sampling step might not be theoreti-
cally guaranteed, i.e., not all possible similar negative samples will be obtained based
on a given inconsistent prediction of the embedding model. In practice, this will likely
have a small impact on the effectiveness of our method, since the majority of useful
negative samples will anyway be generated.

There are several exciting directions for future work. First, integrating the developed
negative sampling method into the combination of rule learning and embedding-based
approaches [37] for KG completion is promising. Second, extending the proposed ap-
proach to target other more expressive ontology languages is a relevant future direction.
Last but not least, adapting our method to jointly clean and complete KGs can be helpful
for facilitating the automatic KG curation.
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8. Bischof, S., Krötzsch, M., Polleres, A., Rudolph, S.: Schema-agnostic query rewriting in
SPARQL 1.1. In: ISWC. pp. 584–600 (2014)

9. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: NeurIPS. pp. 2787–2795 (2013)

10. Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings. In:
NAACL-HLT 2018. pp. 1470–1480 (2018)

11. d’Amato, C., Quatraro, N.F., Fanizzi, N.: Injecting background knowledge into embedding
models for predictive tasks on knowledge graphs. In: ESWC. p. to appear (2021)

12. Dash, S., Gliozzo, A.: Distributional negative sampling for knowledge base completion.
CoRR abs/1908.06178 (2019)

13. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph
embeddings. In: AAAI. pp. 1811–1818 (2018)

14. Garg, D., Ikbal, S., Srivastava, S.K., Vishwakarma, H., Karanam, H.P., Subramaniam, L.V.:
Quantum embedding of knowledge for reasoning. In: Neurips. pp. 5595–5605 (2019)

15. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2 reasoner. J.
Autom. Reasoning 53(3), 245–269 (2014)

16. Glimm, B., Kazakov, Y., Liebig, T., Tran, T.K., Vialard, V.: ISWC. pp. 180–195 (2014)
17. Glimm, B., Kazakov, Y., Tran, T.: Ontology materialization by abstraction refinement in horn

SHOIF. In: AAAI. pp. 1114–1120 (2017)
18. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web

Semant. 3(2-3), 158–182 (2005)



Improving Knowledge Graph Embeddings with Ontological Reasoning 17

19. Hao, J., Chen, M., Yu, W., Sun, Y., Wang, W.: Universal representation learning of knowledge
bases by jointly embedding instances and ontological concepts. In: KDD. pp. 1709–1719
(2019)

20. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in owl ontologies. In: Scal-
able Uncertainty Management. pp. 124–137 (2009)

21. Kotnis, B., Nastase, V.: Analysis of the impact of negative sampling on link prediction in
knowledge graphs. CoRR abs/1708.06816 (2017), http://arxiv.org/abs/1708.06816

22. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge
graphs. In: ISWC. pp. 640–655 (2015)

23. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query
answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015)

24. Liu, Y., Li, H., Garcia-Duran, A., Niepert, M., Onoro-Rubio, D., Rosenblum, D.S.: Mmkg:
multi-modal knowledge graphs. In: ESWC. pp. 459–474 (2019)
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