Efficient distributed discovery of bidirectional order dependencies

Bidirectional Order Dependencies (bODs)

BODs capture order relationships between lists of attributes in a relational table. They can express that, e.g., sorting books by *publication date* in ascending order also sorts them by *age* in descending order. The knowledge about order relationships is useful for many data management tasks, such as query optimization, data cleaning, or consistency checking. Because the bODs of a specific dataset are usually not explicitly given, they need to be discovered.

age1 → year-of-birth↓

age	yob
19	2001
25	1995
25	1995
31	1989
45	1975

swap

__split

	2 11/			
https://www.co2.earth/annual-co2				
year	CO2			
2019	411.49			
2018	408.59			
2017	406.59			
2016	101 20			

2016 404.28

year↑ → CO2↑

salary[↑] → tax[↑]

salary	tax
5k	1k
6k	1.5k
8k	2k
10k	3k

Discovery

cases1, $r0\downarrow \mapsto dt1$

	cases	r0	doubling time
t_1	46	1.5	4 d
t_2	57	1.8	7 d
t_3	102	1.7	10 d
t_4	102	1.4	12 d
t_5	188	1.4	14 d

Distributed algorithm

DISTOD is a distributed bOD discovery algorithm, whose execution time scales with the available hardware. DISTOD uses a scalable, robust, and elastic discovery approach based on **actor programming** that combines efficient pruning techniques for bOD candidates in a setbased canoncial form with a novel, reactive, and distributed search strategy.

Evaluation

Dataset	Columns	Rows	Results	FASTOD	FASTOD (Spark)	DISTOD
Adult	15	32 561	1 218	1h	6m	1m
TPC-H	16	6m	17 744	ООМ	OOM	17h
Letter	17	20 000	2 263	4.5h	22m	5m
NCVoter	19	999 999	4 934	ООМ	TL	10 h
Flight	21	499 999	2 543	ООМ	16m	4m
Horse	29	300	2.4m	ООМ	TL	7h
FD-Reduced	30	250 000	90 313	44m	22m	4m

Reactive discovery is 4x - 12x faster

As scalable as batchoriented discovery (Spark)

Sebastian Schmidl Thorsten Papenbrock

Information Systems Group Hasso Plattner Institute, University of Potsdam Potsdam, Germany

E-Mail: firstname.lastname@hpi.de

