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Abstract
Bidirectional order dependencies (bODs) capture order relationships between lists of attributes in a relational table. They
can express that, for example, sorting books by publication date in ascending order also sorts them by age in descending
order. The knowledge about order relationships is useful for many data management tasks, such as query optimization, data
cleaning, or consistency checking. Because the bODs of a specific dataset are usually not explicitly given, they need to be
discovered. The discovery of all minimal bODs (in set-based canonical form) is a task with exponential complexity in the
number of attributes, though, which is why existing bOD discovery algorithms cannot process datasets of practically relevant
size in a reasonable time. In this paper, we propose the distributed bOD discovery algorithm DISTOD, whose execution time
scales with the available hardware. DISTOD is a scalable, robust, and elastic bOD discovery approach that combines efficient
pruning techniques for bOD candidates in set-based canonical form with a novel, reactive, and distributed search strategy.
Our evaluation on various datasets shows that DISTOD outperforms both single-threaded and distributed state-of-the-art bOD
discovery algorithms by up to orders of magnitude; it can, in particular, process much larger datasets.

Keywords Bidirectional order dependencies · Distributed computing · Actor programming · Parallelization · Data profiling ·
Dependency discovery

1 Distributed discovery of order
dependencies

Order is a fundamental concept in relational data because
every attribute can be used to sort the records of a relation.
Some sortings represent the natural ordering of attribute val-
ues by their domain (e. g., timestamps, salaries, or heights)
and, hence, express meaningful statistical metadata; other
sortings serve technical purposes, such as data compression
(e. g., via run-length encoding [1]), index optimization (e. g.,
for sorted indexes [3]), or query optimization (e. g., when
picking join strategies [23]).

Because a relational instance can follow only one sorting
at a time, dependencies between different orders help to find
optimal sortings; they also reveal meaningful correlations
between attribute domains.
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An order dependency (OD) expresses an order relation-
ship between lists of attributes in a relational table. More
specifically, an OD X �→ Y specifies that when we order the
tuples of a relational table based on the left-hand side attribute
list X, then the tuples are also ordered by the right-hand side
attribute list Y. The tuple order is lexicographical w. r. t. the
attribute values selected byX andY, respectively. This means
that ties in the order implied by the first attribute in the list are
resolved by the next attribute in the list (and so forth). This
resembles the ordering produced by the ORDER BY-clause
in SQL. A bidirectional order dependency (bOD), such as
[A↑, B↓] �→ [C↑], lets us define the order direction of the
individual attributes involved in the bOD; in this example:
A in ascending order with ties resolved by B in descending
order sorts C in ascending order. ODs are closely related to
functional dependencies (FDs), which have been extensively
studied in research [16], but due to their consideration of
order, ODs subsume FDs [28].

The dataset shown in Table 1, for example, fulfills the
bOD [ADelay↑] �→ [ADGrp↑]. In other words, when we
sort the tuples by the ADelay attribute, then they are also
ordered by the ADGrp attribute. Note that the inverse bOD
[ADGrp↑] �→ [ADelay↑] does not hold, because the value
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in attribute ADGrp of the tuple t5 is greater or equal to the
value in ADGrp of tuple t9, but t5’s value in ADelay is
smaller than t9’s value in ADelay.

With order dependencies, we know how the ordering of
tuples based on certain attributes translates to the ordering
based on other attributes. This knowledge can be used in var-
ious situations: During query planning, for example, ODs
help to derive additional orders that enable further optimiza-
tions, such as eliminating costly sort operations or selecting
better join strategies [28]. In database design, ODs can be
used to, for example, replace dense implementations of sec-
ondary indexes with sparse implementations if we know that
the tuple ordering by the secondary index’ attributes is deter-
mined by the ordering of the primary key attributes [6]. For
consistency maintenance and data cleaning, ODs can be
considered as integrity constraints (ICs). Like all other ICs,
semantically meaningful ODs can describe business rules so
that any violation of an ODs indicates an error in the dataset.
In this way, ODs can guide automatic data cleaning [11].

Although certain ODs can be obtained manually, this pro-
cess is very time-consuming and difficult. ODs are naturally
expressed using lists of attributes, which leads to a search
space that grows factorial with the number of attributes in a
dataset. Fortunately, with the polynomial mapping of ODs to
a set-based canonical form, which was presented by Szlichta
et al. [25], we can construct a search space for ODs that
grows only exponentially with the number of attributes. The
search space is still too large for manual exploration, but it
is small enough for automatic OD discovery algorithms. An
example of a set-based OD is {AirTime, DayOfWeek,

FlightNum, TailNum} : ArrTime↑ ∼ ADelay↑,
which is valid in the flight dataset (see Sect. 9). The OD
specifies that for flights flown by the same aircraft on the
same route and day for the same flight time, the delay at the
destination airport monotonically increases over the day. We
define set-based ODs in more detail in Sect. 3.2.

To automate the discovery of ODs, researchers have pro-
posed different order dependency [5,15,26] and bidirectional

order dependency [25] discovery algorithms. Depending
on the OD representation, these approaches have a facto-
rial [5,15] or exponential [25,26] worst-case complexity in
the number of attributes. Despite various clever pruning
strategies, none of the existing OD discovery algorithms can
process datasets of practically relevant size in a feasible time.
The FASTOD-BID algorithm, for example, takes almost 5h
on the 700 KiB letter dataset with 17 attributes and 20K
records, and it exceeds 58 GB of memory on the 70 MiB
flight dataset with 21 attributes and 500K records (see
Table 2 in Sect. 9).

To overcome existing algorithmic limitations, we propose
DISTOD, a scalable (in number of cores and number of com-
puters), robust (against limited memory), elastic (in adding
and removing of computers at runtime), and applicable (i.e.,
with semantic pruning strategies equipped) bOD discovery
algorithm.

DISTOD pursues a novel, reactive bOD search strategy
that allows it to distribute both the discovery process and
the validation of bODs on multiple machines in a compute
cluster without a need for global parallelization barriers.
The algorithm discovers all minimal bODs by deliberately
centralizing the candidate generation and pruning; to maxi-
mize the efficiency and scalability of the discovery process,
it dynamically parallelizes and distributes all other parts of
the discovery via reactive programming strategies. DISTOD
is based on the canonical representation of set-based bODs
from Szlichta et al. [25], which allows it to traverse a rela-
tively small set-containment lattice and to benefit from the
known pruning rules.

The motivation for this research project is the observation
that most distributed data profiling algorithms, including [14,
21,22,33], are built on top of dataflow-based distributed com-
puting frameworks, such as Apache Spark [31] or Apache
Flink [30]. These frameworks force the discovery algorithms
into batch processing, which is an unsuitable paradigm for all
known dependency discovery approaches, because they rely
on dynamic pruning and dynamic candidate generation tech-

Table 1 flight dataset
excerpt. ⊥ denotes null values

ID Month Day Code Fips State DDelay ADelay ADGrp

t0 12 3 CLE 39 Ohio 80 72 4

t1 12 14 ORD 17 Illinois −4 −10 −1

t2 12 14 JFK 36 New York −6 0 0

t3 12 16 ORD 17 Illinois 13 59 3

t4 12 20 CLE 39 Ohio ⊥ ⊥ ⊥
t5 12 24 ORD 17 Illinois 5 −2 −1

t6 12 27 BWI 24 Maryland −5 −23 −2

t7 12 28 ORD 17 Illinois 57 82 5

t8 12 30 SGF 29 Missouri 2 0 0

t9 12 30 ORD 17 Illinois −5 −14 −1
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niques. To implement the dynamic parts of the discovery, the
algorithms split the search into multiple runs of batch pro-
cesses and utilize the synchronization barriers in between the
distributed runs for pruning and dynamic search decisions.
For this reason, their performance implicitly suffers from
idle times due to the synchronization barriers, unnecessary
re-partitioning of data, and the inability to make dynamic
search decisions within batch runs. We, therefore, advocate
the use of a reactive computing paradigm, i. e., actor pro-
gramming [8], for the implementation of distributed data
profiling algorithms. At the cost of harder programming, we
can thereby find superior search strategies, minimize idle
times, avoid certain redundant work, optimize resource uti-
lization, and support elasticity.

In this paper, we first introduce related work about the
discovery of ODs (Sect. 2) and the formal foundations on the
set-based canonical form for bODs (Sect. 3). We then make
the following contributions:

Distributed, reactive search strategy We introduce a
distributed, reactive bOD search strategy that breaks the
strictly level-wise search approach of FASTOD-BID [25]
up into fine-grained tasks that represent constant and
order compatible bOD candidates separately. A reac-
tive resolution strategy for intra-task dependencies allows
a synchronization barrier-free work distribution for the
candidate validation tasks (Sects. 4 to 6).
Parallel candidate generationWe present a centralized,
but highly parallel candidate generation algorithm. The
algorithm guarantees that all minimal bODs are gener-
ated while traversing the candidate lattice (Sect. 5).
Revised validation algorithm We use a new index data
structure, which we call inverted sorted partition, to
improve the efficiency of the order compatible bOD val-
idation algorithm from [25] (Sect. 6).
Hybrid, dynamic partition generation We contribute
a hybrid and dynamic generation algorithm for stripped
partitions that either uses a recursive partition generation
scheme or a direct partition product to generate a stripped
partition on-demand (Sect. 7).
Effective memory management We present a dynamic
memory management strategy that caches intermediate
and temporary results for as long as possible; freeing
them as soon as memory runs short (Sect. 7).
Elasticity and semantic pruning We equip DISTOD
with elasticity properties (Sect. 8.1) and semantic pruning
strategies (Sect. 8.2) to enable the discovery of bODs in
datasets of practically relevant size.
Evaluation We evaluate the runtime, memory usage,
and scalability of DISTOD on various datasets and
show that it outperforms both the single-threaded algo-
rithm FASTOD-BID and the distributed algorithmDIST-
FASTOD-BID by up to orders of magnitude (Sect. 9).

2 Related work

In 1982, Ginsburg and Hull were the first to consider the
ordering of records w.r.t. different lists of attributes in a rela-
tion as a kind of dependency [7]. Their work introduced
point-wise orders with a complete set of inference rules and
shows that the inference-problem in this formalism is co-
NP-complete. In 2012, Szlichta et al. formally defined order
dependencies as a dependencybetween lists of attributes such
that if the relation is ordered by the values of the first attribute
list, it is also ordered by the values of the second attribute
list [29]. Like SQL ORDER BY operators, the formalism
uses a lexicographical ordering of tuples by the attribute
lists. Szlichta et al. also introduced a set of axioms and the
proof that ODs properly subsume FDs. The list-based for-
malization was adopted by many following works on OD
profiling [5,15,26]. Later, bidirectional order dependencies
(bODs)—a combination of ascending and descending orders
of attributes—have been introduced [28]. The authors of [29]
and [28] show that the inference problem for both ODs and
bODs is co-NP-complete. In this work, we discover bODs
using the set-based formalism as defined in [28]. We now
discuss existing OD and bOD discovery algorithms.
Order dependency discovery The first automatic OD discov-
ery algorithm, called ORDER, was proposed by Langer and
Naumann [15]. It traverses a list-containment lattice of OD
candidates to find (all) valid,minimal dependencies in a given
dataset. The algorithm has a factorial worst-case complex-
ity in the number of attributes, is sound, but is intentionally
incomplete as confirmed in [25,26].

Inspired by [4] and [18], Jin et al. proposed a hybrid
OD discovery approach that discovers ODs by alternately
comparing records on a sample of the dataset and validat-
ing candidates on the entire dataset [12]. Their approach can
discover ODs as well as bODs. The authors show that their
algorithm discovers the same set of ODs as ORDER; hence,
the algorithm also produces incomplete results.

FASTOD proposed by Szlichta et al. is the first algo-
rithm that discovers complete sets of minimal ODs [26]. By
mapping ODs to a new set-based canonical representation,
the algorithm has only exponential worst-case complexity in
the number of attributes and linear complexity in the num-
ber of tuples. The authors also provide effective inference
rules for the new OD representation. With the algorithm
FASTOD-BID, the same authors later expanded their dis-
covery approach to bODs [25]. They show that discovering
bidirectional ODs does not take significantly longer than dis-
covering unidirectional ODs. We base our algorithm on the
same set-based canonical representation of bODs and the
corresponding definition of minimality to also benefit from
the reduced search space size and efficient pruning rules.

With OCDDISCOVER, Consonni et al. took another
approach to the OD discovery task by exploiting order
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compatibility dependencies (OCDs) [5]. An OCD is a spe-
cial form of OD in which two lists of attributes order one
another if they are concatenated [29]. Unfortunately, OCD-
DISCOVER uses an incorrect definition of minimality and,
therefore, prunes the search space too aggressively; conse-
quently, the results are incomplete [27].
Distributed order dependency discovery Because FASTOD-
BID is the only complete and correct OD algorithm, not
much research exists on distributed OD discovery. In [22],
Saxena et al. proposed common map-reduce style primi-
tives (based on Apache Spark) into which they could break
down any existing data profiling algorithm. In this way, they
presented distributed versions of different dependency dis-
covery algorithms including FASTOD-BID—we call this
implementation DIST-FASTOD-BID. Performance-wise, all
these algorithms suffer fromnon-optimal resource utilization
because batch-oriented algorithms frequently re-partition the
data and contain (many) hard synchronization barriers when
used for dynamic discovery algorithms. They also do not sup-
port elasticity, i. e., they struggle with flexible cluster sizes,
where nodes enter and leave at runtime. For these reasons,
we use the reactive actor-programmingmodel for distribution
and parallelization, which leads to a fundamentally different
algorithm design. Our approachwaives hard synchronization
barriers, reactively optimizes the load balancing, and reduces
data communication costs.

3 Foundations

In this paper, we use the following notational conventions:

R denotes a relation and r a specific instance of R.
A and B, C, etc., denote single attributes from R.
t and s denote tuples of a relational instance r.
tA denotes the value of an attribute A in a tuple t .
X and Y , etc., are sets of attributes and Xi the i th element
of X with 0 ≤ i < |X |. We use Wi to indicate subsets
with |Wi | = |X | − 1 and Zi to indicate supersets with
|Zi | = |X | + 1 for a given attribute set X .
X and Y, Z, etc., are lists of attributes and Xi the i th ele-
ment of X with 0 ≤ i < |X|. [ ] is the empty list and
[A | X] denotes a list with head A and tail X. Lists and
sets with the same name reference the same attributes,
i. e., set X , contains all distinct elements from list X.

In this section, we first formally define bODs, then we
recap the set-based canonical form for bODs [25], and
finally, we describe the core concepts of actor programming
our means to dynamically distribute the discovery process
in a cluster.

3.1 Order dependencies

Following the definitions for bidirectional order dependen-
cies given in [28], we first define order specifications, which
specify how to sort the tuples of a dataset based on mul-
tiple attributes w. r. t. different order directions (ascending
or descending). It corresponds to the ORDER BY-clause
in SQL and produces a lexicographical ordering.

Definition 1 An ordering based on an attribute A ∈ R can be
either ascending or descending. To indicate the order direc-
tion of a marked attribute A, we use A↑ for ascending and
A↓ for descending. An order specification is a list of marked
attributes denoted asXwithXi ∈ R. For attributes without an
explicit order direction, we implicitly assume an ascending
(↑) order.

Using order specifications, we can now introduce bidirec-
tional order dependencies [28].

Definition 2 A bidirectional order dependency (bOD) is a
statement of the form X �→ Y (read: X orders Y) specifying
that ordering a relation r by order specification X also orders
r by order specification Y, where X ⊂ R and Y ⊂ R. We
use the notation X ↔ Y (read: X and Y are order equiv-
alent) if X �→ Y and Y �→ X. For XY ↔ YX, the two
order specifications X and Y are order compatible and we
write X ∼ Y. Table r over R satisfies a bOD X �→ Y if
∀s, t ∈ r : s 
X t ⇒ s 
Y t . The lexicographical order
operator
Z for an order specificationZ and the tuples s, t ∈ r
is defined as:

s 
Z t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z = [ ]
Z = [A↑ | T] ∧ sA < tA
Z = [A↓ | T] ∧ sA > tA
Z = ([A↑ | T] ∨ [A↓ | T]) ∧ sA = tA ∧ s 
T t

It is s ≺Z t if s 
Z t but t �Z s.

The lexicographical order operator
Z defines aweak total
order over a set of tuples.Weassume that numbers are ordered
numerically, strings are ordered lexicographically, and dates
are ordered chronologically.

If X �→ Y, then any ordering of tuples for any table r
that satisfies X also satisfies Y. Considering our example
in Table 1, i. a., the following bODs hold: [ADelay] �→
[ADGrp], [Code↑] �→ [Month↓], [ADelay] �→ [ADGrp,

DDelay], [ADGrp, DDelay] �→ [ADelay], and
[State↑, Day↓] �→ [Fips↑]. Note that these bODs
do hold in our example table and not necessarily in general.

3.2 Set-based canonical bODs

The search space of bODs in list-based formX �→ Y (seeDef-
inition 2) grows factorial with the number of attributes [15].
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Despite clever candidate pruning rules, this growth defines
the complexity of all bOD discovery algorithms that use the
list-based bOD formalization. Hence, we now introduce (and
later use) a set-based bOD formalization, as defined in [25].
Set-based bODs span much smaller set-containment candi-
date lattices similar to, e. g., FD discovery algorithms like
TANE [10], that grow only exponential with the number of
attributes and, therefore, make an efficient discovery feasi-
ble. For space reasons, we do not repeat themapping between
set-based and list-based bODs, all proofs, and the axioms for
set-based bODs and refer to [25] for details.

First,we introduce equivalence classes andpartitions con-
sistent with [9] and [25]:

Definition 3 An equivalence classw. r. t. a given attribute set
is denoted as E (tX ). It groups tuples s and t together if their
projection on X is equal: E (tX ) = {s ∈ r | sX = tX } and
X ∈ R. The attribute set X is called context.

This means that all tuples in an equivalence class E (tX )

have the same value (or value combination) in X . Partitions
group equivalence classes by a common attribute set:

Definition 4 A partition ΠX is a set of disjoint equivalence
classeswith the same set of attributes:ΠX = {E (tX ) | t ∈ r}.

From our example dataset in Table 1, we can extract, for
example, the partitionΠ{State} = {{t0, t4}, {t1, t3, t5, t7, t9},
{t2}, {t6}, {t8}}. With equivalence classes and partitions, we
now define the two set-based canonical forms for bODs [25,
Definition 9]: constant bODs and order compatible bODs.
Constant bODs

Definition 5 A constant bOD is a marked attribute A that
is constant within each equivalence class w. r. t. the set of
attributes in the context X . It is denoted as X : [ ] �→ A.
It can be mapped to the list-based bODs X′ �→ X′A for all
permutations X′ of X.

In our example dataset, i. a., the following constant bODs
are valid: {} : [ ] �→ Month and {ADelay} : [ ] �→ ADGrp.
Constant bODs directly represent FDs [25]. They can be vio-
lated only by so-called splits.

Definition 6 A split w. r. t. a constant bOD X : [ ] �→ A is
a pair of tuples s and t such that both tuples are part of the
same equivalence class E (tX ) but sA �= tA.

The bOD {ADGrp} : [ ] �→ ADelay is not valid in our
example dataset because it is invalidated by at least one split
(e. g., tuple t1 and t5).
Order compatible bODs

Definition 7 An order compatible bOD is denoted as X :
A ∼ B and states that two marked attributes A and B are
order compatible within each equivalence class w. r. t. the set
of attributes in the context X . It can be mapped to a list-based
bOD X′A ∼ X′B for any permutation X′ of X.

A valid order compatible bOD of our example dataset is
{ } : Fips↑ ∼ State↑. It tells us that when we order
the dataset by Fips it is also ordered by State. Order
compatible bODs are violated by so-called swaps:

Definition 8 A swap w. r. t. an order compatible bOD X :
A ∼ B is a pair of tuples s and t such that both tuples are part
of the same equivalence class E (tX ) and s ≺A t but t ≺B s.

The order compatible bOD { } : Fips↑ ∼ State↓,
for example, is not valid in Table 1, because, i. a., t9 and t6
form a swap. Discovery algorithms for bODs in set-based
form use both splits and swaps to validate constant and order
compatible bOD candidates.
Mapping from list to set-based form List-based bODs can
be mapped to a set of set-based bODs in polynomial time.
This mapping is based on the fact that X �→ Y is valid only
if X �→ XY and X ∼ Y are valid as well [25, Theorem 2].
X �→ XY ensures that there are no splits and X ∼ Y ensures
that there are no swaps that falsify the bOD. As we have seen
in Definitions 6 and 8, the two set-based canonical forms for
bODs enforce the same constraints.

Definition 9 A list-based bOD X �→ Y is valid iff the two
following statements are true: First, ∀A ∈ Y the set-based
bOD X : [ ] �→ A is valid and, second, ∀i ∈ {1, . . . ,

|X|}, j ∈ {1, . . . , |Y|} the set-based bOD {X1, . . . , Xi−1, Y1,
. . . , Y j−1} : Xi ∼ Y j is valid.

3.3 Actor programmingmodel

The actormodel is a reactive programming paradigm for con-
current, parallel and distributed applications [8]. It helps to
avoid blocking behavior via isolation and asynchronousmes-
sage passing. The core primitive in this model are actors,
which are objects with strictly private state and behav-
ior. Actors are dynamically scheduled on threads by the
actor runtime and, hence, can execute tasks in parallel.
They communicate within and across process boundaries via
asynchronous messages, which are immutable objects with
arbitrary, but serializable content. Incoming messages to an
actor are buffered in the actor’smailboxes and then processed
sequentially, so all parallelization happens between actors but
not within one actor.

The strong isolation of actors and their lock-free, reactive
concurrency model supports the development of highly scal-
able, but still dynamic algorithms [32], which is needed for
search tasks, such as dependency discovery. Batch process-
ing frameworks for distributed computing, such as Apache
Spark [31] or Apache Flink [30], impose stricter workflows
that sacrifice algorithmic flexibility to ease the implementa-
tion. Therefore, we implement our algorithm with the Akka
toolkit [24] for actor programming.
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4 Efficient distributed bOD discovery

In this section, we give an overview of our scalable, robust,
and elastic bOD discovery algorithm DISTOD. DISTOD
is executed on a cluster of network-connected compute
machines (nodes). The algorithm assumes an asynchronous,
switched network model, in which messages can be arbitrar-
ily dropped, delayed, and reordered. We now first introduce
the DISTOD algorithm and, then, describe its architecture.

4.1 DISTOD algorithm

DISTOD is a discovery algorithm that traverses a bOD can-
didate lattice based on all possible sets of attributes reactively
breadth-first. Figure 1 shows a snapshot of such a set-lattice
for the attributes A, B,C,D, where some nodes have already
been processed (bold nodes) and others have been pruned
(dashed nodes). DISTOD starts the searchwith singleton sets
of attributes and progresses to ever-larger sets of attributes in
the lattice. When processing node X , it checks the following
bODs: Constant bODs of the form X \ {A} : [ ] �→ A, where
A ∈ X , and order compatible bODs of the form X \ {A,

B} : A ∼ B, where A, B ∈ X and A �= B. Following
FASTOD-BID’s bottom-up search strategy [25], DISTOD
can use the same minimality definitions and pruning rules
that guarantee that only minimal and valid bODs are added
to the result set (see Sect. 5). DISTOD produces exactly the
same results as FASTOD-BID.

Although both DISTOD and FASTOD-BID use the same
formalisms and pruning rules, DISTOD does not generate
the candidate lattice level-wise, but instead uses a task-based
approach that interleaves candidate generation, validation,
and pruning. Hence, there are no synchronization barriers
between the three steps and the algorithm can use the avail-
able resources in its distributed environmentmore effectively.
In theory, DISTOD still follows the following high-level
steps proposed by FASTOD-BID, but interleaved: (i) initial-
ization and generation of the initial candidates (ii) candidate
validation (iii) node pruning (iv) generation of the next can-
didates. The steps (ii) to (iv) repeat until all candidates
have been processed. Step (ii) is explained in Sect. 6, while
steps (i), (iii), and (iv) are subject of Sect. 5. Interleaving
the four main algorithm steps means that they may occur
concurrently for different nodes in the lattice. We do not
strictly enforce that a level li has to be completed before the
next level li+1 is started. In our task-based approach, each
node (attribute set X ) in the candidate lattice represents a
task, whose candidates have to be generated, validated, and
pruned. DISTODworks on these tasks in parallel and a set of
rules ensures that only minimal and non-pruned candidates
are checked. Hence, a snapshot of the candidate lattice of a
running instance of DISTOD might look like Fig. 1, where
some high level nodes (e.g., {A, B, C}) have already been

processed while lower level nodes (e.g., {A,D}) still need to
be finished.

A single central master actor is responsible for maintain-
ing a consistent view on the candidate lattice, performing
minimality checks, and executing pruning decisions. Once
the master has generated a candidate, the candidate can be
validated independently of other candidates, which allows
us to distribute these checks to different compute nodes. We
describe the candidate generation in detail in Sect. 5 and the
validation of candidates in Sect. 6. Section 7 explains how
data are managed in DISTOD.

4.2 DISTOD architecture

TheDISTOD system consists of a cluster with a single leader
node and various follower nodes. The leader node is the ini-
tial connection point for the cluster setup and it is responsible
for managing the cluster. The single leader hosts the master
component that is responsible for the generation of minimal
candidates and all pruning decisions. The leader distributes
validation jobs to the follower nodes, which in turn send
the results back to the leader. We assume that all input data
physically resides on the leader node. On algorithm startup,
the leader automatically replicates the input data to the other
nodes in the system; during the discovery, it writes the final
results to the leader node’s disk. Each node of the DISTOD
cluster is started individually either immediately or later at
runtime if more compute power is needed. A common seed
node configuration ensures that all nodes find each other to
form the DISTOD cluster. Hence, the start of DISTOD is not
synchronized across nodes and the algorithm accepts fol-
lower nodes for validation tasks until the leader ends the
discovery. This reactive startup strategy enables elasticity
(see Sect. 8.1) and improves resource usage because the can-
didate processing begins as soon as possible, i. e., it does not
wait until all nodes are ready.

Following the actor programming model, DISTOD con-
sists of different actors that communicate using message-
passing. Each node in theDISTOD cluster runs a set of actors
which are grouped into five modules (see Fig. 2):

Master module The master module consists of the mas-
ter components. Its actors are tasked with input, output,
and state management as well as candidate generation.
The master module is available only on the leader node.
Worker module The worker module contains actors
responsible for the validation of bOD candidates and
sending them back to the master components. The actors
in this module can be spawned on all nodes.
Partition management module The partition manage-
ment module hosts the actors storing the partitions (see
Definition 4 on Page 5), which are used to validate bOD
candidates. This module is available on all cluster nodes.
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Fig. 1 Snapshot of a set lattice
for the attributes A, B,C,D.
Bold nodes have already been
processed by DISTOD, thin
nodes still await processing, and
dashed nodes have been pruned
from the lattice

Leader module The leader module contains actors con-
trolling the shutdown procedure and the replication of the
initial partitions. It is available on the leader node only.
Follower module The follower module contains puppet
actors for the shutdown procedure and the partition repli-
cation. They are directly controlled by the corresponding
actors in the leader module and steer the local parts of
both processes on the follower nodes. They are placed
only on the follower nodes.

The leader node hosts the actors from the master, partition
management, and leader module; the follower nodes host the
actors from the worker, partition management, and follower
module. In this passive leader setup, the leader node does
not host actors from the worker module and, therefore, does
not perform expensive bODcandidate validations. The active
leader setup, in contrast, hosts the worker module also on the
leader node so that the leader can contribute spare resources
to candidate validations; the active leader is also required for
stand-alone executions on one node without follower nodes.
In this setup, the master module actors are run on separate
high-priority threads to ensure that the leader node remains
reactive and can answer requests from the other nodes despite
the hosting of worker actors. All our experiments use the
active leader setup, but we recommend passive leader for
particularly wide datasets with many bODs.

The actors of DISTOD are depicted with rounded corners
in Fig. 2. The algorithm uses the master-worker pattern to
work on the validation tasks in parallel. The Mastermodule
is responsible for creating and maintaining the candidate lat-
tice. It generates the bOD candidates, creates validation jobs,
and distributes them to the Worker actors via the dynamic
work pulling pattern, which ensures a balanced load distribu-
tion. By passing all modifications through the Master actor,
it maintains a consistent view on the candidate lattice. It also
performs all pruning decisions and maintains the job queue.
The MasterHelper actors support the Master actor by
performing parallelizable tasks, such as the candidate gen-
eration or job-to-Worker dispatching. Section 5 describes
how DISTOD ensures minimality and consistent pruning of
bODs.

The Worker actors validate the bOD candidates, which
is the most time-consuming part of the discovery. All
Workers are supervised by a local WorkerMgr actor,
which ensures that the system always operates at full capac-
ity. The Workers emit valid bODs to the local RCProxy to
immediately request a new validation job from the Master
without waiting for result transmission. The RCProxy col-
lects valid bODs from multiple Workers in a batch before
reliably sending them to the single ResultCollector
actor, which is responsible for formatting the results in a
human-readable format and writing them to a file. Every
batch from an RCProxy is immediately and asynchronously
flushed to disk. This means that DISTODoutputs valid bODs
progressively to a file on disk while the algorithm is still run-
ning. In this way, DISTOD can be stopped early, if the result
set is already satisfactory.

The validation of bODs is performed using partitions
(see Definition 4) of the original input dataset. Section 6
describes this approach in detail. At the start of the algo-
rithm, theDataReader actor reads the input dataset, parses
it, and uses multiple Partitioner actors to create the ini-
tial partitions, which are then sent to the PartitionMgr
actor. The PartitionMgr stores the initial partitions and
caches intermediate partitions. All requests for partitions
from the local Workers are send to the PartitionMgr.
If a requested partition is available in the cache, it is directly
served to the Worker; otherwise, a partition generation job
is sent to one of the PartitionGen actors. They perform
the partition generation as described in Sect. 6 and return the
partition to the PartitionMgr, which inserts the partition
into the cache and forwards it to the requesting Worker(s).

If DISTOD runs onmultiple nodes, some additional actors
are needed for the clustermanagement. Figure 2 depicts them
in the gray leader and follower modules. Since each node
requires the initial partitions,we replicate the initial partitions
from the leader’s PartitionMgr to the PartitionMgr
actors on all follower nodes via a side-channel implemented
by the temporary PartitionRepl actors on the follower
nodes and the corresponding PMEndpoint actors on the
leader node (cf. Sect. 7.1). In addition to the partition repli-
cation, the algorithm also ensures that all nodes of the
DISTOD cluster shut down cleanly at the end of the algo-
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Fig. 2 DISTOD’s architecture consisting of multiple actors grouped
into logical modules. Multiple instances of the same actor type are
indicated with indices i , j , and k, where i and j control the paral-
lelism and k ∈ [0 . . .#nodes − 1]. Unidirectional arrows indicate

unidirectional communication, i. e., asynchronous message sends, and
bidirectional arrows indicate bidirectional communication, usually as
request-response pairs

rithm and that all results are flushed to disk beforehand.
This is handled by a coordinated shutdown protocol imple-
mentedusing theShutdownCoord actor on the leader node
and the Executioner actors on the follower nodes. The
ShutdownCoord actor implements a registry for follower
nodes and drives the shutdown process.

5 Candidate generation

Like all existing algorithms, which are, i. a., [5,10,15,25,26],
DISTOD uses a shared lattice data structure that tracks the
results of the candidate validations to guarantee complete and
correct results. This data structure is also used to check the
minimality constraints during candidate generation. Since
distributing this data structure causes a significant com-
munication, i.e., synchronization, overhead that cannot be
compensated by gains in parallelization, DISTOD sticks to
a non-distributed, centralized candidate tracking and gen-
eration approach. A central component on the leader node,
the Master, watches over intermediate results and ensures
completeness and correctness of the algorithm. It generates
bOD candidates, checks the candidates’ minimality, and per-
forms the candidate pruning because these three parts of the
discovery algorithm rely on information about other nodes in
the set lattice. All other parts of the algorithm can be executed
independently of each other and, hence, they are distributed
to the compute nodes. Intermediate results and pruning data

are sent to the Master, which integrates them into its encap-
sulated state and considers them for the pruning decisions.

In this section, we first define minimality for bODs
(Sect. 5.1) and then discuss how DISTOD ensures that only
minimal bOD candidates are generated (Sect. 5.2). After-
ward, we explain DISTOD’s candidate generation algorithm
(Sect. 5.3).

5.1 Trivial andminimal bODs

Like other dependency discovery algorithms, DISTOD out-
puts only minimal, non-trivial bODs. Non-minimal and triv-
ial bODs can easily be inferred from the result set using the
axioms for set-based bODs [25, Figure 5]. For triviality and
minimality, we adopt the definition of FASTOD-BID [25] so
that we can use the same highly effective pruning rules:

Definition 10 A constant bOD X : [ ] �→ A is trivial iff
A ∈ X . An order compatible bOD X : A ∼ B is trivial iff
A ∈ X , B ∈ X , or A = B.

Definition 11 A constant bOD X : [ ] �→ A is minimal iff
it is not trivial and there is no context Y ⊂ X , such that
Y : [ ] �→ A holds in the instance r. An order compatible
bOD X : A ∼ B is minimal iff it is not trivial and there is
no context Y ⊂ X , such that Y : A ∼ B, X : [ ] �→ A, or
X : [ ] �→ B hold in r.

As [25] shows, we can further reduce the number of bODs
that we have to consider in our discovery algorithm by elim-
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inating bODs with similar semantics. Constant bODs of the
form X : [ ] �→ A↑ and X : [ ] �→ A↓ are semantically
equivalent (cf. [25, Revers-I in Figure 5]). Thus, we consider
only constant bODs of the form X : [ ] �→ A↑. Order com-
patible bODs of the form X : A↑ ∼ B↑ and X : A↑ ∼ B↓
eliminate X : A↓ ∼ B↓ and X : A↓ ∼ B↑ respectively by
Reverse-II [25, Figure 5]. Thus, we consider only order com-
patible bODs of the form X : A↑ ∼ B↑ and X : A↑ ∼ B↓.
In summary, we use the following minimality pruning rules:

1. All relevant bODcandidates have the form X : [ ] �→ A↑,
X : A↑ ∼ B↑, or X : A↑ ∼ B↓.

2. A constant bOD candidate X : [ ] �→ A↑ is not minimal
if

(a) it is trivial (A ∈ X ) or
(b) there is a valid bOD Y : [ ] �→ A↑, where Y ⊂ X .

3. An order compatible bOD candidate X : E ∼ F with
(E, F) = (A↑, B↑) or (E, F) = (A↑, B↓) is not minimal if

(a) it is trivial (A ∈ X , B ∈ X , or A = B) or
(b) there is a valid bOD Y : E ∼ F, where Y ⊂ X , or
(c) there is a valid bOD X : [ ] �→ A↑ or
(d) there is a valid bOD X : [ ] �→ B↑.

Similar to TANE and just like FASTOD-BID, our candi-
date generation tracks all dependency candidates that either
have not been tested yet or are known to be non-valid; these
candidates will eventually lead to minimal bODs. Each
node X in the candidate lattice, i. e., the candidate state S ,
stores its untested/non-valid constant bOD candidates in the
candidate setS (X).Cc and its untested/non-valid order com-
patible bOD candidates in the candidate set S (X).Co. An
untested set of candidates may still result in valid minimal
bODs. Removing valid bODs from the set after their vali-
dation enforces all pruning rules listed above. The sets then
fulfill the following definitions:

Definition 12 S (X).Cc = {A ∈ R | ∀B ∈ X : X \ {A,

B} : [ ] �→ B↑ does not hold} [10, Lemma 3.3], [25, Def-
inition 10]

If a constant bOD candidate A ∈ S (X).Cc holds for a
specific node X , then there was no valid constant bOD Y \
{A} : [ ] �→ A↑ for any Y ⊂ X . Therefore, we can find
minimal constant bODs by considering only candidates of
the form X \ {A} : [ ] �→ A↑, where A ∈ X (Rule 2a) and
∀B ∈ X : A ∈ S (X \{B}).Cc (Rule 2b). The same technique
is used for order compatible bOD candidates:

Definition 13 S (X).Co = {(E, F) | (E, F) = (A↑, B↑) or
(A↑, B↓), (A, B) ∈ X2,A �= B and ∀C ∈ X : X \ {A,

B, C} : E ∼ F does not hold, and ∀C ∈ X : X \ {A, B,

C} : [ ] �→ C↑ does not hold} [25, Definition 11].

If an order compatible bOD candidate (E, F) ∈ S (X).Co

for a specific node X with either (E, F) = (A↑, B↑) or (E, F)
= (A↑, B↓), where A ∈ X and B ∈ X (Rule 3a), then there
was no valid order compatible bOD Y : E ∼ F for any context
Y ⊂ X (Rule 3b) and both X \ {A, B} : [ ] �→ A↑ (Rule 3c)
and X \ {A, B} : [ ] �→ B↑ (Rule 3d) do not hold.

In summary, storing only non-valid dependency candi-
dates in each node and removing valid ones, automatically
enforces all pruning rules listed above. All three minimality
pruning rules eventually lead to [25, Lemma 12] (we call it
“node pruning” rule), which states that if for a node X with
|X | ≥ 2 both candidate sets S (X).Cc and S (X).Co are
empty, all succeeding nodes’ candidate sets S (Z).Cc and
S (Z).Co with Z ⊃ X will be empty as well. This means
that we can ignore all candidates from the succeeding nodes
of a node, for which both candidate sets are empty. DIS-
TOD prunes nodes from the candidate lattice by storing a
flagS (X).p that indicates whether a node X should be con-
sidered or not. If a node X is pruned, all its successors in the
candidate lattice are pruned as well; DISTOD does not gen-
erate bOD candidates for pruned nodes or their successors.

5.2 Generatingminimal bOD candidates

In contrast to FASTOD-BID, DISTOD decouples the gener-
ation of candidates and their validation. The central Master
component on the leader node drives the traversal of the can-
didate lattice. It performs the candidate generation, which
includes the minimality checks and the pruning of nodes.
The bOD candidates are encapsulated into jobs that are sent
to Worker actors via awork pulling pattern. The distributed
Worker actors then perform the validation of the minimal
bOD candidates and send the results back to the Master.

DISTOD uses a task-based approach to bOD discovery.
Each node in the candidate lattice (attribute set X ) represents
a task that is divided into five subtasks:

1. generation of minimal constant bOD candidates
2. generation of minimal order compatible bOD candidates
3. validation of minimal constant bOD candidates
4. validation of minimal order compatible bOD candidates
5. node pruning

Not all subtasks of a node can be executed concurrently
because the subtasks depend on results of other subtasks of
the node or its predecessors. Figure 3 depicts the inter- and
intra-node dependencies for the subtasks of a node X with
two predecessor nodes W0 and W1, where |X | = 2 ∧ Wi =
X \ {Xi }. BecauseGen-tasks simply depend on all predeces-
sor nodes’ Val-tasks, Fig. 3 easily generalizes to |X | > 2.

The generation of the minimal constant bOD candidates
of node X requires the checking of Rule 2b, i. e., it can be
performed only after all constant bOD candidates of the set
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Fig. 3 Inter- and intra-node
dependencies for the subtasks of
a node X and its two
predecessor nodes W0 and W1
with Wi = X \ {Xi }. The arrow
on an edge points to the subtask
that depends on the subtask at
the source of the edge

of predecessor nodes W = {Wi = X \ {Xi }} have been
validated; 1© indicates this dependency. To guarantee the
minimality of the order compatible candidates S (X).Co of
node X , the Master module has to follow Rule 3b, Rule
3c, and Rule 3d. Rule 3b requires the results of the order
compatible bOD validations of all Wi , which is expressed
by 2©. Rule 3c and Rule 3d require the results of the constant
bOD validations of all Wi indicated by 3©. S (X).Co can
thus be generated as soon as both constant and order com-
patible bOD candidates of all predecessor nodes Wi have
been validated. The validations of constant bODs and order
compatible bODs are independent of each other and can be
performed concurrently as soon as the respective candidates
are fully generated. If both validation checks for node X are
finished, the Mastermodule can check X ’s candidate states
S (X).Cc andS (X).Co to decide if the node and all its suc-
cessors can be pruned from the lattice (node pruning).

In contrast to FASTOD-BID [25], where the generation
of constant and order compatible bOD candidates happens
after the node pruning subtasks of all previous level’s nodes
are done, DISTOD’s candidate generation steps, which are
the GenS (X).Cc and GenS (X).Co boxes in Fig. 3, do not
depend on the node pruning step. In thisway,DISTODproac-
tively generates constant bODvalidation jobs; some ofwhich
may be pruned once the order compatible validations of the
predecessors are done. This does not violate the minimal-
ity of the discovered bODs, because the job cannot contain
valid candidates anyway. We deliberately interlace the can-
didate generation subtasks and validate them independently
fromeach other in the candidate validation steps, because this
removes synchronization barriers and allows for a more fine-
grained work distribution improving the resource utilization
on all nodes; DISTOD distributes the candidate validations
as encapsulated jobs, which are the Val S (X).Cc and Val

S (X).Co boxes in Fig. 3, which are pulled and processed
by the Worker actors on the follower nodes. Node pruning
is handled downstream.

5.3 Candidate generation algorithm

The candidate generation is handled by the Mastermodule
on the leader node (cf. Fig. 2). For better performance, the
Mastermodule is parallelized and consists of two types of
actors: a single Master and a pool of MasterHelpers.
Lattice structure To ensure consistency, the Master is the
sole actor that can manipulate the candidate state S and
the validation job queue Q. The MasterHelper actors
have read-only access to the candidate state S , perform
the actual generation of new bOD candidates and check the
minimality pruning rules. This allows us to parallelize the
candidate generation, which reduces the load on the central
Master. For each node X in the candidate lattice, we store
an entry {Cc,Co, fc, fo, p, ic, io} in the candidate state S :
The entry’s constant and order compatible bOD candidate
sets S (X).Cc and S (X).Co serve to track untested and
invalid candidates as described in Sect. 5.2. The two flags
S (X). fc and S (X). fo indicate whether or not S (X).Cc

and S (X).Co have already been validated by Workers.
The flag S (X).p indicates whether the node as a whole
is pruned. Lastly, the two counters S (X).ic and S (X).io
track the necessary preconditions for the candidate genera-
tion in node X , i. e., the number of predecessor nodesWi , for
which the constant (S (Wi ). fc = true) and order compati-
ble (S (Wi ). fo = true) bOD validations have already been
performed.

They allow the MasterHelpers to enforce the depen-
dencies shown in Fig. 3, because they trigger the generation
of candidates not before all preconditions are met, which is
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Algorithm 1: generateCandidates(X)
Data: States S , job queue Q

1 if |X | ≥ 2 ∧ S (X).ic = |X | then
2 cc = ⋂

A∈X S (X \ {A}).Cc
3 send job (X , cc) to Master

// Master: S (X).Cc = cc and add (X , cc) to Q
4 if |X | ≥ 2 ∧ S (X).ic = |X | ∧ S (X).io = |X | then
5 if |X | = 2 then
6 co = {(A↑, B↑), (A↑, B↓)}, where X = {A, B}
7 else
8 co = ⋃

A∈X S (X \ {A}).Co

9 forall the (E, F) ∈ co, where (E, F) = (A↑, B↑) or
(A↑, B↓) do

10 Y = X \ {A, B}
11 if ∃C ∈ Y : (E, F) /∈ S (X \ {C}).Co then
12 remove (E, F) from co
13 forall the (E, F) ∈ co, where (E, F) = (A↑, B↑) or (A↑, B↓)

do
14 if A /∈ S (X \ {B}).Cc ∨ B /∈ S (X \ {A}).Cc then
15 remove (E, F) from co
16 send job (X , co) to Master

// Master: S (X).Co = co and add (X , co) to Q

when S (X).ic = |X | and S (X).io = |X |, respectively.
Every successful validation triggers ic and io counter incre-
ments in all dependent nodes of X and with them the check
if a node is ready to generate either Cc or Co candidates. If
S (X).ic = |X |, a MasterHelper reactively checks Rule
2b to initiate the generation of minimal constant bOD candi-
dates for node X (Algorithm 1 Line 1f.); if S (X).io = |X |
and S (X).ic = |X |, a MasterHelper checks Rule 3b,
Rule 3c, and Rule 3d to generate minimal order compat-
ible bOD candidates for node X (Algorithm 1 Line 4ff.).
Although DISTOD checks whether candidates can be gener-
ated once per counter increment, the rule testing and actual
generation of minimal bOD candidates is done only once per
node. The job queueQ of theMaster actor tracks the encap-
sulated validation jobs (the ValS (X).Cc and ValS (X).Co

boxes in Fig. 3) for the Worker actors.
Lattice initialization The state initialization is performed by
the Master actor right after reading the input dataset. The
state of the sole level l0 node S ({}) is initialized by setting
Cc = R, Co = ∅, and fc = fo = true (no validations to per-
form). Level l1 is the first level that contains bOD candidates.
For all A ∈ R, the Master sets S ({A}).ic = S ({A}).io =
1,S ({A}).Cc = R,S ({A}).Co = ∅,S ({A}). fo = true, and
adds the initial validation jobs ({A},S ({A}).Cc)∀A ∈ R to
Q, which effectively starts the discovery. Because l1 includes
only single-attribute nodes and, hence, no order compatible
bOD candidates, the initialization also has to set the precon-
dition counters S (X).io for all nodes in level l2 to 2.
Validation job dispatching DISTOD uses work pulling to
distribute validation jobs, which means that Worker actors
once they finished a job immediately request a new job from

the Master. For each request, the Master dequeues a val-
idation job (X ,Cc) (or (X ,Co)) from Q, removes trivial
constant bOD candidates from Cc, and dispatches the job to
the Worker for validation (Sect. 6). We cannot remove triv-
ial candidates from S (X).Cc directly, because they might
be required to generate candidates of succeeding nodes.

If Q is empty, the Master bookmarks the requesting
Worker. As soon as new jobs are put into Q, bookmarked
Workers are served with jobs again. Once all Workers are
idle and Q is empty, there are no more nodes with minimal
bOD candidates in the lattice and DISTOD is finished.
Validation result processing The Worker actors send the
validation results for a candidate set Cc (or Co respectively)
back to the Master actor (via the MasterHelpers). The
Master then updates the corresponding node’s stateS (X)

by setting fc (or fo) to true and removing all pruned can-
didates from Cc (or Co). Once both validations have been
performed ( fc = fo = true), the Master checks if the
node can be pruned from the candidate lattice (node pruning).
If this is not the case, it updates the precondition counters
of all successor nodes of X . For this, the Master iterates
over all nodes Zi = X ∪ Si with Si ∈ R \ X that have
not been pruned yet and increments the precondition counter
S (Zi ).ic (or S (Zi ).ic). Non-existing node states S (Zi )

are dynamically created during this step and added to the
lattice. After the counters of all successor nodes have been
updated, the Master generates candidate generation jobs
for all non-pruned successor nodes Zi . These candidate gen-
eration jobs are sent to the MasterHelper actors in a
round-robin fashion and are processed concurrently using
Algorithm 1. Because the MasterHelpers cannot modify
S and Q directly, they send the newly generated candidates
and the new jobs back to the Master actor, which integrates
them into S and Q.
Node pruning If a node X is prunable (S (X).Cc = ∅ ∧
S (X).Co = ∅), the Master actor marks the node X and
all existing successors Zi as pruned by setting their flag p =
true. Then, it removes all related validation jobs from Q.

6 Candidate validation

DISTOD validates bOD candidates similar to FASTOD-
BID [25] using data partitions. More specifically, it uses
stripped partitions to validate constant bODs and a com-
bination of stripped and sorted partitions to validate order
compatible bOD. In contrast to FASTOD-BID, though, DIS-
TOD uses a slightly optimized algorithm to validate order
compatible bODs and faces an additional challenge in par-
tition management, because the candidate validations are
distributed across different nodes in the cluster.
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In this section, we first introduce sorted and stripped par-
titions. We, then, explain how we validate constant and order
compatible bOD candidates.

6.1 Sorted and stripped partitions

Partitions ΠX are sets of equivalence classes w. r. t. a con-
text X (see Sect. 3.2 Definition 4). Similar to FASTOD-BID,
DISTOD does not directly use these full partitions for the
candidate validation checks, because they take a lot of mem-
ory and lack information about the order of the tuples in the
dataset required to check order compatible bODs. Instead,
DISTOD uses two variations of these partitions: sorted par-
titions, which capture the order of the tuples and, thus, enable
the validation of order compatible bODs, and stripped par-
titions, which remove implicit information and, in this way,
reduce the memory footprint needed to store partitions.
Sorted partitions Sorted partitions are necessary for the val-
idation of order compatible bODs because they preserve the
ordering information of the input dataset.

Definition 14 A sorted partition, denoted as Π̂X , is a list of
equivalence classes sorted by the ordering imposed to the
tuples by X [25].

DISTOD’s order compatible bOD validation algorithm
performs only a single operation on sorted partitions. It looks
up the positions of two given tuples to determine their order
(seeSect. 6.2.2).Wepropose a reversedmapping of the sorted
partitions, called inverted sorted partition ΓX , to represent
sorted partitions in DISTOD. Inverted sorted partitions allow
us to lookup the position of a tuple identifier in a sorted par-
tition in constant time.

Definition 15 An inverted sorted partition ΓX is a mapping
from tuple identifiers to the positions of their equivalence
classes in a sorted partition Π̂X .

To give an example, consider Table 1 and the partition
Π{Code} = {{t0, t4}, {t1, t3, t5, t7, t9}, {t2}, {t6}, {t8}}. The
sorted partition for X = {Code} is Π̂{Code} = [{t6}, {t0, t4},
{t2}, {t1, t3, t5, t7, t9}, {t8}]. We store this sorted partition
as inverted sorted partition Γ{Code} = {t0 → 1, t1 → 4,
t2 → 3, t3 → 4, t4 → 1, t5 → 4, t6 → 0, t7 → 4, t8 → 5,
t9 → 4}.

DISTOD’s validation checks require only inverted sorted
partitions for the singleton attribute sets, where |X | = 1
(see Sect. 6.2.2). This means that DISTOD can compute
the inverted sorted partitions Γ{A} for each A ∈ R directly
from the individual columns of the dataset. After the inverted
sorted partitions have been generated, we work with tuple
identifiers only. This has the advantage that we can discard
the attribute type information and all concrete values, which
saves memory and—because the computations effectively

deal with integers only—makes the operations on partitions
fast and simple.
Stripped partitions DISTOD requires only the sorted parti-
tions for each {A} ∈ R (level l1 of the candidate lattice); for
attribute sets with |X | > 1 (higher levels), it replaces sorted
partitions with the smaller stripped partitions [5,10,12,22,25,
26] (also known as position list indexes [2,15,19,20]).

Definition 16 Stripped partitions are partitions, where sin-
gleton equivalence classeswith |E (tX )| = 1are removed [10].
We denote them with Π∗

X .

Coming back to our example partition Π{Code} = {{t0,
t4}, {t1, t3, t5, t7, t9}, {t2}, {t6}, {t8}}, we can transform it into
a stripped partition by removing all singleton equivalence
classes such that Π∗{Code} = {{t0, t4}, {t1, t3, t5, t7, t9}}.
For the proposed bOD validation algorithms (see Sect. 6.2)
using stripped instead of full partitions is sufficient because
this also guarantees correctness [25].

DISTOD uses two different approaches to generate
stripped partitions: one for attribute sets of level l1 and
another one for attribute sets of deeper levels. Stripped par-
titions Π∗{A} for all single attribute sets {A} ∈ R (level l1) are
generated from the inverted sorted partitionsΓ{A} by convert-
ing them back to sorted partitions Π̂{A} and simply removing
all singleton equivalence classes.

The partitions for larger attribute sets X , where |X | ≥ 2,
can efficiently be computed from two of their subsets using
the product of refined partitions. The partition product is
“the least refined partition ΠX∪Y that refines both ΠX and
ΠY ” [10]. Stripped partition Π∗

{A,B} in level l2, for example,
is computed by the stripped partition product of Π∗{A} and
Π∗

{B}:Π
∗
{A,B} = Π∗{A} ·Π∗

{B}. Any two different subsets of size|X | − 1 of a stripped partition for X suffice for the stripped
partition product. This fits well for our small-to-large search
strategy and gives us flexibility in choosing the operands for
the stripped partition product.

6.2 Validation algorithm

As discussed in Sect. 5, DISTOD generates only minimal
and non-pruned bOD candidates. For each node X in the
candidate lattice, the algorithm generates constant bOD can-
didates of the from X \ {A} : [ ] �→ A↑ for all A ∈ X
and order compatible bOD candidates of the form X \ {A,

B} : A↑ ∼ B↑ and X \ {A, B} : A↑ ∼ B↓ for all A, B ∈ X ,
where A �= B. For the validation, the constant bOD candi-
dates and the order compatible bOD candidates of a node
X are grouped together. Each group is distributed as a vali-
dation job to one of the Worker actors. The constant bOD
candidates are validated using a partition refinement check
on stripped partitions (see Sect. 6.2.1) and the order compat-
ible bOD candidates are validated by comparing the ordering
of tuples that is imposed by their first attribute (A) and their
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second attribute (B) of the bOD as represented in their sorted
partition (see Sect. 6.2.2).

6.2.1 Validating constant bODs

Constant bODs of the form X \ {A} : [ ] �→ A↑ resemble
FDs. Hence, they can be validated using a partition refine-
ment check [10,25]. A partition Π refines another partition
Π ′ if the equivalence classes in Π are all subsets of any of
the equivalence classes inΠ ′. The partition refinement check
on stripped partitions can efficiently be computed using the
popular error measure e(Y ) = (‖Π∗

Y ‖ − |Π∗
Y |)/|r | from the

TANE algorithm [10], where |Π∗
Y | is the number of equiva-

lence classes of the stripped partition and ‖Π∗
Y ‖ is the sum

of the sizes of all equivalence classes in Π∗
Y . Partition ΠX

refines partition Π{A} if and only if e(X) = e(X ∪ {A}).
A constant bOD candidate of the from X \{A} : [ ] �→ A↑

is valid if the stripped partition Π∗
X\{A} refines Π∗{A} (no

split; see Definition 6). We check this condition using the
error measure: If e(X \ {A}) = e(X), the bOD is valid; if
e(X \ {A}) �= e(X), the bOD is invalid. Because computing
the error measure on demand would require a scan over the
stripped partition, i. e., a scan for each constant bOD candi-
date check, DISTOD stores for each stripped partition Π∗

X
its number of equivalence classes |Π∗

X | and its number of
elements ‖Π∗

X‖. The divisor |r | is constant for all checks and
can, thus, be removed. The algorithm calculates |Π∗

X | and
‖Π∗

X‖ during the generation of the respective stripped parti-
tion because it has to scan the partition product during this
operation anyway. In this way, the candidate check consists
of only three operations: two subtractions to compute the
errors e(X \ {A}) and e(X), respectively, and a comparison

of the two error values, i. e., e(X \ {A}) ?= e(X).

6.2.2 Validating order compatible bODs

Order compatible bOD candidates of the form X \ {A,

B} : A ∼ B are also validated using partitions. For this,
we slightly change the validation algorithm from FASTOD-
BID [25] to improve its efficiency: To verify whether there
is no swap over the attributes A and B, FASTOD-BID’s
validation algorithm scans over the (large) sorted partition
Π̂{A} and over the (small) stripped context partitionΠ∗

X\{A,B};
our changed version scans only the (small) stripped context
partition Π∗

X\{A,B} twice. Sorted partitions always contain
all tuples of the input dataset, while stripped partitions get
smaller for larger attribute sets due to the partition refine-
ment, i. e., the number of singleton equivalence classes in
ΠX grows with the number of attributes in X and stripped
partitionsΠ∗

X omit these classes. Figure 4 illustrates the rapid
size reduction of stripped partitions over the levels of seven
datasets.

Fig. 4 Average relative size of stripped partitions
( ‖Π∗

X ‖
|r|

)
per level li

(|X | = i) for different datasets

Algorithm 2 shows DISTOD’s steps to validate an order
compatible bOD candidate. It first sorts the equivalence
classes of the stripped context partition Π∗

X\{A,B} by the first
attribute A of the bOD (Line 1) and then compares this order
to the order imposed by the second attribute B (Line 3-16).
The algorithm checks for candidates of the from X \ {A,

B} : A↑ ∼ B↑ and X \ {A, B} : A↑ ∼ B↓ simultaneously. If
it finds no swap in the data, the order compatible bOD X \{A,

B} : A↑ ∼ B↑ is valid (Line 17f). Analogously, if it finds no
reverse swap in the data, the order compatible bOD X \ {A,

B} : A↑ ∼ B↓ is valid (Line 17f). If neither a swap nor a
reverse swap is found, both order compatible bOD forms are
valid.

In Line 1 of Algorithm 2, we call Algorithm 3 to sort
the tuples in the equivalence classes of the stripped context
partition Π∗

X\{A,B} by the first attribute A. Algorithm 3 first
iterates over all equivalence classes E of the context partition
Π∗

X\{A,B} (Line 2). For each E , it creates a new temporary list
to store the sorted equivalence classes (Line 3). The algo-
rithm then iterates over all tuples of the equivalence class E
and retrieves their positions when being sorted by attribute
A using the inverted sorted partition Γ{A} (Line 4f). We store
the tuple identifiers in the sorted map M with their posi-
tion post as the key.M stores key-value pairs and allows us
to traverse the values in key order. DISTOD uses this prop-
erty to add the tuple sets in sorted order to their new sorted
equivalence class E in Line 8f. Afterward, it stores the sorted
equivalence class in the output set γ (Line 10) and clearsM
to process the next equivalence class E of Π∗

X\{A,B} (Line
11). As an example, consider the stripped context partition
Π∗{Code} = {{t0, t4}, {t1, t3, t5, t7, t9}} and the inverted sorted
partition Γ{ADGrp} = {t0 → 5, t1 → 2, t2 → 3, t3 → 4,
t4 → 0, t5 → 2, t6 → 1, t7 → 6, t8 → 3, t9 → 2}.
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Algorithm 2: Validate order compatible bOD

Input : bOD candidate X \ {A, B} : A ∼ B, context partition
Π∗

X\{A,B}, inverted sorted partitions Γ{A} and Γ{B}
1 γA = sortECs(Π∗

X\{A,B}, Γ{A})
2 swap = r Swap = false
3 forall the E ∈ γA, where |E| ≥ 2 if swap = r Swap = false do
4 for i = 0 until |E| − 1 if swap = r Swap = false do
5 F = E[i]
6 G = E[i + 1]
7 maxF = maxG = 0
8 minF = minG = max_int
9 forall the t ∈ F do

10 if Γ{B}(t) > maxF then maxF = Γ{B}(t)
11 if Γ{B}(t) < minF then minF = Γ{B}(t)
12 forall the t ∈ G do
13 if Γ{B}(t) > maxG then maxG = Γ{B}(t)
14 if Γ{B}(t) < minG then minG = Γ{B}(t)
15 if maxF > minG then swap = true
16 if maxG > minF then r Swap = true
17 if swap = false then
18 emit X \ {A, B} : A↑ ∼ B↑ as valid bOD
19 if r Swap = false then
20 emit X \ {A, B} : A↑ ∼ B↓ as valid bOD

Algorithm 3: sortECs(Π∗
X\{A,B}, Γ{A})

Data: sorted map (e. g., red-black tree) M

1 γ = ∅
2 forall the E ∈ Π∗

X do
3 E = []
4 forall the t ∈ E do
5 post = Γ{B}(t)
6 if M (post ) = null then M (post ) = {}
7 add t to M (post )
8 forall the Enew ∈ M do /* traversal in key

order */
9 add Enew to E

10 add E to γ

11 clear M
12 return γ

Sorting the equivalence classes in Π∗{Code} by ADGrp using
Algorithm 3 results in γ = {[{t4}, {t0}], [{t1, t5, t9}, {t3},
{t7}]}.

7 Distributed partitionmanagement

DISTOD manages data in different parts of the system. The
Master actor on the leader node keeps track of all checked
and unchecked bOD candidates and the search progress.
This includes the status of specific bOD candidates, pend-
ing tasks, and pruning information. The Master actor also
stores work queues to track waiting and pending validation
jobs. It sends out the candidates as validation jobs to the
nodes in the cluster and receives the intermediate results

and pruning information back to integrate them into its state.
The ResultCollector actor on the leader nodemanages
the results of the discovery algorithm; more specifically, it
receives all valid bODs from all nodes in the DISTOD cluster
and writes them to disk for persistence. It is also responsi-
ble for removing duplicate results, which could occur if a
follower node is removed from the DISTOD cluster and its
unfinished tasks are dispatched to another node. Managing
the candidate data and search state is easy because it is cen-
tralized on the leader node. The handling of the sorted and
stripped partitions, however, is a challenge because the parti-
tions are required on different follower nodes to perform the
candidate validations and the set of stripped partitions grows
exponentially while the algorithm generates ever-more par-
titions for further candidate validations. For this reason, we
focus on distributed partition management in this section.

7.1 Partition handling

DISTOD distributes the bOD candidate validations as jobs to
the Worker actors across the nodes in the cluster on a “first
come, first served” basis. This helps to facilitate elasticity
(see Sect. 8.1) because every node in the cluster can receive
anyvalidation job andwedonot have to adapt our distribution
strategywhen nodes join or leave the cluster.However, differ-
ent validation candidates require different partitions and, due
to the dynamic distribution, we do not know a priori which
node will receive which validation candidates. Therefore,
DISTOD manages the partitions for each node individually
and locally. Each DISTOD node stores and generates its own
partitions and no node must hold all partitions because only
the partitions relevant to the locally performed checks are
generated. Based on an initial set of partitions, which is repli-
cated across the nodes in the cluster, each node can generate
all other stripped partitions on demand.

The initial partitions are generated directly from the input
dataset. They include the inverted sorted partitions Γ{A} for
each A ∈ R and the stripped partition Π∗{}. In DISTOD, only
the leader node reads the input dataset and, thus, the leader
node creates the initial partitions (i. e., the DataReader
actors). After a follower node connects to the leader node, it
replicates the initial partitions once and generates all other
stripped partitions locally on demand.

Depending on the characteristics of the input dataset, the
initial partitions can get quite large. If we would send these
amounts of data using the default message channel, they
may hinder or delay other messages from being sent and
received. This could include time-critical messages, such
as heartbeats, or other important messages, such as cluster
membership updates and gossip. To prevent such message
collisions, DISTOD uses message side-channels between all
nodes in the DISTOD cluster for any large message trans-
fers. A side-channel handles the streaming of the chunked

123



Efficient distributed discovery of bidirectional order dependencies 63

initial partitions over a separate, low-priority back-pressured
communication channel.

The partition management and partition generation are
implemented in the partitionmanagementmodule.Eachnode
in the cluster has its own PartitionMgr actor, which
stores the inverted sorted partitions Γ{A} for each A ∈ R,
the l1 stripped partitions and the stripped partition for the
empty candidate set Π∗{}. The PartitionMgr also serves
as a cache for the temporary stripped partitions Π∗

X for
|X | ≥ 2. We cache the intermediate stripped partitions in the
PartitionMgr because they are used to generate stripped
partitions for larger attribute sets and different candidate val-
idation checks can rely on the same partitions. The local
Workers can start requesting partitions from their local
PartitionMgr as soon as all initial partitions have been
replicated; missing stripped partitions are generated from the
existing ones on demand.

All partitions stored in thePartitionMgr are immutable
and, thus,Workers can safely access the same partition con-
currently. If a Worker has to manipulate a partition, e. g., to
sort its equivalence classes, it uses a private working copy of
the stripped partition.

7.2 On demand stripped partition generation

DISTOD uses two alternative strategies for the local gener-
ation of stripped partitions: recursive generation and direct
partition product. This section introduces both strategies.

7.2.1 Recursive partition generation

The node-local and on-demand generation of stripped parti-
tions and DISTOD’s distribution of the candidate validation
checks to different nodes entails an irregular generation of
stripped partitions: It is possible that a Worker receives
a task where it requires a stripped partition, for which not
all preceding partitions have been generated by the local
PartitionMgr. Thus, the requested partition cannot be
computed using the partition product of two of its subsets.
This effect is amplified by the regular partition cleanup of
the PartitionMgr and by partition eviction processes in
the case of memory shortage (cf. Sect. 7.3). We overcome
the issue of missing subset partitions by recursively comput-
ing partitions in a way that makes the best use of already
available intermediate partitions.

For each partition request that cannot be served by the
partition cache, the PartitionMgr recursively generates
a chain of partition generation jobs for the PartitionGen
actors. This job chain records the order of the partition gen-
eration jobs and the particular inputs for each job in the
chain. A job chain is sent to a single PartitionGen
actor, which processes it from the beginning to the end.
The PartitionGen actor temporarily stores the generated

Algorithm 4: Recursive partition generation job calcu-
lation
Input : target attribute set X

partition map P
Output: sequence of partition generation jobs J
Data: store depth d = 3, job chain J = [ ]

1 Function calcJobChainRecursive(Y = X)
2 if Y in J then return
3 s = |Y | >= |X | − d
4 W = [Wi |Wi = X \ {Xi }]
5 sort W
6 partition predecessor attribute sets Wi ∈ W into

Whit where Wi ∈ P and
Wmiss where Wi /∈ P

7 if |Whit| = 0 then /* no Π∗
Wi

in P */
8 calcJobChainRecursive (Wmiss[0])
9 calcJobChainRecursive (Wmiss[1])

10 Add Y → (Wmiss[0],Wmiss[1], s) to J
11 else if |Whit| = 1 then /* one Π∗

Wi
in P */

12 calcJobChainRecursive (Wmiss[0])
13 Π∗

y = P(Whit[0])
14 Add Y → (Π∗

y ,Wmiss[0], s) to J
15 else /* at least two Π∗

Wi
in P */

16 Π∗
y0 = P(Whit[0])

17 Π∗
y1 = P(Whit[1])

18 Add Y → (Π∗
y0 ,Π

∗
y1 , s) to J

partitions and can use them as input for the next partition gen-
eration job. If a newly generated partition should be stored
in the partition cache, the PartitionGen actor sends the
partition to its local PartitionMgr, which also forwards
the partition to the requesting Worker.

Algorithm 4 shows the recursive function that creates a
chain of partition generation jobs. It takes the target attribute
set X and all stored partitionsP as input and returns a list of
partition generation jobs J. A partition generation job (e. g.,
in Line 10) consists of the attribute set for the target partition
to generate, the two input partitions for the partition product
and a flag that tells the PartitionGen actor whether this
partition should be stored or not s. We store all partitions up
to a depth of three. This is a compromise between not stor-
ing predecessors and storing all intermediate partitions. By
storing all intermediate partitions, partition generations can
be computed much faster, but the cache size would quickly
outgrow any main memory capacity due to its exponential
growth.By storing only the target partition, on the other hand,
wewould use a lot less memory, but had to compute common
intermediate partitions for the following partition requests as
well.

The two input partitions of a partition generation job are
either the stripped partitionsΠ∗

X themselves or the identifiers
X of the partitions. If only the identifiers are specified, the
PartitionGen actor looks up the stripped partitions in its
temporary partition state and uses the looked up partitions as
input for the partition product. The partition generation job
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chain ensures that all necessary stripped partitions are com-
puted before they are used as input for the partition product
and that no partition is generated multiple times by the same
PartitionGen actor (see Line 2 in Algorithm 4).

Algorithm 4 generates a minimal and deterministic num-
ber of jobs. This is because the algorithm consistently
chooses the partition product factors from the candidate set’s
predecessors in a left-oriented way utilizing the cached par-
titions optimally. For each recursion step, the predecessors
of the current candidate set are sorted lexicographically (see
Line 5 in Algorithm 4). If no predecessors are available (see
Line 7), the algorithm generates the first two predecessor
partitions recursively for the partition product; if only one
predecessor is available (see Line 11), this predecessor parti-
tion is taken and the first non-available predecessor partitions
are generated recursively; ifmore predecessor partitions exist
(see Line 15), the algorithm takes the two first predecessor
partitions. Any following partition generation run also uses
this left-orientation and, in this way, automatically re-use the
previously generated partitions. This cuts down the number
of generation steps and, thus, reduces the time spent gener-
ating partitions.

7.2.2 Direct partition product

The recursive generation of stripped partitions is, in general,
the fastest way of computing newpartitions because the oper-
ation re-uses existing stripped partitions that usually become
smaller for larger attribute sets. It also caches intermediate
results to accelerate later partition retrieval and genera-
tion operations. However, if DISTOD’s heap memory usage
exceeds a certain threshold, the algorithm’s partition eviction
mechanism (see Sect. 7.3) removes all intermediate stripped
partitions from thepartition cacheof thePartitionMgr so
that later partitions have to be recursively generated from the
partitions in level l1. This is very costly because if there are
no intermediate partitions the number of partition generation
jobs needed for the recursive generation grows exponentially
with the level in which a partition is requested. In addi-
tion, storing the intermediate partitions again would lead to a
repeated memory exhaustion. For these reasons, we dynami-
cally switch to a different partition generationmethod, which
is direct partition product, whenever the chain of recursive
partition generation jobs becomes too long. This strategy
computes the partition product for a stripped partition not
only from its immediate predecessors, but also from other
subsets. In our case, we use the single attribute set partitions
from level l1 because they are always available.

As an example, consider the request for partition Π∗
{A,B,C}

and an empty partition cache. Instead of computing the par-

tition product recursively via Π∗
{A,B,C} =

(
Π∗{A} · Π∗{B}

)
·

(
Π∗{A} · Π∗

{C}
)
, the direct partition product uses the persistent

l1 stripped partitions to directly, i. e., without intermediate
results, compute the requested stripped partition: Π∗

{A,B,C} =
Π∗

A · Π∗
B · Π∗

C . In this example, the recursive partition prod-
uct would compute three partition products in three jobs with
two intermediate partitions, namely Π∗

{A,B} and Π∗
{A,C}. The

direct partition product would compute only two partition
products, but within one job, with no intermediate partitions.

Because the recursive generation of stripped partitions is
much faster if the memory can hold the intermediate par-
titions and the partition product chains are not too long,
DISTOD uses this strategy by default. The algorithm dynam-
ically switches to the direct partition product if it has to
generate a lot of intermediate stripped partitions. The thresh-
old at which DISTOD switches from the recursive to the
direct strategy is exposed as a parameter with 15 as default
value.

7.3 Dealing with limitedmemory

The main memory resources in a cluster are usually limited.
Hence, DISTOD has to effectively manage its memory con-
sumption: If DISTOD allocates memory too aggressively,
i. e., up to the limit, the Java garbage collector takes up most
of the processing time slowing down the actual algorithm; if it
exceeds thememory limit, the discovery fails and terminates.
Working close to the memory limit cannot be prevented on
large datasets, which is why we need to handle DISTOD’s
memory consumption carefully.

For the majority of datasets and especially for long ones,
the partitions of the PartitionMgr take up most of the
memory. As the discovery progresses, the recursive partition
generation expands the size of the partition cache exponen-
tially by adding ever more stripped partitions to it. Because
any required partitions in level li , where i ≥ 2, can always
be computed on-demand from the stripped partitions in level
l1, we can optimize the time that intermediate stripped parti-
tions are kept in the cache. For this,wepropose two strategies:
periodic partition cleanup and partition eviction.

7.3.1 Periodic partition cleanup

Most stripped partitions are needed for only a short period
of time, e. g., before their successors make them obsolete.
Only the initial partitions need to be preserved to enable
the validation of order compatible bOD candidates and the
regeneration of all other stripped partitions. The intermediate
stripped partitions in deeper levels can be deleted when they
are not needed anymore. However, the point in time, at which
the partitions are no longer needed, is hard to predict because
a single partition might be involved in different bOD candi-
date validations and only the Master actor on the leader
node knows which candidates have already been processed
and which candidates are next in the work queue. For this
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reason, our PartitionMgr tracks the number of accesses
for each partition to estimate the relevance of any locally
cached partition. It then periodically removes not-recently-
used partitions from its partition cache.

The periodic partition cleanup protocol is run by each
PartitionMgr in the cluster: Every PartitionMgr
tracks the accesses to its cached stripped partitions. The
scheduler of the local actor system then periodically
sends a tick message to the PartitionMgr. When the
PartitionMgr receives a tickmessage, it removes all par-
titions from the partition cache that have not been accessed
since the last tick was received and resets its internal access
statistics.

In this protocol, the tick frequency defines the minimum
lifetime of a partition because the tick interval of the par-
tition’s creation does not see the partition and the initial
generation of the partition is triggered by accessing it so
that its initial access counter is 1. Therefore, short intervals
cause a more aggressive removal behavior and long intervals
keep partitions in the cache for longer. Overall, the tick fre-
quency trades off memory consumption and runtime because
the removal of stripped partitions slows DISTOD down. For
maximum performance, the periodic partition cleanup can
be turned off completely, but this increases the algorithm’s
memory usage significantly. We propose a default partition
cleanup interval of 40 s, which showed to be a good com-
promise between runtime and memory consumption in our
experiments; the interval can be configured with a parameter.

7.3.2 Partition eviction

The periodic partition cleanup is a valuable technique to
control the memory consumption for normal, non-critical
discovery periods. Due to the dynamic nature of the dis-
covery process, DISTOD’s memory consumption is bursty
at times and the periodic partition cleanups might not be able
to remove enough partitions from the cache in critical situa-
tions. For this reason, we propose a second protocol, called
partition eviction, that tries to prevent out-of-memory situa-
tions by carefully monitoring the memory consumption.

The heap size monitoring is implemented by a dedicated
SystemMonitor actor on each node in the DISTOD clus-
ter. This actor makes partition eviction decisions for its
host independently of other SystemMonitors on remote
nodes. This means that one node reaching its individual heap
memory limit does not impact the performance or memory
usage of other nodes.

The SystemMonitormonitors the local memory usage
ofDISTODand compares it to a certain threshold. If the local
memory usage exceeds the threshold, theSystemMonitor
instructs the localPartitionMgr to remove all intermedi-
ate partitions from the partition cache. In this way, DISTOD
frees all expendable memory at the cost of (re-)calculating

all later requested partitions from scratch. Every such later
generated partition is again stored in the PartitionMgr’s
partition cache to be utilized for further partition genera-
tions and the validations. This re-populates the cache with
relevant partitions. If DISTOD then hits the heap threshold
again, the partition eviction is triggered once more. Because
the partition eviction costs a lot of performance, the protocol
is triggered only if it is inevitable. We recommend a partition
eviction threshold of 90%1 so that the eviction process has
enough scope for action.

8 Complexity control

Despite DISTOD’s novel search strategy, the exponentially
growing search space still limits the applicability of the algo-
rithm: On the one hand, the candidate checks may take
unexpectedly long although DISTOD aggressively paral-
lelizes and distributes them; on the other hand, the search
space might exhaust the memory of the leader node. As
countermeasures, DISTOD supports elasticity, i. e., it can
incorporate additional compute nodes at runtime if the dis-
covery runs unexpectedly long, and it supports semantic
pruning to narrow down the search space and, in this way,
reduce both the required memory and the runtime. In this
section, we briefly describe these two features.

8.1 Elastic bOD discovery

DISTOD’s runtime is hard to predict. It depends not only on
the size of the input dataset but also on the dataset’s struc-
ture as well as the number and placement of valid bODs in
the search space because these factors also determine the
effectiveness of the pruning strategies and the number of
candidate validations. Therefore, we designed DISTOD in
a way that we can dynamically add more follower nodes to
or remove existing follower nodes from a running DISTOD
cluster. The idea is to increase DISTOD’s capabilities and
speed up the processing by elastically adding nodes to the
cluster on demand. Removing nodes frees up the compute
resources of the cluster for other tasks without impacting the
correctness or completeness of the discovered bODs sets.
Adding follower nodes Because all nodes in the DISTOD
cluster are started individually, the procedures of starting the
initial DISTOD cluster or starting a new node are the same.
To connect to an already running DISTOD cluster, a freshly
started follower node requires only the address of one of the
nodes in the cluster. It then joins the cluster by (i) connect-
ing to the specified seed node, (ii) retrieving the addresses

1 If the G1 garbage collector is used, we recommend run-
ning it with -XX:G1ReservePercent=(1 - heap-eviction
− threshold); defaults to 10%.
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of all other nodes from it, (iii) fetching the initial partitions
to its local PartitionMgr actor, (iv) connecting its local
RCProxy to the ResultCollector actor on the leader
node, andfinally (v) registering its localWorkers at the clus-
ter’s Master actor. DISTOD treats all connected follower
nodes in the same way.
Removing follower nodesAny follower node can be removed
from the DISTOD cluster by gracefully shutting it down.
Only the leader node cannot be removed from the cluster,
because it holds the central candidate state and orchestrates
the discovery process. The shutdown of a single node is
handled by the same coordinated shutdown protocol than
the cluster shutdown, but only the node-local parts are exe-
cuted. The termination procedure is executed by the local
Executioner actor. It supervises the termination and
makes sure that the following steps are executed in the cor-
rect order: (i) Stop local Workers and abort their jobs at the
Master actor. The Master re-enqueues the jobs into the
work queue so that they at some point get dispatched to the
Workers of another node. (ii) Flush buffered results of the
local RCProxy to the ResultCollector on the leader
node. (iii) Leave the DISTOD cluster. (iv) Stop all remain-
ing actors and cleanly terminate the Java Virtual Machine
(JVM).

8.2 Semantic pruning strategies

In this section, we adapt two semantic pruning strategies
for our distributed bOD discovery algorithm: interestingness
pruning [25] and size limitation [19]. Both strategies dis-
card candidates with certain characteristics that mark them
as less practically relevant than other candidates. In this way,
we reduce the result size at the cost of losing completeness
of the discovered bOD sets. Therefore, semantic pruning is
implemented as optional features that can be turned on and
off.
Interestingness pruning The interestingness pruning strategy
calculates a score for each bOD candidate and compares it to
a threshold. If the score is too low, the candidate is not inter-
esting enough and it is pruned. The interestingness score is
defined as

∑
E (tX )∈ΠX

|E (tX )|2 for a bOD with the context
X and indicates coverage and succinctness of a bOD candi-
date [25].

To facilitate interestingness pruning in DISTOD’s dis-
tributed setting, we calculate and use the interestingness
score directly before validating a bOD candidate in the
Worker actors. The interestingness pruning decision of a
single bOD candidate is independent of other candidates
because it involves only the calculation of the interestingness
score. Thus, the calculation and testing can be distributed
similarly to the candidate validations. This allows us to
parallelize the score calculation making use of the already
distributed partitions.

Size limitation Limiting the maximum size of the depen-
dency candidates to some fixed value is a technique that can
reduce the size of the search space significantly improving
both runtime and memory consumption. A size limitation
has also been argued to be semantically meaningful because
large dependencies are statistically more likely to appear by
chance [19].We, therefore, allow the user to restrict the num-
ber of attributes that can be involved in a bOD (size of a
bOD) to a certain threshold. This threshold then directly cor-
responds to the maximum depth of a node in the candidate
lattice (e. g., bOD candidates in level l4 have exactly four
attributes). To implement the size limitation pruning strategy
in DISTOD, we simply design the Master actor to not gen-
erate bOD candidates of levels deeper than a specified size
limit.

9 Evaluation

In this section, we evaluate DISTOD’s performance in dif-
ferent settings and on various datasets. We compare its
runtime with all existing complete OD discovery algorithms,
which are FASTOD-BID [25] and its distributed variant
DIST-FASTOD-BID [22]. Note that ORDER [15], its hybrid
variant [12], and OCDDISCOVER [5] produce incomplete
results and are, therefore, not comparable to our approach.
Wepublished the source code forDISTOD, additional techni-
cal documentation and the datasets for our evaluation on our
repeatability website;2 The source code for FASTOD-BID3

and DIST-FASTOD-BID4 is publicly available on Github.
After the performance evaluation (Sect. 9.2), we evaluate

DISTOD’s scalability w. r. t. the number of CPU cores of a
single node (Sect. 9.3), the number of nodes in the cluster
(Sect. 9.4), the number of tuples in a dataset (Sect. 9.5), and
the number of attributes in a dataset (Sect. 9.6). To evaluate
the robustness of DISTOD, we measure the runtime of our
algorithm with different memory limits (Sect. 9.7). Our final
experiments demonstrate the impact of the partition caching
on DISTOD’s runtime (Sect. 9.8).

9.1 Experimental setup

Hardware We perform our experiments on a cluster with
twelve bare-metal nodes. The machines are equipped with
an Intel Xeon E5-2630 CPU at 2.2 GHz (boost to 3.1 GHz)
with 10 cores and hyper-threading. Eight nodes have 64 GB
ofmainmemory and four nodes have 32GBofmainmemory.
All nodes run anAdoptOpenJDKversion 11.0.8 64-bit server

2 https://hpi.de/naumann/projects/repeatability/algorithms/distod.
html.
3 https://git.io/fastodbid (Accessed 2020-08-26).
4 https://git.io/dist-fastodbid (Accessed 2020-08-26).
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JVM and Spark 2.4.4 on Ubuntu 18.04 LTS.We run our base
experiments (see Table 2) three times and report the average
runtime and the relative standard deviation (RSD).
Memory restriction Java’s performance does not scale lin-
early with the used heap size, i. e., using a smaller heapmight
reduce not only the memory consumption but also the exe-
cution time of an algorithm. We observed this behavior in
our experiments when on the letter-sub.csv dataset,
for example, a single DISTOD node with 31 GB of mem-
ory was about 20% faster than the same DISTOD node with
58 GB of memory (∼ 40min compared to∼ 49min). This is
because Java uses a JVM-internal performance optimization
called compressed ordinary object pointers (OOPs) when the
heap size is smaller than 32 GB. This reduces the size of
object pointers to 32 bit instead of 64 bit, even on 64 bit
architectures. As a consequence, less memory is used by
the Java process so that the processor cache usage, as well
as the memory bandwidth usage, is improved. This speeds
up the algorithm execution significantly. For more details
about compressed OOPs, we refer to Oracle’s Java docu-
mentation.5 For this reason, if not stated otherwise, we limit
the Java heap size for all experiments, all nodes and all
algorithms: The leader nodes, i. e., DISTOD’s leader node
and DIST-FASTOD-BID’s driver process, limit their heap
to 31 GB; the follower nodes, i. e., DISTOD’s follower and
DIST-FASTOD-BID’s executors, limit their heap to 28 GB,
which leaves 4 GB for stacks and the operating system.
Data characteristics For our experiments, we use several
synthetic and real-world datasets from different domains,
most of which have previously been used to evaluate FD
and OD discovery algorithms. The datasets can be found on
our repeatability website (see Footnote 2).We list all relevant
details about the datasets in Table 2.

The implementation ofDIST-FASTOD-BIDdoes not sup-
port data types other than integers, but our datasets contain
strings, dates, and decimals. For this reason, we had to pre-
process all datasets to run DIST-FASTOD-BID on them: We
removed all headers and substituted all values with their hash
value so that each value is mapped to an integer represen-
tation. This transformation keeps all FDs intact, but may
change bODs. Datasets with the suffix -sub in their name
have been transformed using this method. Regardless of the
fact that DISTOD can handle NULL values, text strings, dec-
imal numbers, and date values, the mentioned datasets do
not contain any of these and consist of only integer numbers.
DISTOD follows the NULLS FIRST principle and infers
the data type of a column during input parsing.

5 https://docs.oracle.com/javase/7/docs/technotes/guides/vm/
performance-enhancements-7.html#compressedOop (Accessed 2020-
02-14).

9.2 Varying the datasets

In this first experiment, we compare the runtime of DIS-
TOD, FASTOD-BID and DIST-FASTOD-BID in their most
powerful configuration on various datasets. In Table 2, we
report the measured runtimes in seconds and list the number
of valid constant bODs (reported as #FDs) and the number
of valid order compatible bODs (reported as #bODs). For
the number of valid bODs, we count the actual results that
have been written to disk. Note that all three algorithms pro-
duce the same results in all experiments. Furthermore, the
total (incoming and outgoing) average network traffic for
the leader node of DISTOD varies between 162 kB/s and
11 MB/s for the different datasets. The peak total activity
varies between 445 kB/s and 16 MB/s including the ini-
tial dataset replication phase. This is significantly below the
usual maximum network bandwidth; hence, DISTOD’s per-
formance is not bound by network.

The experiment uses the following rules: We execute the
single-threaded algorithm FASTOD-BID on a single node
of our compute cluster. Both the Akka cluster of DISTOD
and the Spark cluster of DIST-FASTOD-BID are configured
over the same twelvemachines. The Sparkmaster runs on the
same machine as the driver process and we configured Spark
to put one executor with 20 cores on each of the remaining
eleven nodes. For DISTOD, we use an active leader config-
uration, where the leader node spawns 10 workers and each
of the eleven follower nodes spawn 20 workers; we set the
partition cleanup interval to 40s (cf. Sect. 7.3) and turn all
semantic pruning strategies off (cf. Sect. 8.2). Whenever an
execution hits the memory limit of 31 GB, we increase the
heap limit to 58 GB. In all these cases but one, which is the
letter-sub.csv dataset for FASTOD-BID, increasing
the memory limit did not enable the algorithms to process
the dataset.

Table 2 shows that DISTOD is an order of magnitude
faster than FASTOD-BID for datasets with a lot of rows.
On the adult-sub.csv dataset with 15 columns and
over 30k rows, DISTOD finishes slightly before 1min and
FASTOD-BID takes almost 1 h to complete. A similar obser-
vation can be made for the letter-sub.csv and the
imdb-sub.csv dataset. DISTOD can finish the task for
letter-sub.csv over 60× and for imdb-sub.csv
nearly 20× faster than FASTOD-BID. For very small
datasets with under 1k rows, FASTOD-BID is slightly faster
than DISTOD. This is expected because DISTOD deals
with the overhead of multiple parallel components and clus-
ter management. Due to the active leader configuration
and the reactive start procedure, DISTOD can start pro-
cessing the dataset very early on, even before all follower
nodes have connected to the leader. This allows DISTOD
to process even small datasets very fast without the need to
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wait for a complete cluster startup and shutdown (e. g., for
abalone-sub.csv or chess-sub.csv).

Compared to DIST-FASTOD-BID, DISTOD is at least
4× faster on all tested datasets. On short and wide datasets,
such as bridges-sub.csv or hepatitis-sub.csv,
DISTOD is even an order of magnitude faster than DIST-
FASTOD-BID. This shows that DISTOD does not only gain
its performance from scaling with the number of rows but
also from scaling with the number of columns. On the small
datasets in Table 2, DIST-FASTOD-BID is an order of mag-
nitude slower than both FASTOD-BID and DISTOD. This is
due to the synchronized cluster startup and shutdown proce-
dure of the Spark implementation, which causes a significant
runtime overhead.

DISTOD is the only approach that is able to process the
dblp-sub.csv, the tpch-sub.csv, the ncvoter-
sub.csv, and the horse-sub.csv datasets within our
time and memory constraints. FASTOD-BID cannot pro-
cess any of the four dataset because it hits the mem-
ory limit even when it uses 58 GB of heap memory.
DIST-FASTOD-BID cannot process dblp-sub.csv and
tpch-sub.csv, because its executors hit thememory limit
in level three of the candidate lattice for both datasets. The
ncvoter-sub.csv and horse-sub.csv datasets can-
not be processed by DIST-FASTOD-BID, because it hits the
time limit of 24h. While DIST-FASTOD-BID did not finish
level nine of the candidate lattice within the time limit for the
ncvoter-sub.csv dataset, DISTOD explored all 15 lev-
els of the candidate lattice in nearly 10h validatingmore than
736k bOD candidates. Similarly for the horse-sub.csv
dataset:While DIST-FASTOD-BID cannot finish processing
level eight of the candidate lattice within the time limit, DIS-
TOD explored all 18 levels within 7h validating over 95m
bOD candidates.

In summary, the experiment demonstrates that DISTOD
competes well with FASTOD-BID on datasets with low
numbers of bODs. It outperforms FASTOD-BID on harder
datasets by about a factor that is proportional to the number
of machines in the cluster, demonstrating that it distributes
the workload effectively; it’s reactive and dynamic search
strategy, in particular, distributes the workload significantly
better than DIST-FASTOD-BID’s MapReduce-style distri-
bution approach. Our novel partition caching strategies and
the distributed setting also enable DISTOD to process much
larger datasets before running into memory limits.

9.3 Scaling the cores

In our second experiment, we evaluate DISTOD’s scalability
with the number of cores in one node. Because the perfor-
mance of a system cannot be judged based on its scalability
behavior alone, i. e., good scalability can simply be the result
of an improper implementation, McSherry et al. introduced a

metric, called configuration that outperforms a single thread
(COST), that puts the scalability of a system in relation to
the performance of a competent single-threaded implemen-
tation [17]. The COST of a parallel/distributed system is the
hardware configuration required to outperform the single-
threaded variant. To judge the performance of DISTOD, the
following scalability experiments, therefore, also evaluate
COST.

To evaluate the COST of DISTOD, we compare its run-
time with different hardware configurations to the efficient
single-threaded bOD discovery algorithm FASTOD-BID.
We perform the experiments on a single node of our cluster
and scale the number of cores from 1 to 20 (with DISTOD’s
parameter max-parallelism). Technically, we restrict
the parallelism of the various parallel components of DIS-
TODby limitingDISTOD’s actor system to a specificnumber
of execution threads. We use two datasets to evaluate our
COST metric: hepatitis-sub.csv as an example for a
wide but short dataset and adult-sub.csv as an example
for a narrow but long dataset.

Figure 5a shows the runtimes of DISTOD and FASTOD-
BID for the hepatitis-sub.csv dataset in seconds.
Since the hepatitis-sub.csv dataset is very short,
there is not a big potential for parallelizing the candidate vali-
dations. Each validation is finished very fast and dispatching
the validation jobs to different actors may introduce addi-
tional overhead. Despite that, DISTOD is able to outperform
FASTOD-BID with a parallelism of six or more. Thus, DIS-
TOD’s COST for the hepatitis-sub.csv dataset is a
single nodewith six cores.DISTOD’s elastic task distribution
strategy introduces only a low overhead and the parallelized
candidate generation step improves its scalability even for
short datasets.

Figure 5b shows the runtimes of DISTOD and FASTOD-
BID for the adult-sub.csv dataset in seconds. The
adult-sub.csv dataset with 15 columns is narrower than
the hepatitis-sub.csv dataset with 20 columns, but it
hasmore than 200×more rows.As expected,DISTODscales
very well on this dataset and can outperform FASTOD-BID
already with a parallelism of two. DISTOD with a paral-
lelism of three is already twice as fast as the single-threaded
algorithm FASTOD-BID.

9.4 Scaling the nodes

DISTOD is a distributed algorithm that does not only scale
vertically by utilizing all available cores of a single machine,
but also horizontally by forming a cluster of multiple com-
pute nodes. In Fig. 5g, we compare the runtimes of DISTOD,
FASTOD-BID and DIST-FASTOD-BID when scaling them
horizontally. Because FASTOD-BID is a single-threaded
bOD discovery algorithm, its runtime is constant and serves
as a reference. Note that we report the runtime of the
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Fig. 5 Scaling experiments

approaches in seconds on a log axis.We ran the experiment on
the adult-sub.csv dataset with 15 columns and 32,561
rows.

As the measurements in Fig. 5g show, DISTOD is
4× faster than DIST-FASTOD-BID and 14× faster than
FASTOD-BID on a single node. On all twelve nodes, DIS-
TOD is still more than 4× faster than DIST-FASTOD-BID,
but its lead has shrunk, which is because the algorithm
reaches the maximum parallelization for the parallelizable
part of the bOD discovery for this specific dataset. Note
that DISTOD uses the active leader configuration with ten
Worker actors on the leader node while DIST-FASTOD-
BID’s Spark driver process utilizes only a single core on
the leader node. Another observation that we make on this
adult-sub.csv dataset and on many other datasets as
well is that DISTOD on only one node is already faster than
DIST-FASTOD-BID on all twelve nodes.

9.5 Scaling the rows

To perform the experiments on DISTOD’s scalability in
the number of rows |r|, we use two long datasets with a
mid-range number of columns. Figure 5d plots DISTOD’s
runtime in seconds when scaling the number of rows of
the ncvoter-sub.csv dataset from 100k to about 1m

rows, and Fig. 5e plots the runtime of DISTOD for the
flight-long.csv dataset with 50k to 500k rows.

The measurements in Fig. 5d show a tendency toward lin-
ear runtime growth and the measurements in Fig. 5e show
almost perfectly linear scalability with the number of rows.
This is because the computation time is dominatedby thegen-
eration of partitions and the validation of bOD candidates,
which both are linear in |r|. The deviation from a perfectly
linear growth is due to the increasing number of bOD can-
didates: Additional records in the input data invalidate ever
more candidates, which leads to a growth in the amount of
candidates that need to be validated. If fewer bOD candi-
dates are invalidated, the valid bODs are shorter and, hence,
detected early in the lower lattice levels; our pruning strate-
gies can, then, prune a lot of the candidates in higher levels
from the search space. If many invalid candidates occupy the
lower lattice levels, DISTOD cannot prune these candidates
but needs to validate them.

In Fig. 5d, we see that DISTOD scales about linearly with
the number of rows if the number of candidates does not
change significantly (400k to 900k rows) and it scales worse
than linearly if the number of candidates grows stronger
(100k to 400k and 900k to 1m rows).
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In Fig. 5e, we see that DISTOD scales almost perfectly
linear with the number of rows because the increase in can-
didates is small and even flattens out in the end.

9.6 Scaling the columns

To evaluate DISTOD’s ability to scale with the number
of columns in a dataset, we perform an experiment on
our widest dataset, which is plista-sub.csv with 63
columns. In the experiment, we scale the dataset’s number
of columns from five to 60 by increments of five and vary
the number of columns by taking random projections of the
plista-sub.csv dataset. Figure 5f shows that the run-
time of DISTOD grows exponentially with the number of
columns. This is expected because the number of bOD can-
didates (and minimal bODs) in the set containment lattice
grows exponentially with the number of columns in the worst
case. The increasing amount of bOD candidates depicted in
Fig. 5f confirms this theoretical complexity. The candidate
lattice for the plista-sub.csv dataset with 40 or more
columns outgrows DISTOD’s memory limit on our leader
node because DISTOD is not able to free up any more mem-
ory without giving up the completeness or minimality of the
results—in practice, the algorithm then sacrifices complete-
ness by terminating early without finding all minimal bODs.
For this reason,we report the runtimes only up to 35 columns.

As the result size grows exponentially with the number
of columns in a dataset, DISTOD’s runtime and memory
consumption grow exponentially as well. To overcome this
limitation, we introduced two semantic pruning strategies in
Sect. 8.2: interestingness pruning and size limitation. Both
reduce the number of valid bODs by restricting the search
space to interesting bODs only. This improves the perfor-
mance of DISTOD by orders of magnitude and allows it to
mine larger datasets. By enabling the interestingness pruning,
DISTOD can mine the plista-sub.csv dataset with 45
columns in 64s (60 interesting bODs) and the entire dataset
with 63 columns in 4.5min (98 interesting bODs). Limiting
the size of the bODs to a maximum of 6 columns achieves a
similar result: For the plista-sub.csv dataset with 45
columns, DISTOD takes 89s (532 bODs) and for the entire
datasetwith 63 columns, it takes just under 5min (809bODs).

9.7 Memory consumption

Current bOD discovery algorithms demand a lot of mem-
ory to store intermediate data structures. For DISTOD, this
includes the candidate state and job queue on the leader node
and the partitions on all other nodes. In the following exper-
iment, we, therefore, compare DISTOD’s performance with
limited memory and its memory consumption to our base-
line algorithms FASTOD-BID and DIST-FASTOD-BID. To
measure the memory consumption, we limit the available

memory in logarithmic steps starting from 28 GB. We stop
reducing the memory limit when the algorithm experiences
memory issues for the first time. We execute the single-
threaded algorithm FASTOD-BID on a single node of our
cluster. DISTOD and DIST-FASTOD-BID utilize all nodes
of the cluster. For DISTOD,we limit the availablememory of
the leader node as well as the memory for all follower nodes
to the same value.We still use the active leader configuration,
where the leader node spawns ten local Worker actors. The
experiment runs DISTOD in two configurations: one with
a 40s partition cleanup interval, which we also used in all
previous experiments, and one with a more aggressive inter-
val of 5 s (see Sect. 7.3). A shorter interval causes DISTOD
to free up memory quicker, but it also influences DISTOD’s
runtime negatively. For DIST-FASTOD-BID, we gradually
reduce the available memory for the Spark driver process as
well as for all executors.

Figure 5c shows the runtimesofDISTOD,DIST-FASTOD-
BID, and FASTOD-BID on the letter-sub.csv dataset
when we reduce the available memory from 28 GB to
256 MB. Because FASTOD-BID already hit the memory
limit (denoted with ML) with 28 GB memory, we included
its runtime with 58 GB. FASTOD-BID uses a lot of memory
because it’s level-wise search strategy stores all partitions of
the current and the next level while generating a level. In
addition, it also stores the sorted partitions for all attributes
of the dataset and the current intermediate candidate states.
The partitions of the previous level are freed up not before
the transition from one level to the next is completed. With
the 58 GB of memory, FASTOD-BID takes more than 4.5h
to process the letter-sub.csv dataset. As a reference,
DISTOD finishes the discovery on a single node with only
28 GB of memory within 38min; this is 7× faster than
FASTOD-BID while using only half of the memory.

DIST-FASTOD-BIDcanprocess theletter-sub.csv
dataset with at least 1 GB available main memory. If we limit
the memory to 512 MB or less, then the Spark executors fail,
which is marked in Fig. 5c as reaching the memory limit
(ML). However, the diminishing memory capacity already
becomes noticeablewith 2GB asDIST-FASTOD-BID’s run-
time starts to increase because the Spark framework starts to
spend extra cycles on data management.

Our algorithm DISTOD is able to process the letter-
sub.csv dataset with a pessimistic partition cleanup inter-
val of 5 s and only 512 MB of available memory. Even with
only 512 MB memory and the 5 s partition cleanup interval,
DISTOD is still 1.4× faster than DIST-FASTOD-BID with
1 GB of memory. For the experiment with 512MB, DISTOD
uses most of its memory and triggers partition evictions, i. e.,
it frequently frees upmemory by removing all stored stripped
partitions from the cache. This allows DISTOD to continue
processing with less memory but increased processing time,
which is from888s (1024MB) to 1817s (512MB).However,
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for the experiment with only 256 MB of memory, the can-
didate states outgrow the memory limit (ML) on the master
node. In this case, freeing up stripped partitions does not help
anymore and the algorithm becomes output bound. To still
process the dataset, we recommend enabling the semantic
pruning mechanism of DISTOD.

Figure 5c also shows the runtimes of DISTOD when
we keep the partition cleanup interval at 40 s. With a limit
of 28 GB of memory, DISTOD takes 613s to process the
letter-sub.csv dataset with a 5 s partition cleanup
interval and but only 247s with a 40s partition cleanup inter-
val (see Table 2 in Sect. 9.2). This shows that a small partition
cleanup interval negatively impactsDISTOD’s runtimewhen
the available memory is adequately sized. A smaller partition
cleanup interval allowsDISTOD to efficiently runwith lower
memory bounds though. In the case of a 40s partition cleanup
interval, DISTOD’s memory consumption peaks higher due
to the less frequent partition cleanups, which causes DIS-
TOD to hit the memory limit sooner than with a 5 s partition
cleanup interval, which is already at 512 MB. As Fig. 5c
also shows, DISTOD with a 40s partition cleanup interval
is slower than with a 5 s interval when using lower memory
limits, such as 2 GB or 1 GB, because the JVM’s garbage
collector already starts fighting for memory, which is more
costly and less effective than DISTOD’s own memory man-
agement. Thus, for environments with limited memory, a
small partition cleanup interval is preferable. It allows DIS-
TOD to process the dataset more efficiently and, thus, faster.

9.8 Partition caching

In this section, we study the impact of DISTOD’s partition
cachingmechanism (see Sect. 7.1) on the runtime for various
datasets. For this, we measured the runtime of DISTODwith
partition caching enabled and disabled in milliseconds and
report the results in Table 3. For the experiment, DISTOD
uses all twelve nodes of our testing cluster.

DISTOD with partition caching enabled is on average
26% faster than with partition caching disabled. For the
datasetsadult-sub.csv and letter-sub.csv, parti-
tion caching decreases DISTOD’s runtime even by 55% and
70% respectively. The runtime increase with caching on the
iris-sub.csv dataset is due to the overall small runtime
on this dataset and the runtime fluctuations in the startup
process that impact particularly such small measurements. If
partition caching is disabled, DISTOD computes all stripped
partitions from the initial partitions using the direct parti-
tion product (see Sect. 7.2.2) and does not cache stripped
partitions in the PartitionMgr actor. The direct parti-
tion product is slower than computing a stripped partition
from two of its predecessors and, thus, increases DISTOD’s
runtime. Since DISTOD works on constant and order com-

Table 3 Runtimes of DISTOD in milliseconds when partition caching
is off or on. ColumnDiff reports the runtime increase or decrease when
partition caching is on w. r. t. the runtime when partition caching is off

Dataset Cache off Cache on Diff

iris-sub.csv 375 414 +10%

chess-sub.csv 2873 2393 −17%

abalone-sub.csv 1951 1396 −28%

bridges-sub.csv 2979 2871 −4%

adult-sub.csv 127,889 58,135 −55%

letter-sub.csv 828,082 249,417 −70%

hepatitis-sub.csv 108,094 102,466 −5%

flight-long-sub.csv 407,593 214,334 −47%

flight-sub.csv 70,355 70,572 −1%

fd-reduced-sub.csv 200,402 101,846 −49%

patible bODcandidate validations in parallel and checks from
different validation jobs may require the same stripped parti-
tion,DISTODmay even compute stripped partitionsmultiple
times on each node. If partition caching is enabled, DIS-
TOD’s PartitionMgr makes sure that Workers on the
same node can reuse existing stripped partitions and that
DISTOD can benefit from the faster recursive generation of
stripped partitions (see Sect. 7.2.1). In summary, the experi-
ment showed that the cached partitions might be superfluous
in some discovery runs, but they can increase DISTOD’s per-
formance significantly in other runs.

10 Conclusion

In this paper,we proposedDISTOD, a novel, scalable, robust,
and elastic bOD discovery algorithm that uses the actor
programming model to distribute the discovery and the val-
idation of bODs to multiple machines in a compute cluster.
DISTOD discovers all minimal bODs w. r. t. the minimal-
ity definition of [25] in set-based canonical form with an
exponential worst-case runtime complexity in the number of
attributes and a linear complexity in the number of tuples.
In our evaluation, DISTOD outperformed both the single-
threaded bOD discovery algorithm FASTOD-BID [25] and
the distributed algorithmDIST-FASTOD-BID [22] by orders
of magnitude. The superior performance is the result of
DISTOD’s optimized search strategy and its improved val-
idation techniques, which are both enabled by the reactive,
actor-based distribution approach.With DISTOD’s elasticity
property and the semantic pruning strategies, we can dis-
cover bODs in datasets of practically relevant size, such as the
plista-sub.csv dataset with 61 columns and 1k rows,
which can now be mined in under 5min.

Topics for future work are investigating strategies that can
reduce thememory consumption and growth of the candidate
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states in the central data structure on the leader node because
this is the memory limiting factor in DISTOD at the moment;
adopting hybrid data profiling approaches, i. a., the ideas
of [4,12,18], into a distributed bOD discovery algorithm;
or enhancing our approach to the discovery of approximate
bODs [13].
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