
BCNF∗ – From Normalized- to Star-Schemas and Back Again
Marie Fischer∗

Hasso Plattner Institute,
University of Potsdam, Germany
marie.fischer@student.hpi.de

Paul Roessler∗
Hasso Plattner Institute,

University of Potsdam, Germany
paul.roessler@student.hpi.de

Paul Sieben∗
Hasso Plattner Institute,

University of Potsdam, Germany
paul.sieben@student.hpi.de

Janina Adamcic
Hasso Plattner Institute,

University of Potsdam, Germany
janina.adamcic@student.hpi.de

Christoph Kirchherr
Hasso Plattner Institute,

University of Potsdam, Germany
christoph.kirchherr@student.hpi.de

Tobias Straeubig
Hasso Plattner Institute,

University of Potsdam, Germany
tobias.straeubig@student.hpi.de

Youri Kaminsky
Hasso Plattner Institute,

University of Potsdam, Germany
youri.kaminsky@hpi.de

Felix Naumann
Hasso Plattner Institute,

University of Potsdam, Germany
felix.naumann@hpi.de

ABSTRACT
Data warehouses are the core of many data analysis processes. They
contain various database schemas, which are designed and created
through schema transformation and integration. These processes
are complex and require technical knowledge, which makes them
costly and prevents business teams to start new analyses indepen-
dently. BCNF∗ is a web application that enables users to safely
explore valid schema transformations and generate transformation
scripts automatically. It can be used for any schema transforma-
tion, but is optimized for semi-automatic data warehouse creation
through means like a dedicated star schema mode.

CCS CONCEPTS
• Information systems → Database utilities and tools.

KEYWORDS
schema management; star schema; normalization
ACM Reference Format:
Marie Fischer, Paul Roessler, Paul Sieben, Janina Adamcic, Christoph Kirch-
herr, Tobias Straeubig, Youri Kaminsky, and Felix Naumann. 2023. BCNF∗ –
From Normalized- to Star-Schemas and Back Again. In Companion of the
2023 International Conference on Management of Data (SIGMOD-Companion
’23), June 18–23, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3555041.3589712

1 SCHEMA MANAGEMENT
Companies often manage data in data warehouses. Despite data
lakes gaining popularity in recent years, much structured data is
still stored in well-defined database schemas. Organizing the same

∗Authors contributed equally to this research

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9507-6/23/06.
https://doi.org/10.1145/3555041.3589712

data in multiple schemas can improve the performance of different
workloads.

Businesses tend to store unprocessed and denormalized data in
a landing schema. This schema offers easy extensibility and low
complexity. It comes at the cost of data duplication and a lack
of consistency due to possible data anomalies. Structuring data
in normalized core schemas reduces redundancy, improves data
integrity and requires less physical space. However, performing
data analysis workloads (OLAP) on normalized data usually requires
multiple costly joins. To overcome downsides of core schemas for
analysis, data is restructured into star schemas, consisting of fact and
dimension tables [4]. Often, there are multiple workload-specific
schemas for different analyses. Data analysis tools rely on such
specialized schemas to perform analytical queries effectively [9, 10].

As different schemas offer individual benefits, organizations
want to efficiently transform schemas back and forth. These trans-
formations demand high manual effort and a good understanding of
data profiling techniques to identify and utilize data dependencies.
Furthermore, knowledge about the underlying business context is
essential to assess data layouts and grasp domain-specific design
choices. Lastly, familiarity with data processing languages, such as
SQL, is required to perform the desired transformations and build
necessary data pipelines. Hence, data analysts, domain experts, and
data engineers have to work collaboratively to transform schemas
back and forth.

We present BCNF∗, an interactive open-source web application†
for flexible schema management and integration. With it, users
can easily transform schemas from normalized forms to star (∗)
schemas and back. In BCNF∗, we normalize schemas using the
popular Boyce-Codd normal form (BCNF); other normal forms can
be added to BCNF∗ in the future.

2 BCNF∗ OVERVIEW
BCNF∗ is a web application that facilitates the end-to-end process of
schema transformation. Additional dedicated modes offer a variety
of tools to simplify the creation of star schemas and the integration
of multiple schemas.
†https://github.com/SchweizerischeBundesbahnen/BCNFStar

103

https://doi.org/10.1145/3555041.3589712
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3555041.3589712
https://github.com/SchweizerischeBundesbahnen/BCNFStar
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555041.3589712&domain=pdf&date_stamp=2023-06-05

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Marie Fischer et al.

2.1 Schema Editing Mode
Schema editing in BCNF∗ is supported by data dependencies, namely
functional dependencies (FDs) and inclusion dependencies (INDs).
In this way, we ensure that all transformations preserve the in-
tegrity of the schema. The usual workflow with BCNF∗ is divided
into three steps:

(1) Configuration and execution of dependency discovery algo-
rithms on the data

(2) Schema editing using the calculated dependencies
(3) Persistence of the final schema by applying the necessary

transformations on the data

Dependency recognition is performed by algorithms implemented
in the Metanome data profiling framework [5]. The default algo-
rithms used for FD- and IND-discovery areHyFD [7] and BINDER [6],
respectively. We allow the configuration of algorithm parameters
(e.g., maximum number of columns for the left-hand side of FDs).

After this phase, the FDs and INDs that exist on the schema are
known and can be used for integrity preserving schema transfor-
mation as follows. BCNF∗ can be easily extended to support more
algorithms that run in the Metanome framework.

Schema editing in BCNF∗ is primarily supported in the form of
semi-automatic normalizing, joining and unioning of tables. Based
on a previously discovered and automatically suggested FD, a table
can be normalized. The columns of the left-hand side and right-
hand side of the FD form a new table. This new table is referenced
by the initial table via a foreign key (FK) on the columns of the
left-hand side. The columns of the right-hand side can be deleted
from the initial table to complete the normalization.

INDs occur if the distinct values of one column set𝐴 are included
in the distinct values of a column set 𝐵. If 𝐵 forms a candidate key
in its table, the IND may represent a FK relationship between the
two tables. BCNF∗ allows identifying such INDs as an actual FK,
and based on such FKs, two tables can be joined.

As a matter of fact, datasets tend to contain a lot of FDs that
should not be used for normalization or inclusion dependencies
that do not represent an actual FK relationship. Thus, BCNF∗ offers
various rankings helping the user distinguish randomly occurring
dependencies from correct FDs and INDs, including rankings found
in [1, 8, 12–14]. The rankings can be adapted by the user, i.e., de-
pending on the data, a different weighting of different ranking
algorithms could provide the best results.

Due to incorrect tuples in real-world datasets, FDs and INDs that
should hold are not valid. Therefore, a user cannot find such depen-
dencies when editing the schema in the transformation proposals.
In this case, BCNF∗ provides the possibility to suggest certain de-
pendencies manually by the user and show violating tuples.

Further functionalities like adding surrogate keys, table and
column renaming, or the deletion of FKs, tables and columns help
the user to reach the desired schema.

Persistence of the final schema is accomplished through the
generation and execution of SQL-statements that perform the user’s
transformations. The new tables are created and filled with data, key
constraints are established and surrogate keys generated. Currently,
BCNF∗ supports PostgreSQL and SQL Server dialects; extending
BCNF∗ to support other DBMSs is easy. Schema design is also

a collaborative and iterative task. Therefore, BCNF∗ allows data
scientists to save their progress in a JSON-based format. The file
can be shared with colleagues to collaboratively edit the schema,
or reloaded to continue schema editing later.

2.2 Star Schema Mode
Structuring data in a star schema is of great practical importance for
organizations. BCNF∗ offers a dedicated mode to support the trans-
formation of (normalized) data into workload-specific star schemas.
To this end, BCNF∗ automatically identifies and highlights tables
as facts and dimensions: Facts are tables that are not referenced by
any other table. Dimensions, on the other hand, are tables that are
referenced by other tables and contain additional information. If
dimensions are referenced in the fact table, the tables are direct
dimensions, if they are transitively referenced by other dimensions
we call them indirect dimensions, as shown in Figure 1.

Figure 1: Facts, direct and indirect dimensions

BCNF∗ also calculates the fact potential for non-fact tables based
on the Connection Topology Value [11]. If this value surpasses the
schema-specific threshold from [2], the user can manually specify
such tables as facts as well. For indirect dimensions that are linked to
facts via several other tables, the star schema mode allows creating
the corresponding direct references automatically.

Additionally, we filter and do not display FKs that are probably
irrelevant for star schema design. For instance, FKs among (indirect)
dimension tables should not be persisted as a database constraint.
For better illustration, Figure 2 shows the filtering of the FKs in the
schema editing and star schema mode. FKs displayed in only one
of the modes are highlighted in green. Activating FKs manually dis-
plays them again and ensures their creation at schema persistence.
In general, FKs are only persisted when visible (WYSIWYG).

2.3 Schema Integration Mode
The schema integration mode is intended for users who want to
include a new data source / schema by integrating it with the
existing schema. BCNF∗ guides users by splitting the process into
three phases: the alignment, the fusion, and the persistence phase.

At the start of the alignment phase, equivalent columns be-
tween the two schemas are searched with the COMA-3.0 schema
matcher [3]. Afterward, the user transforms the schemas so that
these corresponding columns build corresponding tables using a
specialized compare-view, as shown in Figure 3. In this example,
COMA-3.0 identified that the columns of the denormalized table
(left) match three separate tables of the normalized schema (right).

104

BCNF∗ – From Normalized- to Star-Schemas and Back Again SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

Figure 2: FKs displayed in schema editing mode (above) and
star mode (below)

To align the schemas, the user can either normalize the left table
based on FDs or join the right tables based on FKs or INDs.

Figure 3: Compare view of the integration mode

In the fusion phase, equivalent tables are unioned to form one
resulting schema. The persistence is done as in the schema editing
mode of BCNF∗. Here, only the integrated schema remains. Finish-
ing touches can be added, and SQL scripts generated to execute the
integration on the database.

3 DEMONSTRATION SCENARIOS
We demonstrate two typical workflows with BCNF∗. In our demon-
stration scenario, a data scientist is interested in transforming the
schema of a denormalized TPC-H dataset∗. Firstly, she wants to
retrieve the original normalized TPC-H schema, to avoid data anom-
alies and require less memory. In a second step, she would like
∗https://www.tpc.org/tpch/

to create several analyses to answer business questions, such as
(1) Which line items are most frequently purchased by customers
from China or (2) Which country imports the most parts for each
line item respectively? To execute the requests for these analyses
efficiently, she creates a star schema.

3.1 Normalizing a Schema
In our first part of the scenario, the data scientist wants to nor-
malize a schema. She selects the denormalized tables that must
be normalized and configures the algorithms: All available mem-
ory should be used and FDs shall be limited to two left-hand side
columns. Also, the IND calculation can be restricted to INDs with
a maximum of two columns in this scenario. This speeds up the
FD/IND calculation compared to the default settings.

After automatically discovering the FDs and INDs, the data sci-
entist starts working on the transformations. Figure 4 shows the
three components of the GUI: (1) the graph, which displays the
tables, their columns and foreign key (FK) constraints between
tables, (2) the sidebar, containing the transformation menus and
(3) the menu bar, which allows switching between normal and star
schema modes (see Sections 2.1 and 2.2).

Figure 4: Schema editing mode

The data scientist selects a table to open the transformation
view in the sidebar, which provides the functionality for split, join
and union tasks. The Subtables tab displays FDs in clusters. These
clusters group FDs, which would create the same table when split-
ting, just with a different primary key. For better illustration, the
columns of a cluster are highlighted when the mouse is moved over
the corresponding cluster.

Based on the FD ranking, she decides to normalize the orders
table by separating customer information with the FD o_custkey −→
c_name, c_address, n_regionkey, n_name, Before the split based
on this FD, as described in Section 2, is automatically executed, she
can manually specify that certain columns are not to be split out.

She additionally searches for FDs containing the n_nationkey to
normalize the table further by creating a table with the nation infor-
mation. She repeats similar steps for all three source tables and ends
up with three normalized but yet unrelated schema components.

To connect those individual components, BCNF∗ offers the pre-
viously calculated INDs that are displayed in the tab Foreign Keys.
By selecting the corresponding IND, the data scientist creates one

105

https://www.tpc.org/tpch/

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Marie Fischer et al.

Figure 5: Direct dimension creation: before and after

FK from l_orderkey in lineitem referencing o_orderkey in orders
and another FK from l_partkey, l_suppkey in lineitem referencing
ps_partkey, ps_suppkey in partsupp.

BCNF∗ lets the data scientist persist the aforementioned schema
transformations by generating a migration file. The file contains
the SQL-statements to create the new tables, insert the (joined
and/or unioned) source data into them and establish (surrogate-)
key constraints. The SQL-code for the migration file can contain
several hundred lines, even for a few transformations.

3.2 Creating a Star Schema
The second part of the scenario shows how BCNF∗ can be used to
create a workload-specific star schema from an existing normal-
ized schema. The data scientist loads the normalized schema and
switches to the star schema mode. There, the tables are automati-
cally highlighted as facts (yellow), dimensions (orange) and indirect
dimensions (red). As the analyses do not require region information,
the data scientist can delete the corresponding table.

In order to create the star schema, the data scientist connects the
two remaining indirect dimensions to the fact, making the former
dimensions. With the default operations discussed previously, this
would require numerous transformations. However, the star schema
mode allows creating such a reference immediately.

In some cases, an indirect dimension may be referenced by multi-
ple dimensions: In Figure 5, the supplier and the customer tables
are dimensions of lineitem. Both reference the nation table. The
final analyses rely on the customer’s and supplier’s nations. Thus,
the nation table has to be linked twice to the fact table. To realize

the schema persistence in the end, BCNF∗ remembers the initial
schema and required joins that allow those references.

After finishing the star schema creation, the schema can be
persisted as described before, and ultimately imported into any
analysis tool (e.g., PowerBI) to create the analysis reports.

4 CONCLUSION
We presented BCNF∗, a web application for flexible schema man-
agement and data integration. Through an upstream analysis of
the data, users are provided with numerous suggestions for schema
transformations. This speeds up the identification of data relation-
ships and allows a semi-automatic editing of schemas, easilymoving
between denormalized, normalized and star schemas.

The user is additionally guided in creating workload-specific
star schemas or integrating multiple data sources. With the inter-
active GUI, BCNF∗ facilitates the end-to-end process of complex
schema transformations, even for those, that are not familiar with
the underlying schema or lack the technical skills.

ACKNOWLEDGMENTS
We are grateful to Simon Staudenmayer, Andreas Gehri, René Helg,
and Germann Phillip of SBB Cargo AG, for their support.

REFERENCES
[1] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. On the

Discovery of Relaxed Functional Dependencies. In Proceedings of the International
Database Engineering & Applications Symposium (IDEAS). 53–61. https://doi.org/
10.1145/2938503.2938519

[2] Richard D Christie. 2002. Statistical methods of classifying major event days in
distribution systems. In IEEE Power Engineering Society Summer Meeting, Vol. 2.
IEEE, 639–642.

[3] Hong-Hai Do and Erhard Rahm. 2002. COMA—A system for flexible combination
of schema matching approaches. In Proceedings of the International Conference
on Very Large Databases (VLDB). Morgan Kaufmann, San Francisco, 610–621.
https://doi.org/10.1016/B978-155860869-6/50060-3

[4] Ralph Kimball and Margy Ross. 2011. The data warehouse toolkit: the complete
guide to dimensional modeling. John Wiley & Sons.

[5] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix
Naumann. 2015. Data Profiling with Metanome. PVLDB 8, 12 (2015), 1860–1863.
https://doi.org/10.14778/2824032.2824086

[6] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix
Naumann. 2015. Divide & conquer-based inclusion dependency discovery. PVLDB
8, 7 (2015), 774–785. https://doi.org/10.14778/2752939.2752946

[7] Thorsten Papenbrock and Felix Naumann. 2016. A hybrid approach to functional
dependency discovery. In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD). 821–833. https://doi.org/10.1145/2882903.2915203

[8] Thorsten Papenbrock and Felix Naumann. 2017. Data-driven Schema Normal-
ization.. In Proceedings of the International Conference on Extending Database
Technology (EDBT). 342–353. https://doi.org/10.5441/002/edbt.2017.31

[9] PowerBI 2022. https://powerbi.microsoft.com/de-de/. [Online; accessed 09-
December-2022].

[10] PowerBI 2022. Understand star schema and the importance for Power BI. https:
//learn.microsoft.com/en-us/power-bi/guidance/star-schema. [Online; accessed
09-December-2022].

[11] Il Yeol Song, Ritu Khare, and Bing Dai. 2007. SAMSTAR: a semi-automated lexical
method for generating star schemas from an entity-relationship diagram. In
Proceedings of the ACM International Workshop on Data Warehousing and OLAP
(DOLAP). 9–16.

[12] Ziheng Wei, Sven Hartmann, and Sebastian Link. 2020. Discovery algorithms for
embedded functional dependencies. In Proceedings of the International Conference
on Management of Data (SIGMOD). 833–843. https://doi.org/10.1145/3318464.
3389786

[13] Ziheng Wei, Sven Hartmann, and Sebastian Link. 2021. Algorithms for the
discovery of embedded functional dependencies. VLDB Journal 30, 6 (2021),
1069–1093. https://doi.org/10.1007/s00778-021-00684-3

[14] Ziheng Wei and Sebastian Link. 2019. Discovery and ranking of functional
dependencies. In Proceedings of the International Conference on Data Engineering
(ICDE). 1526–1537. https://doi.org/10.1109/ICDE.2019.00137

106

https://doi.org/10.1145/2938503.2938519
https://doi.org/10.1145/2938503.2938519
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.14778/2824032.2824086
https://doi.org/10.14778/2752939.2752946
https://doi.org/10.1145/2882903.2915203
https://doi.org/10.5441/002/edbt.2017.31
https://powerbi.microsoft.com/de-de/
https://learn.microsoft.com/en-us/power-bi/guidance/star-schema
https://learn.microsoft.com/en-us/power-bi/guidance/star-schema
https://doi.org/10.1145/3318464.3389786
https://doi.org/10.1145/3318464.3389786
https://doi.org/10.1007/s00778-021-00684-3
https://doi.org/10.1109/ICDE.2019.00137

	Abstract
	1 Schema Management
	2 BCNF Overview
	2.1 Schema Editing Mode
	2.2 Star Schema Mode
	2.3 Schema Integration Mode

	3 Demonstration Scenarios
	3.1 Normalizing a Schema
	3.2 Creating a Star Schema

	4 Conclusion
	Acknowledgments
	References

