
Shact: Disentangling and Clustering Latent
Syntactic Structures from Transformer Encoders

Alejandro Sierra-Múnera1[0000−0003−3637−4904]� and Ralf
Krestel2,3[0000−0002−5036−8589]

1 Hasso Plattner Institute, Potsdam, Germany alejandro.sierra@hpi.de
2 ZBW - Leibniz Information Centre for Economics

3 Kiel University, Kiel, Germany rkr@informatik.uni-kiel.de

Abstract. Transformer-encoder architectures for language modeling pro-
vide rich contextualized vectors, representing both, syntactic and seman-
tic information captured during pre-training. These vectors are useful for
multiple downstream tasks, but directly using the final layer representa-
tions might hide interesting elements represented in the hidden layers.
In this paper, we propose Shact Syntactic Hierarchical Agglomerative
Clustering from Transformer-Encoders , a model that disentangles syn-
tactic span representations from these hidden representations, into a la-
tent vector space. In our model, spans are expressed in terms of token
distances. We propose a loss function that optimizes the neural disen-
tanglement model from ground truth spans, and we propose to integrate
these latent space vectors into a two-phase model via hierarchical clus-
tering, suitable for multiple span recognition tasks. We evaluated our
approach on flat and nested named entity recognition as well as chunk-
ing, showing the model’s ability to discover these spans, as well as having
competitive results on the full recognition and classification tasks.

Keywords: Named entity recognition · Chunking · Syntax trees

1 Introduction

Current natural language processing (NLP) models rely heavily on rich pre-
trained word representations in the form of contextualized word embeddings.
Typically, these models use representations derived from transformer-encoders
[18]. These models are pre-trained to predict words given a context, using large
amounts of raw text. They are therefore commonly referred to as pre-trained
language models (PLMs).

Besides being able to predict words given a context, these models are com-
monly used as embedding models, from which the token embeddings from the last
transformer-encoder layer, can be used in task-specific models as dense represen-
tations. One group of tasks which strongly benefits from transformer-encoders
are span recognition tasks, such as named entity recognition (NER) and chunk-
ing. In these tasks, given a sentence or document, the task is to find relevant
spans of words and further categorize them in a set of pre-defined classes. One



2 A. Sierra-Múnera and R. Krestel

He was the President of the United States

Location

Person

1

2

Fig. 1: Nested named entities 1○ and HAC analysis 2○ of a sentence

example of this can be seen in Figure 1 1○. In this example of nested NER, two
spans (President of the United States and United States) correspond to named
entities, and each named entity belongs to a specific class (Person and Location
respectively). For tasks, such as flat NER and chunking, each word can be as-
signed to a maximum of one span, while for hierarchical tasks, such as nested
NER, a single word might belong to multiple spans.

But the transformer model provides more than the last layer representa-
tion. The hidden transformer-encoder layers contain interesting representations
as well, as other studies have revealed [5, 8, 11, 20]. In our proposed model
Shact (Syntactic Hierarchical Agglomerative Clustering from Transformer-
Encoders )4, we exploit these hidden representations to define a latent syntactic
vector space in which a tree that syntactically analyzes the sentence can be rep-
resented in terms of token distances. The intuition of our model can be seen in
Figure 1 2○. Here, the sequence of words can be hierarchically analyzed by merg-
ing words together into clusters that eventually conform the whole sentence. We
hypothesize, inspired by the ideas of Hewitt and Manning [5] and Sajjad et al.
[11], that there exists a vector space, where hierarchical agglomerative clustering
(HAC) can be performed to produce such analysis.

With Shact, we propose a model for disentangling syntactic structures rep-
resenting the clustering of tokens into spans by projecting the hidden represen-
tations of a transformer-encoder into a latent space. For learning the disentan-
glement, we use a loss function which treats multi-word spans as clusters. The
loss function’s goal is to minimize the intra-cluster distances in the latent space,
while maximizing the extra-cluster distance at the same time, thus optimizing
the projection. With this, the disentangled representation’ distances represent
the syntactic relatedness of tokens inside a sentence.

Further, the latent space vectors are clustered using hierarchical agglomera-
tive clustering (HAC), resulting in a binary syntactic tree. This tree determines
a set of candidate spans which are then classified using the same transformer-
encoder, to identify relevant spans, and categorize them among the pre-defined
types.

4 We release the code for training and testing our model in this repository:
https://github.com/HPI-Information-Systems/shact

https://github.com/HPI-Information-Systems/shact


Shact 3

2 Related Work

Our work is related to the interpretability and topological analysis of pre-trained
language models (PLMs), specifically regarding syntax in pre-trained transformer-
encoders. This line of research studies what kinds of structures are automatically
learned by transformer architectures [3, 10, 18] when they are pre-trained using
vast amounts of text.

Previous studies have proposed probes for syntactic structures in the hidden
representations of PLMs. One of these probes was proposed by Hewitt and Man-
ning [5]. They applied a trainable linear transformation to the hidden vectors in
a specific layer of the model, and checked if the resulting vectors represent the
dependency tree in terms of distance between words, and their depth in the tree.
Mareček and Rosa [8] manually analyzed the attention heads of a neural ma-
chine translation transformer-encoder from which they recognized “balustrades”
patterns. Then they automatically generated constituency trees from the atten-
tion heads using the CKY algorithm. They evaluated against different trivial
baselines and found that their technique was able to find these constituents. Wu
et al. [20] analyze the impact between words in a sentence through perturbation
via masking. They computed an impact matrix, from which they built depen-
dency and constituency trees in completely unsupervised mode. They showed
that these structures — although they do not perfectly correlate to annotated
trees — have a positive impact in downstream tasks. Furthermore, they ques-
tion whether transformer architectures actually understand structures better
than the traditionally studied constituency trees.

Sajjad et al. [11] proposed ConceptX to analyze different layers of transformer-
encoders and found different linguistic concepts represented at different levels.
Specifically, they discovered encoded concepts by clustering vector representa-
tions, and then they align these clusters with multiple human-defined linguistic
concepts. Different from probes, such as Hewitt and Manning [5], the discovery
of concepts in the vector space is unsupervised. They found that, although the
alignment was low, the syntactic concepts, such as chunking were present in the
upper layers before the final layers of the different transformer-encoders.

In our work, we take inspiration from these approaches and extract vector
representations from the hidden layers of the transformer-encoders. Different
from Hewitt and Manning [5] we don’t use dependency relations, but instead
word agglomerations, more similar to constituents. Different from Sajjad et al.
[11] we specialize in spans instead of individual words. Deviating from both
and other probing studies, we do not intend to analyze the transformer-encoder
layers individually, but we exploit their combination to project the tokens into
a different vector space.

Another line of related work are span-based nested NER models. These mod-
els go beyond the IOB sequence tagging scheme designed for flat NER, and thus
can identify multiple overlapping named entities. One subgroup of nested NER
focuses on enumerating spans within the text and then classifying the spans
among the entity types. Given a sentence, Sohrab and Miwa [14] proposed to
create an exhaustive set of all the spans with a maximum length and then classify



4 A. Sierra-Múnera and R. Krestel

...

FFN

geneexpr...
IL-2

IL-2
gene
expression

lipoxyge...

...

...

Transformer encoder

...

FFN

...

FFN

IL-2 ...

{

{ geneexpre...

Clustering Loss

...

...

IL-2 gene expression and NF-kappa B
activation through CD28 requires reactive

oxygen production by 5-lipoxygenase

Tokens encoded in
the latent vector

space

Fig. 2: Projection from a transformer encoder hidden layers to the latent space
si where the loss function is computed for a particular entity (IL-2 gene)

them. One disadvantage of the extensive enumeration of spans is the large num-
ber of spans that need to be classified. In Zheng et al. [22], the authors construct
the entity spans using a sequence labeling model based on a Bi-LSTM encoder,
and then use the average token representations within the span to predict the
span label. Similarly, Tan et al. [15] encode the sentence to discover boundaries
and then classify the candidate spans using the token representation within the
span.

Similar to the works in Tan et al. [15], Zheng et al. [22], we propose to
define the candidate spans and classify them using a transformer-encoder, but
different from them, we disentangle the vector space that represents syntactic
span structures from the semantic representations used for the classification of
these spans. In comparison to Sohrab and Miwa [14], the number of candidate
spans in our approach does not depend on the span length but only on the length
of the sequence, thus producing candidates from all possible lengths without
affecting the number of candidates.

3 Shact

In this section we introduce Shact, Syntactic Hierarchical Agglomerative Clus-
tering from Transformer-Encoders , a model that disentangles syntactic repre-
sentations of spans and then uses hierarchical clustering to discover and classify
word agglomerations. First, we present the disentanglement component, and



Shact 5

then we complete the span recognition model with the classification component
based on the spans detected in the clusters.

3.1 Disentanglement of Syntactic Clusters

Inspired by the identification of syntactic structures in PLMs, we define a model
which projects tokens into a latent space where significant spans, such as named
entity mentions or noun phrases, conform to clusters. Treating spans as clusters,
the goal of the model is to minimize the distance between the token representa-
tions within the cluster in comparison to their distance to other token representa-
tions of the sentence. We assume a PLM with a transformer-encoder architecture
[3], and consider all the hidden representations of a token as its full vector repre-
sentation. From these representations, our model projects to latent vector space,
in which the inter-cluster and extra-cluster distances are compared. The projec-
tion is then trained with sentences containing annotated spans to minimize the
ratio between intra-cluster and extra-cluster distances.

An overview of the disentanglement model architecture is represented in Fig-
ure 2. Here, the transformer-encoder passes each token vector through multiple
transformer layers, producing multiple hidden representations. Shact concate-
nates them into a large token vector, which is projected into the latent space
using a feed-forward network (FFN). Given the set of latent token vectors and a
ground truth span, we compute a clustering loss function, based on intra-cluster
and extra-cluster distances. Using gradient descent to minimize this loss, the
FFN is updated during training to better extract the span representations in
the latent space. To generalize the concept of span boundaries and reduce the
complexity of the projection, the disentanglement component of the model does
not differentiate between the types of spans. For instance, if the task is NER
and the relevant spans are entity mentions, the latent projection is agnostic to
the entity types, and it is optimized for all the mentions in the same way.

We now formally define the elements of the model and the loss function.
For a given token ti in a sentence d = {t0, t1, t2, . . . , tn}, and a jth layer of a
transformer-encoder producing a hidden representation hi,j , we define a vector
ĥi by concatenation of all the vectors hi,j . This vector contains the full repre-
sentation of the token ti in the context of the sentence d. In the next step, ĥi is
projected into a vector space S as si via a fully connected neural network f .

For an annotated span n in d (e.g., a named entity or a chunk), consisting
of a subset of contiguous tokens n = {tk, tk+1, ..., tk+m}|n ⊂ d we define the loss
function

Lsyn(d, n) =
ICD
ECD

=

max
ti,tj∈n

δ(ti, tj) + 1

min
ti∈n tj /∈n

δ(ti, tj) + 1

Where δ is the cosine distance between the tokens vectors in the vector space
S. ICD and ECD, represent the intra-cluster and extra-cluster distances. The
idea behind the loss function Lsyn is to optimize the projection f by selecting



6 A. Sierra-Múnera and R. Krestel

gene

IL-2

CD28 and

through

Fig. 3: Example 2D representation of the latent space and the distances consid-
ered during training for the named entity IL-2 gene. The arrows represent the
optimization objectives of minimizing ICD and maximizing ECD

and combining the features of the vector ĥi so that the span n is isolated from
the rest of the tokens in the sentence. This is achieved by minimizing Lsyn which
in turn minimizes the maximum distance ICD within the cluster and maximizes
the minimum distance ECD between tokens belonging to n and the rest of the
sentence.

To give more intuition about the loss function, we consider the case where
ICD < ECD. A value of Lsyn < 1 means that for an annotated span n, e.g.,
a named entity, there is no token outside n with a smaller distance than that
between all the tokens belonging to n, hence effectively clustering the span in
terms of vector distances. To avoid numeric errors when ECD is small, a constant
1 is added to both metrics. The optimization goal and the interpretability of Lsyn

with respect to 1 remain equivalent.
A visualization of the idea behind the loss function can be seen in Figure 3.

Here, the named entity “IL-2 gene” is compared against the rest of the sentence.
The maximum intra-cluster distance ICD is between the tokens IL-2 and gene,
whereas the minimum extra-cluster distance ECD is between IL-2 and CD28.
Intuitively, the loss function’s value would decrease if IL-2 and gene were closer
and the distance between IL-2 and CD28 was larger.

During training, the loss function is computed for each ground truth span,
and then averaged for a batch of sentences. During backpropagation, the param-
eters of f are updated to learn a projection into the latent space. We refrain
from back propagating from Lsyn to the transformer layers to avoid instability,
and to focus the fine-tuning on the semantic aspects needed for the span classifi-
cation. During inference, we project all the tokens into S and apply hierarchical
agglomerative clustering (HAC) for the full sentence until all are merged into
one single cluster. Every merge operation constitutes a potential span that will
be processed during classification (see Section 3.2). We note that the merge op-
erations are restricted to adjacent tokens in the sentence, thus producing only
contiguous spans of text for the next stage. Additionally, tokens belonging to
the same word are merged with the first token of the word, which in turns acts
as the representative token for the entire word. For instance, given the tokens



Shact 7

[SPAN_S]
IL-2
gene

[SPAN_E]
expression

...

FFNTransformer
Encoder

and

Fig. 4: Overview of the classifier architecture. The final vector resulting from the
FFN contains the logits corresponding to the types in τ̂

“human mon #ocytes .”, the token #ocytes can only be merged tomon to form
the word monocytes.

3.2 Span Classification

The span classification phase, shown in Figure 4, uses the same transformer-
encoder used for disentangling the syntactic representations, but exploits the
last layer representations. We hypothesize that this representation contains more
semantic information and thus, is better suited for identifying the span types
(e.g., person, location, noun phrase). Formally, given the original sentence d =
{t0, t1, t2, . . . , tn} and a span defined by the tuple ck = (csk, c

e
k), being csk the

starting index of the span, cek the ending index of the span, the span classifier has
the goal to predict the type ctk ∈ τ̂ |τ̂ = τ ∪{null}, with τ being the original type
set. To do so, after tokenization, two special tokens [SPAN_S] and [SPAN_E]
are inserted before and after the span tokens to produce a new sentence d̂k. For
instance, for the span in Figure 2, the token sequence would be modified in this
way: “[SPAN_S] IL-2 gene [SPAN_E] expression and ...”.

The modified tokenized version of the sentences is then fed into the transformer-
encoder, from which the final layer vectors corresponding to [SPAN_S] and
[SPAN_E] are fed into a multi-layer perceptron responsible for the classification.
Formally, the predicted label ŷ(d, ck) for a sentence d and a span ck belonging
to the sentence, is computed as follows:

ŷ(d, ck) = ϕ(FFN([E(d̂k)SPAN_S : E(d̂k)SPAN_E ]))

where ϕ is the softmax function, FFN is the feed-forward network, and E(d)
is the encoded representation of d, corresponding to the last layer representation
of the transformer-encoder.

During training, the ground truth spans are used to learn the representations
of [SPAN_S] and [SPAN_E] that should be classified into the corresponding
types, but the model needs to learn spans that fall into the {null} type. Thus,
a subset of spans from the sames sentences is also used as negative samples for
the classifier.



8 A. Sierra-Múnera and R. Krestel

Formally, a batch B is conformed of m samples, each composed of a sentence
di = {t0, t1, t2, . . . , tn}, a span ci = (csi , c

e
i ) and one-hot-encoded ground truth

label yij where j corresponds to the jth class in τ̂ . The model then computes
ŷij , with which the classification cross-entropy loss function LCE is aggregated
for the batch B as follows:

LCE(B)(y, ŷ) = −
m∑
i=1

τ̂∑
j=1

yij log(ŷij)

During inference, all the potential spans produced by the hierarchical clustering
algorithm are classified by taking the argmax of the predicted classes.

3.3 Training Procedure and Negative Sampling

Providing negative samples to the classifier impacts the way the model learns
to distinguish between relevant spans (ctk ∈ τ) and non-relevant spans (ctk =
null). To generate a set of negative spans, we leverage the disentangled syntactic
representations from Shact. To do so, first we warm up the disentanglement
projection f , keeping the transformer-encoder parameters frozen. With a trained
projection, hierarchical agglomerative clustering is performed on the sentences
in the training set, therefore discovering potential syntactically relevant spans.
From those spans, the ones which do not correspond to ground truth spans are
considered as negative spans for the subsequent classification training.

Then, in the second phase of training, the full model is trained by consid-
ering both positive and negative examples. The full loss function for a batch
B combining positive and negative samples is the sum of the cross-entropy loss
LCE(B) for the classifier and the syntactic loss Lsyn for the positive examples
of B (i.e., spans with a type belonging to τ). in this phase we fine tune the
transformer-encoder using LCE(B), but the disentanglement projection model
is detached from the transformer representations, thus only training the projec-
tion f . In our initial experiments, we observed instability in the clustering loss
if we also back-propagate to the transformer from the projection f .

Inference Procedure. Different from training, where each sentence-span pair
(d, ck) is trained independently, during inference, each sample is composed only
of a sentence d, without ground-truth spans.

The first part of the inference phase is to compute the latent representations
of all tokens of d. These vectors are then clustered using HAC. Specifically, the
single linkage strategy is used with the additional constraint that only contiguous
clusters can be merged. The outcome of the clustering is a dendrogram (Figure
1) in which every merge is a potential span. In total, for a sentence with n
words, 2n − 1 candidate spans, including the individual words, are considered
for classification.

For each candidate span, a new sentence with the special tokens [SPAN_S]
and [SPAN_E] is encoded using the transformer, and the special token repre-
sentations are classified the same way as the classification training. The final



Shact 9

result of the inference phase is a binary tree, where the leaves are the words in
the sentence, and every node, including the leaves, has an assigned class from
τ̂ . Task-specific post-processing filters can be applied to the tree. In particu-
lar, for tasks, such as flat NER and chunking, where each word can belong to
a maximum of one span, the prediction needs to be flattened. For hierarchical
prediction, such as for nested NER, the predictions can be computed from the
tree by ignoring the nodes with a predicted null-type.

The criteria that we employ for flattening the prediction involves a sequen-
tial sorting of the positive candidates in descending order, based on their level
of classification confidence and their length in words. Then spans are selected
sequentially if no overlapping span was selected before. This means that we
favor high confidence spans, and given two overlapping spans with the same
confidence, we favor the longest one.

4 Evaluation

Our evaluation focuses on two aspects of our model. First, the intrinsic clustering
ability of the model, corresponding to the degree in which a trained model is able
to cluster together spans, to do so we focus on nested NER, being more complex
to cluster spans in a hierarchical fashion. Secondly, we evaluate the full two
phase model including the classifier for three different tasks: flat NER, nested
NER, and chunking. With this, we evaluate the usefulness and adaptability of
syntactic trees with different classification schemes.

For flat NER, we evaluate our model on CoNLL03 [17], for nested NER, we
use GENIA [9], and for chunking, we employ CoNLL00 [16] .

As mentioned in Section 3.3, the model is warmed-up for one epoch, and
then, both the disentanglement and classification components are trained for a
maximum of 15 epochs using early stopping with respect to the validation F1
score and a patience value of 5 epochs.

In all the experiments, we use BERT-large-cased [3] as the PLM, except for
the GENIA experiment where we use BioBERT-large-cased-v1.1 [6]. The dimen-
sionality of the latent space is fixed to 128 and Adam is used as the optimizer.

4.1 Intrinsic Evaluation

The intrinsic evaluation aims to determine whether the clustering loss can op-
timize the projection f from spans in the training set. To measure that, we
compute the recall of spans from the test set after training only the projection
disentanglement component. We train the model for one epoch using the train-
ing set and for each of the sentences in the test set, HAC is used on the set of
token vectors until the whole sentence is merged into one single cluster. We then
analyze the resulting binary trees, measuring the span recall of ground truth
spans. This is critical for our model, because any ground truth span, not present
in the binary tree, cannot be considered by the classifier component.

For baselines, we use the following vector representations:



10 A. Sierra-Múnera and R. Krestel

Table 1: Percentage of GENIA named entities present in the binary trees com-
puted with HAC on the different vector spaces

Vector Space Span Recall

PLMfinal 52.94
PLMfull 51.51
LSrandom 51.50
LS 97.37

– PLMfinal: The final layer representation of the transformer-encoder.
– PLMfull: The concatenation of all the hidden representations for each token,

which is equivalent to ĥi.
– LSrandom: The latent space vectors, computed with the projection compo-

nent, initialized with random weights without training. This will provide us
insights on the value of the loss function to optimize the projection.

– LS: The latent space vector, computed with the trained projection compo-
nent.

For these experiments, the PLM is kept frozen and the experiments with
LSrandom and LS are repeated 3 times with different seeds. A named entity
from GENIA is considered a correct prediction if, and only if, it is one of the
distinct clusters of HAC computed for the sentence. The recall numbers can
be seen in Table 1. Here, we clearly see that the distance in the other vector
representations does not correlate to the syntactic relatedness of the tokens in
an entity mention. Our trained projection leads to the highest recall, which shows
the potential of the latent space for expressing the relatedness of span tokens.
However, the low recall numbers of the PLM approaches are not surprising,
given the objectives used for training them. BERT’s masked language modeling
objective emphasizes on the semantic, rather than the syntactic representation
of the tokens. We also observe that randomly combining hidden representations
(LSrandom) does not help our clustering objective. With this, we can observe
that the optimization of the projection f is required to capture all the relevant
spans.

Having a good span recall in the latent space is critical for our model, since
the errors from the syntactic analysis phase are propagated to the classification
phase.

4.2 Extrinsic Evaluation

For the full model training, we first warm up the projection for one epoch, and
then we generate all the potential spans in the training set that are fed as positive
or negative spans to the full model.

For the three tasks, we measure exact F1 score, considering a correct pre-
diction only if a span has the same boundaries and the correct type. All the



Shact 11

Table 2: Results in terms of F1 score in different tasks. * for flat models

(a) GENIA (Nested NER)

Model F1

Zheng et al. [22] 74.7
Sohrab and Miwa [14] 77.1
Tan et al. [15] 78.3
Fu et al. [4] 78.2
Yang and Tu [21] 78.16
Lou et al. [7] 78.44
Shen et al. [13] 81.77
Shen et al. [12] 81.53

Shact 79.76

(b) CoNLL-2003 (Flat NER)

Model F1

Devlin et al. [3]* 92.8
Shen et al. [13] 92.87
Shen et al. [12] 92.78
Wang et al. [19]* 94.6

Shact 91.74

(c) CoNLL-2000 (chunking)

Model F1

Chen et al. [2]* 96.34
Chen et al. [1]* 97.04
Wang et al. [19]* 97.3

Shact 96.61

reported Shact F1 scores are the average result of three different runs with
different seeds.

The results for flat NER on the CoNLL-2003 dataset are shown in Table 2b,
where we compare our approach against span-based NER models [12, 13] and
state-of-the-art flat NER models [3, 19]. In this case, we see that Shact results
are slightly worse than specialized state-of-the-art span-based models capable of
both flat and nested NER. We also observe that the traditional sequence labeling
models, such as plain BERT with a classification head [3] and ACE [19], achieve
stronger results. However, we believe that Shact is more flexible than sequence
labeling models and the latent space analysis possesses an explainability value
on its own while achieving competitive results compared to specialized models.

For chunking on the CoNLL-2000 dataset, we have a similar comparison in
Table 2c. Here, the results of Shact are competitive even with the state-of-the-
art flat model ACE [19]. We believe that the syntactic analysis of Shact in this
case is very capable of clustering chunks that typically cover a few words. The
flattening here is particularly challenging because the classifier must not only
correctly identify semantically the differences between linguistic chunks, such as
noun and verbal phrases, but also assign a higher confidence to the correct levels
in the tree.

In addition, we evaluate our model on the task of nested NER using the
GENIA dataset. This task is more complex compared to flat NER. Results are
in Table 2a. For this task, Shact has competitive results, and compared to
better performing models, such as DifussionNER [12], the binary tree helps in
explaining the predictions by clearly defining merge operations.

One potential problem of models, such as Shact, in which first the spans are
enumerated and then classified, is the potential error propagation between the
enumeration phase and the classification. We analyze this by computing the up-
per bound for the recall the same way we computed the span recall in the intrinsic
evaluation. Differently from the intrinsic evaluation, we use the final model after



12 A. Sierra-Múnera and R. Krestel

Table 3: Comparison between recall (R) of Shact and the upper bound of the
classification recall (Upper bound R) resulting of error propagation

Dataset R Upper bound R Difference

CoNLL-2000 96.44 99.68 3.24
CoNLL-2003 92.12 99.59 7.47
GENIA 78.31 98.07 19.76

the classifier is trained alongside the projection. This is slightly different because
after full training, the loss function is composed of two objectives. In Table 3, we
compare the recall and its upper bound for each evaluated dataset. We clearly
see that the impact on the recall by error propagation is minimal (between 0.32%
and 1.93%) compared to the reduction of recall by misclassification.

4.3 Explainability and Error Analysis

Besides the quantitative analysis of the performance of Shact, we take advan-
tage of the explainability features of the model by analyzing erroneous predic-
tions. The examples we show in Figure 5 portray two different types of error that
might happen during inference. The error in 5a corresponds to a semantic error,
characterized by the misclassification of spans. In this case, Shactcorrectly clus-
ters the words in human monocytes, but later the classifier incorrectly assigns
the null class to this span. Similarly, the longer span normal human monocytes,
that is not part of the ground truth, is incorrectly classified as Cell type. This is
the most common error found in this dataset.

The second error presented in 5b is a syntactic error. Here, the span contain-
ing CD28 MoAb is not part of the predicted binary tree; thus the final prediction
does not contain any classification of such span. This is a case of error propaga-
tion, and exemplifies the 1.93% of the cases in which the recall is bounded by
an erroneous syntactic analysis.

With Shact we are able to separate the syntactic and semantic analysis of
the spans, which allows us to better understand the origin of bad predictions.

5 Conclusions

In this paper, we proposed Shact, a model for disentanglement of syntactic
clusters from pre-trained transformer-encoders, such as BERT [3]. We proposed
a feed forward network projecting from a concatenation of all the layers of the
transformer to a latent space. In addition to the projection, we defined a loss
function based on the minimization of inter-cluster distances and maximization
of extra-cluster distances, where clusters are formed by multi-word spans. The
optimization of the projection component, using a loss function, generates a
latent vector space in which span words are closer together in comparison to the



Shact 13

(a)

Our studies examined this interaction in normal human monocytes . 

Cell Type

(b)

Anti- CD28 MoAb costimulation increased ...

Protein

Protein

Fig. 5: Errors committed by Shact on GENIA. Below the sentences is the ground
truth, and the trees on top of the sentences are the predictions. Dashed cir-
cles/lines mean null class, while solid circles/lines entity predictions

rest of the sentence. We complement the disentanglement with a classifier that
uses the discovered syntax tree to classify the candidate spans.

We evaluated the model for flat and nested NER, as well as chunking. We
observed that although the model does not perform better than all the state-of-
the-art models in each task, the performance is competitive in across all tasks. We
observed, as well, that the first component that builds the syntactic binary tree
is successful in representing ground truth spans as clusters in the latent space,
but the classification of these spans remains a challenging part of the model. We
believe that this also illustrates the potential of the disentangled latent space
that could also be exploited in other ways to improve the classification. By taking
advantage of the separation between the syntactic and the semantic analysis of
the spans, we can also analyze and explain the predictions of the model. In
further experiments, we also tested the model on the task of full constituency
parsing. Unfortunately, Shact yielded poor results in the alignment between
the binary trees and the full constituency trees. This observation is aligned to
the findings in Wu et al. [20].

Our model was designed with the specific goal of disentangling nested syn-
tactic representations. However, there are more syntactically relevant structures
which are out of the scope of this paper. For instance, dependency trees like the
ones studied by Hewitt and Manning [5]. We limited our experiments to the En-
glish language. Experimentation with other datasets in different languages and
with richer and more fine-grained entity types are out of the scope of the paper
and could be studied in future work.

Acknowledgments. This research was partially funded by the HPI Research
School on Data Science and Engineering. We would like to thank Prof. Felix
Naumann for the methodological advice.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.



Bibliography

[1] Chen, L., Liu, X., Ruan, W., Lu, J.: Enhance robustness of sequence la-
belling with masked adversarial training. In: Findings of the Association
for Computational Linguistics: EMNLP 2020, pp. 297–302 (Nov 2020)

[2] Chen, L., Ruan, W., Liu, X., Lu, J.: SeqVAT: Virtual adversarial training
for semi-supervised sequence labeling. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 8801–8811
(Jul 2020)

[3] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of
deep bidirectional transformers for language understanding. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics, pp. 4171–4186 (Jun 2019)

[4] Fu, Y., Tan, C., Chen, M., Huang, S., Huang, F.: Nested Named Entity
Recognition with Partially-Observed TreeCRFs. Proceedings of the AAAI
Conference on Artificial Intelligence 35(14), 12839–12847 (May 2021)

[5] Hewitt, J., Manning, C.D.: A structural probe for finding syntax in word
representations. In: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4129–4138 (Jun
2019)

[6] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J.: Biobert:
a pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics 36, 1234 – 1240 (2019)

[7] Lou, C., Yang, S., Tu, K.: Nested named entity recognition as latent lexi-
calized constituency parsing. In: Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 6183–6198 (May 2022)

[8] Mareček, D., Rosa, R.: From balustrades to pierre vinken: Looking for syn-
tax in transformer self-attentions. In: Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
pp. 263–275 (Aug 2019)

[9] Ohta, T., Tateisi, Y., Kim, J.D.: The genia corpus: An annotated research
abstract corpus in molecular biology domain. In: Proceedings of the Sec-
ond International Conference on Human Language Technology Research, p.
82–86, HLT ’02, San Francisco, CA, USA (2002)

[10] Radford, A., Narasimhan, K.: Improving language understanding by gener-
ative pre-training (2018)

[11] Sajjad, H., Durrani, N., Dalvi, F., Alam, F., Khan, A., Xu, J.: Analyzing
encoded concepts in transformer language models. In: Proceedings of the
2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 3082–3101
(Jul 2022)



Shact 15

[12] Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: DiffusionNER:
Boundary diffusion for named entity recognition. In: Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 3875–3890 (Jul 2023)

[13] Shen, Y., Wang, X., Tan, Z., Xu, G., Xie, P., Huang, F., Lu, W., Zhuang,
Y.: Parallel instance query network for named entity recognition. In: Pro-
ceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 947–961 (May 2022)

[14] Sohrab, M.G., Miwa, M.: Deep exhaustive model for nested named entity
recognition. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 2843–2849 (Oct-Nov 2018)

[15] Tan, C., Qiu, W., Chen, M., Wang, R., Huang, F.: Boundary enhanced
neural span classification for nested named entity recognition. Proceedings
of the AAAI Conference on Artificial Intelligence 34(05), 9016–9023 (Apr
2020)

[16] Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000
shared task chunking. In: Fourth Conference on Computational Natural
Language Learning and the Second Learning Language in Logic Workshop
(2000)

[17] Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition. In: Proceed-
ings of the Seventh Conference on Natural Language Learning at HLT-
NAACL 2003, pp. 142–147 (2003)

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. In: Proceedings of the
31st International Conference on Neural Information Processing Systems,
p. 6000–6010, NIPS’17 (2017)

[19] Wang, X., Jiang, Y., Bach, N., Wang, T., Huang, Z., Huang, F., Tu, K.:
Automated concatenation of embeddings for structured prediction. In: Pro-
ceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pp. 2643–2660 (Aug 2021)

[20] Wu, Z., Chen, Y., Kao, B., Liu, Q.: Perturbed masking: Parameter-free
probing for analyzing and interpreting BERT. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 4166–
4176 (Jul 2020)

[21] Yang, S., Tu, K.: Bottom-up constituency parsing and nested named en-
tity recognition with pointer networks. In: Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2403–2416 (May 2022)

[22] Zheng, C., Cai, Y., Xu, J., Leung, H.f., Xu, G.: A boundary-aware neural
model for nested named entity recognition. In: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 357–366 (Nov 2019)


	Shact: Disentangling and Clustering Latent Syntactic Structures from Transformer Encoders

