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Abstract—Anomaly detection is a popular task in time series
analytics and researchers have, therefore, developed a plethora
of algorithms to solve it. While most algorithms focus on
univariate time series, one family of anomaly detection algo-
rithms specializes on multivariate data. Because existing studies
benchmark on non-meaningful datasets and often only within
uni- or multivariate algorithm families, it is unclear whether
multivariate solutions are actually superior on multivariate data.

In this study, we compare univariate and multivariate ap-
proaches on common multivariate benchmark times series to
demonstrate that existing benchmark datasets cannot highlight
the strengths of multivariate anomaly detection algorithms. We
though demonstrate such strengths with a simple, generated
dataset that contains a special type of anomaly, which we call
correlation anomaly. Our experimental results, therefore, call for
novel types of benchmark datasets whose anomalies actually
facilitate the multidimensional nature of the data.

I. ANOMALIES IN MULTIVARIATE TIME SERIES

An anomaly in a time series describes a pattern that deviates
w. r. t. some measure, model, or embedding from the regular
patterns of the time series. Anomalies are often the result
of special events, such as heart failures in cardiology [1],
structural defects in jet turbine engineering [2], or ecosystem
disturbances in earth sciences [3]. Due to their importance
in many domains, researchers have developed a multitude of
discovery algorithms, which have been surveyed and evalu-
ated in various benchmarks [4]–[16]. One family of anomaly
detection algorithms specializes on multivariate time series,
which are time series with more than one channel. The supe-
riority of this algorithm family over univariate algorithms on
multivariate data has, however, never been shown because ex-
isting benchmarks either compare algorithms only within these
families [5], [6], [17], they compare them on only univariate
data [4], [7], [10], they show only the superiority of univariate
algorithms over multivariate algorithms [8], or they come to
inconclusive results w. r. t. multivariate capabilities [18]. As
we will show in this study, the lack of empirical evidence for
the strengths of multivariate algorithms is not only due to the
absence of experimental publications but also because existing
multivariate benchmark datasets contain predominantly simple
(maybe even trivial [5], [8], [9], [19]) anomalies that also
univariate algorithms can detect.

Our experiments evaluate seven state-of-the-art univariate
anomaly detection algorithms and six state-of-the-art multi-

variate anomaly detection algorithms on 14 popular multivari-
ate datasets and compare their ROC-AUC and PR-AUC scores.
Contrary to common assumptions, the measured scores are
overall better for univariate approaches than for multivariate
ones. With a special type of anomaly, namely correlation
anomalies (as also recognized by related works [20], [21]), we
demonstrate that this observation is not because multivariate
algorithms are useless but because existing benchmark datasets
do not contain (many) anomalies that multivariate anomaly
detection algorithms are specialized for. Hence, with this study,
we make the following contributions:

(1) We integrate correlation anomalies into a time series
anomaly taxonomy as a new type of anomaly that highlights
the special strengths of multivariate anomaly detection algo-
rithms (Section II).

(2) We demonstrate the shortcomings of multivariate bench-
mark datasets by showing that univariate algorithms can detect
their anomalies more accurately than most existing multivari-
ate anomaly detection algorithms (Section III).

(3) We investigate two concrete multivariate datasets to
differentiate anomalies that do and do not require multivariate
detection approaches (Section IV).

II. TYPES AND PROPERTIES OF ANOMALIES

For a comprehensive detection of anomalies in multivariate
time series, different types of anomalies need to be considered.
In this section, we classify these anomaly types with a novel
anomaly taxonomy for multivariate time series (Figure 1). We
also define the concept of anomaly arity that captures the
number of channels an anomaly manifests itself in.

a) Anomaly Taxonomy: Existing literature on time series
anomaly detection (e. g., [4], [9], [11], [12], [17], [22]–[24])
relies on the general outlier/anomaly taxonomy proposed by
Chandola et al. [14]. This taxonomy considers three different
types of anomalies, which are point, collective, and contextual
anomalies, and is applicable to all kinds of data formats (tem-
poral, spacial, relational, etc.). We specialize this taxonomy
to anomalies in multivariate time series by adding another
level for locality and adding the new anomaly type correlation
anomaly, which can be observed only in multivariate time
series. Figure 1 shows the extended taxonomy with an example
for each anomaly type. The first level distinguishes between
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Fig. 1. Taxonomy of anomaly types and localities, with illustrative example visualizations.

point, subsequence, and correlation anomalies and the second
level differentiates global and contextual anomalies:
Global point anomalies correspond to outliers or point

anomalies in related work [14] and denote individual
points of a time series, whose values fall outside the
global range of all normal data points.

Contextual point anomalies are also referred to as contex-
tual anomalies in related work [14] and denote individual
data points with a significantly different value as their
surrounding, i. e., contextual data points; the same value
might be considered normal in a different context.

Global subsequence anomalies are also known as collective
anomalies [14] and describe contiguous data points with
a value pattern that differs from all other patterns in the
entire, i. e., global time series; all individual values might
be normal, but their sequence is rare (or even unique).

Contextual subsequence anomalies mark a collection of
contiguous data points whose pattern is anomalous not
necessarily w. r. t. the entire time series but within their
specific environment; all individual values might still be
normal in their contexts.

Global correlation anomalies represent series of contiguous
multivariate data points whose values contradict a cor-
relation of at least two channels. Given that the values
of two (or more) channels are linearly related in the
(global) time series, the correlation anomaly violates this
linear relationship; the values and value pattern in every
single channel might still be normal w. r. t. other values
and patterns in that channel.

Contextual correlation anomalies are correlation anomalies
that violate a contextually limited linear relationship of
two (or more) time series channels. If a correlation is
observed for a (statistically significant) subsequence, a
contextual correlation anomaly is a local contradiction of
this relationship; similar to other contextual anomalies,
the correlation might not hold for the entire time series,
but its violation is considered anomalous in certain con-
texts that follow the correlation.

Correlation anomalies are a type of anomaly that exists only
in multivariate time series. If they do not also manifest as
subsequence or point anomalies in their individual channels,
algorithms need to consider the interaction of multiple chan-
nels for their detection. We used the concept of correlation
to generate a new time series collection named CoMuT
(Correlated Multivariate Time Series) with different numbers,

shapes, and lengths of correlation anomalies.
b) Behavioral and Technical Classifications: Existing

literature proposes to further distinguish subsequence anoma-
lies (both global and contextual) into different behavioral or
technical types. Depending on the source of the definition,
subsequence anomalies are divided into (i) shapelet, seasonal,
and trend anomalies [5], (ii) position, pattern change, and
artifact anomalies [25], (iii) pattern-related and frequency-re-
lated anomalies [9], or (iv) spike, contextual, flip, speedup,
noise, cutoff, scale, wander, and average anomalies [24]. The
taxonomy can incorporate these additional types in a third
level below global and contextual subsequence anomalies.
The proposed types are useful primarily for the generation
of representative synthetic benchmark datasets, but neither
of them serves to highlight special discovery capabilities for
multivariate time series.

c) Anomaly Arity: When considering multivariate time
series, anomalies might manifest in any number of channels.
We, thus, define the arity of an anomaly as the number of
channels affected by an anomaly. An n−ary anomaly impacts
n channels of an m-dimensional time series, where n ≤ m. To
ease the arity reasoning, we denote 1-ary anomalies as single
anomalies, n−ary anomalies with 1 < n < m as multiple
anomalies, and m−ary anomalies as all anomalies. Univariate
time series can contain only single anomalies, and correlation
anomalies are always either multiple or all anomalies.

III. BENCHMARKING MULTIVARIATE ALGORITHMS

To evaluate whether state-of-the-art benchmark collections
for multivariate anomaly detection contain anomalies that can
highlight the strengths of multivariate detection algorithms, we
process these collections with both univariate and multivariate
anomaly detection algorithms. Based on the results of a
comprehensive evaluation on univariate time series [10], we
selected seven top performing univariate anomaly detectors1

and six top performing multivariate anomaly detectors2 for the
benchmark. To execute the univariate methods on multivariate
time series, we use three strategies: SUM_BEFORE transforms
all channels of a multivariate time series via element-wise
sum into a univariate time series that univariate detectors can
process; MAX_AFTER and MEAN_AFTER execute the univari-
ate detectors on every channel and aggregate the resulting

1Univariate selection: k-Means [26], STAMP [27], Subsequence-IF [28],
Sub-LOF [29], NormA-SJ [30], Series2Graph [31], and DWT-MLEAD [32].

2Multivariate selection: k-Means [26], Torsk [33], RBForest [34], LSTM-
AD [35], DBStream [36], and NF [37]
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Fig. 2. Max ROC-AUC scores (top) and max PR-AUC scores (bottom) over all algorithms for each time series grouped by collection into box plots.

anomaly scores of each channel into one scoring by taking
the element-wise max and mean, respectively. The evaluation
uses 14 public multivariate anomaly detection benchmark
collections3 and our own, novel CoMuT collection4, which
consists of 60 generated time series with three, five, seven,
and nine dimensions, 10, 000 time steps, and different global
correlation anomalies. We run the experiments with the
TimeEval [25] evaluation toolkit and provide each execution
with 60 GB of RAM and 12 hours of runtime on an Intel
Xeon E5-2630 v4 CPU. For all executions, we measure the
results with the ROC-AUC [54] and the PR-AUC [55] metrics.
Our evaluation, however, considers for every time series in a
collection only the maximum ROC-AUC and PR-AUC scores
that any univariate algorithm (with any strategy) and any
multivariate algorithm could achieve. The results in Figure 2,
therefore, show the best results for each of the two anomaly
detection families on all time series grouped by collection.

The results in Figure 2 show that multivariate algorithms
are, in general, more complex and resource demanding: While
the univariate algorithms delivered results on 92% of the
time series, multivariate algorithms delivered a result on only
64% of the time series with 17% errors (NaN, inf, etc.),
4% timeouts, and 15% out of memory. For Kitsune, LTDB,
and WADI, all multivariate detectors failed to process even a
single time series. Because multivariate algorithms analyze all
channels of a time series simultaneously while the univariate
algorithms analyze them sequentially, these additional costs
are expected. But they do not pay off for the 14 existing
datasets in our evaluation.

3Multivariate time series collections: Callt2 [38], [39], Daphnet [38], [40],
Exathlon [6], GHL [41], Genesis [42], Kitsune [43], LTDB [44], [45],
MITDB [44], [46], Metro [38], [47], OPPORTUNITY [38], [48], SMD [49],
SVDB [44], [50], [51], SWAT [52], and WADI [53]

4https://hpi.de/naumann/s/comut

Both evaluation metrics in Figure 2 show that univariate
algorithms reach better results on most of the collections:
They are consistently superior w. r. t. ROC-AUC and on av-
erage better w. r. t. PR-AUC. This observation indicates that
our selection of univariate algorithms might be a bit more
aggressive in scoring anomalies compared to the multivariate
selection, which pays off in ROC-AUC but not always in PR-
AUC (more details about the metrics in related work [56],
[57]), but it does not demonstrate the systematic strengths of
the multivariate family. The measurements on our new CoMuT
time series, however, show that the multivariate algorithms
can consistently outperform the univariate algorithms on both
metrics. Because CoMuT contains only global correlation
anomalies, this advantage can clearly be attributed to the algo-
rithms’ ability to consider all channels simultaneously. We can
also deduce from the results that the 14 existing benchmark
datasets do not include many correlation anomalies or other
types of anomalies that highlight the strengths of multivariate
algorithms. So because existing benchmark datasets lack the
necessity to use multivariate algorithms, more datasets with
multivariate anomalies, such as correlation anomalies, are
needed to benchmark multivariate solutions properly for their
specific strengths.

To substantiate our claim, we now compare the results of
the univariate k-Means (with MAX_AFTER strategy) and the
multivariate k-Means in Table I. The measurements show that
the PR-AUC scores are a little higher for the multivariate
version, but still very close, i. e., within standard deviation.
Because the performance difference is significantly higher on
CoMuT, the benchmark collections probably contain only few
or no correlation anomalies. The CoMuT scores also show that
the univariate version of k-Means cannot find such anomalies
at all, although its multivariate version can detect them.

https://hpi.de/naumann/s/comut
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Fig. 3. Excerpt of a Genesis time series with marked anomalies.

IV. DRILL DOWN ON MULTIVARIATE ANOMALIES

As elaborated in the previous sections, univariate anomaly
detectors can detect anomalies in certain multivariate time
series with simple combination methods. Especially time series
that contain point or subsequence anomalies of any arity are
no challenge because looking at one anomalous channel alone
is often sufficient to find such anomalies. As an example, we
take a closer look at the Genesis collection. It consists of only
one time series (≈ 16 000 time steps; 18 channels) with two
anomalies. Figure 3 shows an excerpt of four channels around
these anomalies. The anomalies manifest in the channels 0 and
3 as global subsequence anomalies (platforms at a low value),
and in the channels 1 and 2 as a combination of contextual and
global point anomalies. For this reason, univariate algorithms
can easily detect both quaternary anomalies by considering
only one of the four channels. The dataset is still somewhat
interesting because the other 16 channels of the Genesis time
series do not exhibit the anomaly.

In Figure 4, we plotted an excerpt of a CoMuT time series
with three channels (in blue), a marked ternary global corre-
lation anomaly, and a SUM_BEFORE aggregation (in orange).
The time series consists of three channels with random mode
jumps (and some noise) that highly correlate with each other,
i. e., if one channel jumps up or down, all other channels

TABLE I
MEAN PR-AUC (± STANDARD DEVIATION) OF UNIVARIATE (MAX

STRATEGY) AND MULTIVARIATE K-MEANS PER COLLECTION.

Collection Univ. k-Means Multiv. k-Means

Callt2 0.246 (±0.000) 0.253 (±0.000)
Daphnet 0.094 (±0.057) 0.098 (±0.061)
Exathlon 0.337 (±0.184) 0.464 (±0.274)
GHL 0.028 (±0.032) 0.066 (±0.078)
Genesis 0.748 (±0.000) 0.770 (±0.000)
Kitsune 0.107 (±0.000) -
LTDB - -
MITDB 0.077 (±0.078) 0.085 (±0.077)
Metro 0.001 (±0.000) 0.001 (±0.000)
OPPORTUNITY - -
SMD 0.381 (±0.227) 0.506 (±0.196)
SVDB 0.204 (±0.158) 0.217 (±0.171)
SWAT - -
WADI - -

CoMuT 0.016 (±0.009) 0.622 (±0.244)
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Fig. 4. Excerpt of a CoMuT time series with a visualization of the linear
sum of all channels and a marked correlation anomaly.

perform a jump as well. Here, Channel 0 follows the same
pattern as Channel 1, and Channel 2 is negatively correlated to
Channel 1 and Channel 2. In the marked anomalous sequence,
the correlation is violated because Channel 0 jumps 40 time
steps too late. While many multivariate algorithms including
k-Means (see Figure 2 and Table I) can detect this anomaly,
hardly any univariate algorithm found it. When inspecting only
one mode jump channel with the strategies MEAN_AFTER
or MAX_AFTER, the anomaly is not detectable. Moreover,
summing up the channels beforehand with SUM_BEFORE also
hides the anomalous pattern because the aggregate of the mode
jumps happens to be another random mode jump subsequence
as illustrated by the orange series in Figure 4 – the negatively
correlated channels 1 and 2 simply cancel each other out. Note
that if a univariate algorithm could automatically figure out a
suitable aggregation that does not hide correlation anomalies,
this algorithm would be a multivariate solution. In summary,
no simple strategy, such as SUM_BEFORE, MAX_AFTER, or
MEAN_AFTER enables univariate algorithms to detect cor-
relation anomalies effectively. They can, therefore, become
a suitable tool to benchmark multivariate algorithms, if we
create more benchmark datasets with them.

V. WE NEED BETTER BENCHMARK COLLECTIONS

In this study, we demonstrated that existing multivariate
benchmark datasets cannot highlight the strengths of multi-
variate anomaly detection algorithms. We proposed correlation
anomalies as a type of anomaly that indicates these strengths,
extended existing anomaly typing taxonomies, and generated
the CoMuT dataset as a first example for a suitable multivariate
benchmark datasets. Our experimental findings call for the
creation of further multivariate benchmark datasets and pro-
vide direction for experimental designs. They also demonstrate
that existing univariate solutions tend to be superior for point
and sequence anomalies; effective anomaly detection projects,
therefore, need to run both families of algorithms to effectively
detect all types of anomalies.
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