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What to expect?

e Better understand how database systems work .
Same as in the

* Learn how to familiarize yourself with a larger code base > Develop your own Database

« Work in small teams on a larger project (DYOD) seminar

e Gain experience in systems development _
Less of a focus than in DYOD

* Improve your C++(20) skills

* Research experience

« Related work, Conduct experiments, New in this seminar
visualize results, communicate findings
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How does this relate to Develop your own Database?

 We found that thesis students often have little experience in communicating their results

* This seminar is supposed to be a ,thesis light”, including literature research,
implementation, designing and executing experiments, and presenting the results in
speech and writing

It is both suitable for those students who have taken DYOD and for those who have not

BUT: No weekly meetings with the entire group, thus no DBMS/C++ introduction

* Previous experience, e.g, from Trends and Concepts or the DBS lectures is helpful

* DYOD slides and sprint documents are available if you want to read up on details

More research-oriented, i.e., the projects are proposals, not full specifications
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https://hpi.de/plattner/teaching/archive/summer-term-2021/develop-your-own-database.html
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Hyrise

An In-Memory Storage Engine for
Hybrid Transactional and Analytical
Processing

HYRISE is a research database for the
systematic evaluation of new
concepts for hybrid transactional and
analytical data processing on modern
hardware

Developed with and by HPI students

Open Source (https://git.io/hyrise)

System paper published at EDBT’19
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Modern, documented C++20 code
base, 93% test coverage

SQL interface, PostgreSQL network
protocol

Easy to extend via plug-in interface

Supported benchmarks: TPC-
(C|H|DS), JCC-H, Join-Order

Runs on Intel, AMD, IBM Mainframe,
ARM, Apple M1, Raspberry PI


https://git.io/hyrise
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ABSTRACT

Research in data management profits when the performance eval-
uation is based not only on individual components in isolation,
but uses an actual DBMS end-to-end. Facilitating the integration
and benchmarking of new concepts within a DBMS requires a
simple setup process, well-documented code, and the possibil-
ity to execute both standard and custom benchmarks without
tedious preparation. Fulfilling these requirements also makes it
easy to reproduce the results later on.

The relational open-source database Hyrise (VLDB, 2010) was
presented to make the case for hybrid row- and column-format
data storage. Since then, it has evolved from being a single-
purpose research DBMS towards becoming a platform for various
projects, including research in the areas of indexing, data parti-
tioning, and non-volatile memory. With a growing diversity of
topics, we have found that the original code base grew to a point
where new experimentation became unnecessarily difficult. Over
the last two years, we have re-written Hyrise from scratch and
built an extensible multi-purpose research DBMS that can serve
as an easy-to-extend platform for a variety of experiments and
prototyping in database research.

In this paper, we discuss how our learnings from the previous
version of Hyrise have influenced our re-write. We describe the
new architecture of Hyrise and highlight the main components.
Afterwards, we show how our extensible plugin architecture
facilitates research on diverse DBMS-related aspects without
compromising the architectural tidiness of the code. In a first
performance evaluation, we show that the execution time of most
TPC-H queries is competitive to that of other research databases.

1 INTRODUCTION

Hyrise was first presented in 2010 [19] to introduce the concept
of hybrid row- and column-based data layouts for in-memory
databases. Since then, several other research efforts have used
Hyrise as a basis for orthogonal research topics. This includes
work on data tiering [7], secondary indexes [16], multi-version
concurrency control [42], different replication schemes [43], and
non-volatile memories for instant database recovery [44].

Over the years, the uncontrolled growth of code and function-
ality has become an impediment for future experiments. We have
identified four maior factors leadine to this situation:

o The lack of SQL support required query plans to be written
by hand and made executing standard benchmarks tedious.

e Accumulated technical debt made it difficult to understand
the code base and to integrate new features.

For these reasons, we have completely re-written Hyrise and
incorporated the lessons learned. We redesigned the architecture
to provide a stable and easy to use basis for holistic evaluations of
new data management concepts. Hyrise now allows researchers
to embed new concepts in a proper DBMS and evaluate perfor-
mance end to end, instead of implementing and benchmarking
them in isolation. At the same time, we allow most components to
be selectively enabled or disabled. This way, researchers can ex-
clude unrelated components and perform isolated measurements.
For example, when developing a new join implementation, they
can bypass the network layer or disable concurrency control.

In this paper, we describe the new architecture of Hyrise and
how our prior learnings have led to a maintainable and com-
prehensible database for researching concepts in relational in-
memory data management (Section 2). Furthermore, we present a
plugin concept that allows testing different optimizations without
having to modify the core DBMS (Section 3). We compare Hyrise
to other database engines, show which approaches are similar,
and highlight key differences (Section 4). Finally, we evaluate
the new version and show that its performance is competitive
(Section 5).

1.1 Motivation and Lessons Learned

The redesign of Hyrise reflects our past experiences in develop-
ing, maintaining, and using a DBMS for research purposes. We
motivate three important design decisions.

Decoupling of Operators and Storage Layouts. The previous
version of Hyrise was designed with a high level of flexibility
in the storage layout model: each table could consist of an ar-
bitrary number of containers, which could either hold data (in
uncompressed or compressed, mutable or immutable forms) or
other containers with varying horizontal and vertical spans. In
consequence, each operator had to be implemented in a way
where it could deal with all possible combinations of storage
containers. This made the process of adding new operators cum-
bersome and led to a system where some operators made undocu-
mented assumntions about the data lavout (e ¢ that all partitions
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Skyrise

on FuEnlgtsiﬁc Query Processin
Oon as g Service Platforms

* A serverless query processor for interactive in-situ analytics on cold data

Thoma,

; 'S Bodn,

S| er

Enterprise pé‘?,i’,”m’sjﬁ dby Hasso Plattne,
Hasso Pla(meg'ano" Conce,

* Serverless: Built on function as a service platforms and object storage s @
* (SQL) query processor: Relational query execution and optimization
* Interactive: Aims at query latencies in seconds
* In-situ: Processes data without upfront load/align/sort/compress/index/..(ing)
* Cold data: Infrequently accessed TB/PB-scale historical, loT and Web data i ; ;
* Initiated in fall 2019 to explore modern cloud infrastructure for databases |-
* Exploits scalability, elasticity and reliability of the cloud, deals with its challenges ; "

Monitoring Services
(CloudWatch, X-Ray, SQS)

* Modern C++ (17), documented, tested (> 90% coverage) codebase

* JUSt Sta rting OUt} plenty Of resea rCh ahead! Invoked HEEN Running Finished BN Running time [s] ol = ¢RV """" '
2 10007 14 Serverless Compute Service
e Vision paper published at VLDB ’20 g z"| N S |
g 00 g 30 70:8% : Worker ; Stnrag(ggs)erwce
* 3x Master’s theses, 2x seminar papers <« 008
§ ™ "o foiz _Opcramrs R>
" 2 Runn?ngtime [:] 8 " ARSI \@“\b@“\@@@@ KNI e
Elaaﬁger T. Bodner. Elastic Query Processing on Function as a Service Platforms. VLDB 2020 PhD Workshop. 9
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Comparison

Target workload
Dataset size sweetspot

Architecture

Pricing model
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HTAP on hot to warm data
Gigabytes to a few Terabytes

Scale-up within large bare metal machines

Pay upfront for machine and provisioning,
pay as you go for maintenance and energy

Interactive OLAP on cold data
Gigabytes to (hundreds of) Terabytes

Independent scale-out of decoupled
FaaS-based compute and cloud object storage

Cloud object storage is $23/TB/month,
pay as you go per query, as an example
TPC-H Q1 @ SF1000 is currently $0.16
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Research Topics

1. In-Memory Pipelined Query Execution

2. Analyzing Traces of Serverless Query Execution

3. Incorporating Distributed Plans into Query Optimization
4. Learned Indexes on Dynamic Data

5. Efficient and Accurate Histograms

6. Database Node Placement in the Cloud

7. Partial Indexes

8. Dynamic Data Placement Algorithms

Hasso
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In-Memory Pipelined Query Execution

* |nitially, Skyrise adopted Hyrise‘s materialized execution model

* We study a hybrid materialized/pipelined execution model

* Workers have little memory capacity and run single query pipeline each
* Intermediates are materialized across and pipelined within workers
* Extend operator set (import, filter, projection, ..) to work on ,chunks”

* Analyze worker main memory usage and query pipeline runtimes

Each operator consumes its input all at once and then produces its output all at once

Easy to reason about and only option for cross-worker processing
Intermediate query execution results may exihibit large footprint

No opportunity for parallelism along query pipelines of operators

* Prior experience with cloud services beneficial

Hasso P. A. Boncz, M. Zukowski, N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. CIDR 2005.

Plattner

ExportOperatorProxy

s3://skyrise-results/final/
tpch_q1.csv

DataExchangeOperatorProxy

Partial Merge

i

AggregateOperatorProxy

e objects

DataExchangeOperatorProxy

Partial Merge

A

AggregateOperatorProxy

i

ProjectionOperatorProxy

i

FilterOperatorProxy

¥ 23,479 objects

i object

AliasOperatorProxy

f

SortOperatorProxy

f

ProjectionOperatorProxy

f

AggregateOperatorProxy

i object

DataExchangeOperatorProxy

Full Merge

f

AggregateOperatorProxy

A

29 objects

ImportOperatorProxy

s3://skyrise-lineitem/sf10000
{23,479 objects}

J. Menzler. Master’s Thesis
2021.
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Analyzing Traces of Serverless Query Execution

* Skyrise executes queries in parallel across cloud functions

Cloud functions run pipelines of query operators

]

o
=
o

Functions [%
o
o
[6,}

. . . 0-005 50 u’}éo 150 200
* Concurrency to several thousand function invocations Latency 4]
o . . _ 5010 30.10’ %

» Skyrise inherits properties of FaaS platform, i.e., - = * "

elastic scalability, reliability, performance and security g0 200

i ' ithi ' 2 e 2 mm . .

isolation across/within queries 0.005 ol ool MR

Latency [ms] Latency [ms]

» Skyrise also inherits the observability issue,

rendering debugging and profiling cumbersome

* Skyrise collects a multitude of runtime data

* Operator and operator step transitions, timings, throughput, costs, ..

* Aggregate data and make it consumable for debugging or profiling

* Prior experience with cloud (function) services benefitial

Hasso
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skyrise> Run q=6 sf=10000 w=25080

] List database table wartitions in S3 SF10000
| Building PQP
DONE ] 100% of workers donu
Query result:

Query runtime: 36880 ms

Query cost: 1.1771 §
Lambda: 1.0966 % 32831529ms x 2048 MB
S3: 0.0805 % 2551xPut and 169427xG4

ﬂ Plattner F. Engel. Straggler Mitigation in Distributed Query Execution on Cloud Functions. Master’s Thesis 2021.
Institut
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https://www.monetdb.org/Documentation/MonetDBInternals/MALProfiler

Incorporating Distributed Plans into Query Optimization

FaaS Platforms offer massive parallelism (>10,000s of workers) AlasNode

a, b, AVG(c)

A

To exploit underlying parallelism, Skyrise optimizer must be AggregateNode ProjectonNode

L . . . . . GroupBy: a, b a, b, SUM(c) / COUNT(c)
aware of data partitioning, distribution, and shuffling e ﬁ> f

— T— e Average Rewrite AggregateNode

Rule GroupBy: a, b

Extend rule sets for both logical and physical query plans, - ] SUMc, CONT)
for now based on heuristics

Systematically evaluate individual effects and interplay N

SUM(*)

AggregateOperatorProxy

T 1 object
SUM(*)

Prior experience with cloud services benefitial Aagegedpesortoy F oo e

Full Merge

COUNT(*
4 AggregateOperatorProxy -
J 50 objects COUNT(¥) T 50 objects

(Partial Aggregation) AggregateOperatorProxy

P | Partial Aggregation Pipeline Preparation
: ‘: Rgg, g J 50 objects P p Ip COUNT(*)
e 1 ute (Partial Aggregation)

: i
b ] 50 objects

,,,,,,,,,,,,,,,,,,,,,,,,
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ﬂ Hasso | \enzler. Query Compilation for Distributed Execution with Cloud Functions. Master’s Thesis 2021.



Learned Indexes on Dynamic Data

B3 LIPP

Throughput (million ops/sec)

151

Learned indexes (LIs) with better performance
than common tree indexes

LIs supporting dynamic data: PGM, ALEX, LIPP
Datasets (from ALEX paper + new String data)

Assessment criteria: index lookup times,
throughput, size; construction time + memory

B ART B8 ALEX
= PGM BN BwTree Il Learned

B+ Tree

-
"

Throughput (million ops/sec)

LTD LLT LGN YCSB LTD LLT LGN YCSB

(b) Read-Heavy (c) Write-Heavy
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e Tasks:

Understand + run dynamic, open source Lls
Reproduce results on Integers (compare btree)

Extend for further data types (e.g. Strings =
INT)

Select / generate data type-specific datasets
Benchmark on String datasets
(Stretch: integrate Lls into Hyrise + benchmark)

* Learning potentials:

Wu, J., Zhang, Y., Chen, S., Wang, J., Chen, Y., & Xing, C. Updatable Learned Index with Precise Positions. PVLDB 14(8): 1276-1288 (2021)
Crotty A. Hist-Tree: Those Who Ignore It Are Doomed to Learn. CIDR (2021)

ML-techniques in databases
Indexing data
Benchmarking

(Hyrise index integration)
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Efficient and Accurate Histograms

Motivation

* Histograms are database statistics that allow the query optimizer to find
efficient and fast query plans

* Improving the accuracy of histograms can have a large positive impact as
inefficient query plans are often recognized and avoided

 However, creating and maintaining histograms can be expensive
Current Situation in Hyrise

* Hyrise builds histograms for the entire column

* Building histograms for a +1TB data set can take hours, even with 240 cores

* The currently used histograms can be inaccurate when data is heavily skewed
(often the case in the real world)

Hasso
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Efficient and Accurate Histograms

Goal Evaluation

* Enable Hyrise to efficiently create histograms for large + Evaluation on synthetic (TPC-H) and real-world

data sets (IMDB movie data) data sets

* Improve cardinality estimations by using skew-aware

. * What is the accuracy of the evaluated
histogram types

histograms?

e How efficient is their creation?

Implementation Expected Results
* Implementation of text book histograms (e.g., equi- * Thorough implementation and evaluation of
width) and max-diff histogram [Hist96] different histograms types
* Creation of histograms using stable sampling e For the histogram type that performs best: efficient
and scalable implementation that can ideally find its
* Efficient implementation for data sets > 1TB on large way to the Hyrise main branch

server (240 cores and 8 sockets)

mg}ttltnL?{ Improved Histograms for Selectivity Estimation of Range Predicates. SIGMOD 1996: 294-305 18

ﬂ Hasso [Hist96] Viswanath Poosala, Yannis E. loannidis, Peter J. Haas, Eugene J. Shekita:



Database Node Placement in the Cloud

m Motivation: Database systems are increasingly deployed in the cloud

m Problem: Optimize the assignment of (database system) VMs to physical resources under constraints

o Problem size: hundreds of servers and thousands of VMs

| data center N

o Exemplary VM settings:

data center 1

#cores & speed, RAM, storage affinity & anti-affinity rules

server 1

—O— storage

o Exemplary server settings:
#cores & speed, RAM, connectivity

Res
-O-

YOUMS

server Sq

m Task: Implement and evaluate allocation algorithms (greedy vs. linear programming based)
m Learning goals (specific to this topic):
o Approaches for solving optimization problems, in particular, linear programming

o Characteristics of the architecture of cloud data centers

Hasso
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Partial Indexes

column
’ A
segments
l' 2
I AN
4 :
1
5 ,
y, 1
1
1
global index

Memory Consumption Issue
Indexing all tuples of a table

results in a high memory

footprint.
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Partial Indexes

column
’ A
segments
l' 2
L] A\
4 :
1
5 :
) 1
1
1
global index

column

1 N\
1

2 I
1

3 A\
1

4 :
1

5 N\
1
1

local indexes

Memory Consumption Issue
Indexing all tuples of a table

results in a high memory

footprint.

Scalability Issue
The number of lookup
operations grows linearly with

the number of existing partitions.
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Partial Indexes

column
N
segments
l 2
L] A\
4 :
1
5 1
)
1
1
global index

column

1 N\
1

2 I
1

3 A\
1

4 :
1

5 N\
1
1

local indexes

column

1 )
2
L +/\
4 :

1
5 ,

) :
1
1
partial index

Memory Consumption Issue
Indexing all tuples of a table

results in a high memory

footprint.

Scalability Issue
The number of lookup
operations grows linearly with

the number of existing partitions.

Partial Indexing

Store index entries of multiple partitions
in one global data structure.

Only a subset of the partitions is indexed.
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Partial Indexes

Implementation

(Partial hash index) — majority implemented in DYOD 21
Partial B-Tree index

Index scan operator (currently not compatible with PI)
Index join operator: fallback join for non-indexed partitions
Micro benchmarks

Optimizer rules to use index scans/joins

Evaluation

Latencies of index lookup operations

Latencies of index maintenance operations
Index memory consumption

Using various benchmarks (micro, TPC-H, JCC-H)

Performance effects of implemented/modified optimizer rules

Hasso
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Expected Results

Index implementations (hash and B-Tree)

Partial index compatible index scan implementation
Partial index compatible index join implementation
Optimizer rules to use index scans/joins

Experimental performance evaluation of partial indexes in
comparison to global indexes (used in scans and joins)

Experimental performance evaluation of Hyrise using the new
optimizer rules (using TPC-H and JCC-H)

23



Dynamic Data Placement Algorithms

Motivation
* Storing data in DRAM allows significantly lower access latencies compared to other data tiers, such as SSDs or HDDs

* DRAM in main-memory databases is limited:
“[...] the amount of data to be processed keeps growing while DRAM capacity does not” [1]

* To tackle this issue, data can be placed on different data tiers, such as SSDs.

Guiding Questions
* Which data (structures) should be placed on the slower data tier?

* Given a DRAM budget and a workload, what is an optimal data placement?

Plattner
Institut

ﬂ Hasso [1] Korolija et al. 2021. Farview: Disaggregated Memory with Operator Off-loading for Database Engines. CoORR
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Dynamic Data Placement Algorithms

Hyrise automatic
tiering

Segment access counter (SAC)
heatmap (low to high)
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Hyrise table T

Column T.a Column T.b
Chunk #1
Segment a Segment b
SAC: 100 SAC: 50
Chunk #N
Segment a Segment b
SAC: 3 SAC: 49

tiering plugin

<tier>-CAP: X GB,
<tier>-COST: Y USD

———————————————————————

<>

<<swap>>

placement costs?

25



Dynamic Data Placement Algorithms

Implementation

Algorithms that determine the optimum data placement for a
given workload, having DRAM or SSD as the data tiers
(as a Hyrise plugin).

Micro benchmarks for manual data placement experiments.

Evaluation

Manual data placements with different shares of
segments stored on DRAM/SSD

TPC-H performance with (a) all segments are stored in
main memory, (b) all segments stored on SSD, and (c)
segments stored on both DRAM and SSD, according to the
developed algorithms

Metrics: query latencies, memory consumption

Compare the developed algorithms with a provided
reference algorithm

Hasso
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Expected Results

Different data placement algorithm implementations

Experimental performance evaluation with segments manually

placed on DRAM/SSD

Experimental performance eval. of the data placement

algorithms compared to a reference algorithm

26



Timeline

Weekly meetings with advisors

Hasso
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Administration

e Specialization areas:
e |TSE: BPET, OSIS, ITSE-Analyse, ITSE-Maintenance
* DATA: SCAL

e Official deadline to register was 22 October

e Grading
* 50% project result and presentation
* 40% scientific report (4-8 pages ACM format, depending on group size)

* 10% personal engagement

Hasso
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Bringing groups and topics together

* You are welcome to hang out in this Zoom call after the introduction to figure out groups

* If you have found a topic (and a group), please mail Jan.Kossmann@hpi.de and
Daniel.Ritter@guest.hpi.de

* Include three (or more) topic preferences

* The assignment algorithm is strategy-proof ;)

* |If you have any questions or are still looking for a group partner, please mail us, too

Plattner 30
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ﬂ Hasso Background reading: https://en.wikipedia.org/wiki/Strategyproofness
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