
Memory-Based Cloud
Architectures

(Or: Technical Challenges for

 OnDemand Business Software)

Jan Schaffner

Enterprise Platform and Integration Concepts Group

Example: Enterprise Benchmarking

!"#$%&%'($()

*%'+,#$)
-)

*%'+,#$)
.)

*%'+,#$)
/)

01,%$2)*334)35))
-"3"67'8$2)9,#,)

06"2':,#$2)
9,#,);$$2()

-)

.)

/)

0,,0)-&&4':,<3")!"#$%&'()(*+,

-.##)/.0)$.(,

!)12"31,

Definition

Cloud Computing
=

Data Center + API

What to take home from this talk?

Answers to four questions:

□  Why are memory based architectures great for cloud computing?

□  How predictable is the behavior of an in-memory column database?

□  Does virtualization have a negative impact on in-memory databases?

□  How do I assign tenants to servers in order to manage fault-tolerance and
scalability?

First question

Why are memory based architectures
great for cloud computing?

Numbers everyone should know

■  L1 cache reference 0.5 ns

■  Branch mispredict 5 ns

■  L2 cache reference 7 ns

■  Mutex lock/unlock 25 ns

■  Main memory reference 100 ns (in 2008)

■  Compress 1K bytes with Zippy 3,000 ns

■  Send 2K bytes over 1 Gbps network 20,000 ns

■  Read 1 MB sequentially from memory 250,000 ns

■  Round trip within same datacenter 500,000 ns (in 2008)

■  Disk seek 10,000,000 ns

■  Read 1 MB sequentially from network 10,000,000 ns

■  Read 1 MB sequentially from disk 20,000,000 ns

■  Send packet CA  Netherlands  CA 150,000,000 ns

Source: Jeff Dean

Memory should be the
system of record

■  Typically disks have been the system of record

□  Slow  wrap them in complicated caching and distributed file
systems to make them perform

□  Memory used as cache all over the place but it can be
invalidated when something changes on disk

■  Bandwidth:

□  Disk: 120 MB/s/controller

□  DRAM (x86 + FSB): 10.4 GB/s/board

□  DRAM (Nehalem): 25.6 GB/s/socket

■  Latency:

□  Disk: 13 milliseconds (up to seconds when queuing)

□  InfiniBand: 1-2 microseconds

□  DRAM: 5 nanoseconds

High-end networks vs. disks

Maximum bandwidths:

Hard Disk 100-120 MB/s

SSD 250 MB/s

Serial ATA II 600 MB/s

10 GB Ethernet 1204 MB/s

InfiniBand 1250 MB/s (4 channels)

PCIe Flash Storage 1400 MB/s

PCIe 3.0 32 GB/s

DDR3-1600 25.6 GB/s (dual channel)

Even more numbers…

Maximum bandwidths:

Hard Disk 100-120 MB/s

SSD 250 MB/s

Serial ATA II 600 MB/s

10 GB Ethernet 1204 MB/s

InfiniBand 1250 MB/s (4 channels)

PCIe Flash Storage 1400 MB/s

PCIe 3.0 32 GB/s

DDR3-1600 25.6 GB/s (dual channel)

	
 	
 Type	
 Device	
 /	
 Medium	
 Latency	
 Throughput	

Sa
m
e	

co
re
	

Storage	
 L1	
 cache	
 read	
 (local)	
 1.3	
 ns	
 364.8	
 Gbps	

Storage	
 L2	
 cache	
 read	
 (local)	
 3.4	
 ns	
 248.8	
 Gbps	

Storage	
 L3	
 cache	
 read	
 (local)	
 13	
 ns	
 209.6	
 Gbps	

Sa
m
e	

di
e	

Storage	
 L1	
 cache	
 read	
 (remote,	
 same	
 die)	
 13	
 -­‐	
 28.3	
 ns	
 75.2	
 -­‐	
 154.4	
 Gbps	

Storage	
 L2	
 cache	
 read	
 (remote,	
 same	
 die)	
 13	
 -­‐	
 25.5	
 ns	
 105.6	
 -­‐	
 157.6	
 Gbps	

Storage	
 L3	
 cache	
 read	
 (remote,	
 same	
 die)	
 13	
 -­‐	
 22.2	
 ns	
 157.6	
 -­‐	
 209.6	
 Gbps	

Sa
m
e	

bo

ar
d	
 Storage	
 L1	
 cache	
 read	
 (remote,	
 via	
 QPI)	
 58	
 -­‐	
 109	
 ns	
 44.8	
 -­‐	
 72	
 Gbps	

Storage	
 L2	
 cache	
 read	
 (remote,	
 via	
 QPI)	
 58	
 -­‐	
 109	
 ns	
 44.8	
 -­‐	
 73.6	
 Gbps	

Storage	
 L3	
 cache	
 read	
 (remote,	
 via	
 QPI)	
 58	
 -­‐	
 109	
 ns	
 44.8	
 -­‐	
 73.6	
 Gbps	

Sa
m
e	

m
ac
hi
ne

	

Storage	
 DRAM	
 (Nehalem)	
 65	
 -­‐	
 106	
 ns	
 160	
 -­‐	
 256	
 Gbps	
 /	
 socket	

Interconnect	
 SATA	
 3.0	
 at	
 least	
 1	
 µs	
 6	
 Gbps	

Interconnect	
 Serial	
 ASached	
 SCSI	
 at	
 least	
 1	
 µs	
 6	
 Gbps	

Interconnect	
 PCI	
 Express	
 3.8	
 -­‐	
 5	
 µs	
 4	
 Gbps	
 x	
 number	
 of	
 lanes	

Storage	
 MagneXcal	
 disk	
 read	
 /	
 write	
 3.2	
 -­‐	
 13	
 ms	
 0.96	
 -­‐	
 1.12	
 Gbps	

Storage	
 Solid	
 State	
 Disk	
 read	
 65	
 µs	
 1.9	
 Gbps	

N
et
w
or
k	

Interconnect	
 RDMA	
 over	
 InfiniBand	
 1	
 -­‐	
 3	
 µs	
 2.5	
 -­‐	
 10	
 Gbps	
 x	
 number	
 of	
 channels	

Interconnect	
 RDMA	
 over	
 iWARP	
 6	
 µs	
 10	
 Gbps	
 /	
 link	

Interconnect	
 10Gb	
 Ethernet	
 20	
 µs	
 10	
 Gbps	
 /	
 link	

Interconnect	
 Fibre	
 channel	
 3	
 -­‐	
 10	
 µs	
 	

(add	
 1	
 ms	

	
 per	
 100	
 km)	

8	
 Gbps	
 /	
 channel	

Designing a database for the cloud

■  Disks are the limiting factor in contemporary database systems

□  Sharing a high performance disk on a machine/cluster/cloud is
fine/troublesome/miserable

□  While one guy is fetching 100 MB/s, everyone else is waiting

■  Claim: Two machines + network is better than one machine + disk

□  Log to disk on a single node:
> 10,000 µs (not predictable)

□  Transactions only in memory but on two nodes:
< 600 µs (more predictable)

■  Concept: Design to the strengths of cloud (redundancy) rather than
their weaknesses (shared anything)

■  No disks (in-memory delta tables + async snapshots)

■  Multi-master replication

□  Two copies of the data

□  Load balancing both reads and (monotonic) writes

□  (Eventual) consistency achieved via MVCC (+ Paxos, later)

■  High-end hardware

□  Nehalem for high memory bandwidth

□  Fast interconnect

■  Virtualization

□  Ease of deployment/administration

□  Consolidation/multi-tenancy

Design choices for a cloud database

■  In-memory column databases are ideal for mixed workload
processing

■  But: In a SaaS environment it seems costly to give everybody
their private NewDB box

■  How much consolidation is possible?

□  3 years worth of sales records from our favorite
Fortune 500 retail company

□  360 million records

□  Less than 3 GB in compressed columns in memory

□  Next door is a machine with 2 TB of DRAM

□  (Beware of overhead)

Why consolidation?

Multi-tenancy in the database –
four different options
■  No multi-tenancy – one VM per tenant

□  Ex.: RightNow has 3000 tenants in 200 databases (2007):
3000 vs. 200 Amazon VMs cost $2,628,000 vs. $175,200/year

□  Very strong isolation

■  Shared machine – one database process per tenant

□  Scheduler, session manager and transaction manager need
live inside the individual DB processes: IPC for synchronization

□  Good for custom extensions, good isolation

■  Shared instance – one schema instance per tenant

□  Must support large numbers of tables

□  Must support online schema extension and evolution

■  Shared table – use a tenant_id column and partitioning

□  Bad for custom extensions, bad isolation

□  Hard to backup/restore/migrate individual tenants

T1

T3

T2

T1
T3

T2

T1, T2, T3

Putting it all together:
Rock cluster architecture

TREX	

Adapter	

TREX	

Adapter	

TREX	

Adapter	

ApplicaXon	

Server	

Router	

Importer	

OLTP	
 System	

Router	

ApplicaXon	

Server	

Cluster	

Master	

Rock Cluster membership,
Tenant placement

Forward writes to
other replicas

Load balance
between replicas

Extract data from
external system

Second question

How predictable is the behavior of an
in-memory column database?

What does “predictable” mean?

■  Traditionally, database people are concerned with the questions of type
“how do I make a query faster?”

■  In a SaaS environment, the question is
“how do I get a fixed (low) response time as cheap as possible?”

□  Look at throughput

□  Look at quantiles (e.g. 99-th percentile)

■  Example formulation of desired performance:

□  Response time goal “1 second in the 99-th percentile”

□  Average response time around 200 ms

□  Less than 1% of all queries exceed 1,000 ms

□  Results in a maximum number of concurrent queries before
response time goal is violated

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 20 40 60 80 100 120 140 160 180 200 220

R
eq

ue
st

s
/ s

Tenant Size in MB

Measured
Approx. Function

System capacity

■  Fixed amount of data split equally among all tenants

■  Capacity ≈ bytes scanned per second
(there is a small overhead when processing more requests)

■  In-memory databases behave very linearly!

4.1. Relation of Request Rate and Tenant Size (Creating a Workload Model)

a similar set of queries as all tenants use the same analytical services. Besides, under

low utilization, all queries could be processed in a very short time frame of less than

150ms.

4.1 Relation of Request Rate and Tenant Size

I define the workload as a function which depends on the size of a tenant and its request

rate which is the number of queries being executed per second. In this setup, I tested

different tenant sizes with an increasing request rate. In particular, I increased the

request rate until the response time goal of 1000 ms for the 99% percentile value was

violated. Figure 4.1 shows the maximum achieved request rate per tenant for different

tenant sizes which did not violate the response time goal.

The 99% percentile value was calculated for a test run lasting ten minutes and, ad-

ditionally, averaged over three test runs with the same parameters. The landscape in

each test contained several tenants of a particular tenant size so that approximately

20% of the available main memory has always been used for tenant data. All data was

preloaded into main memory before each test run and a six minute warm-up time was

performed before each run. The test data was generated by the Star Schema Benchmark

Data Generator [36].

Figure 4.2 shows the same graph using a logarithmic scale. This graph seems to be

linear which means that the relation can be described as

log(f(tSize)) = m · log(tSize) + n

where n is the intercept with the y-axis f(0) and m is the gradient. The y-intercept

n and the gradient m can be estimated using regression and the Least-Squares-Method

(see chapter 2.3.2) or simply by using a slope triangle. The gradient for this graph is

m ≈ −0.945496 and f(0) = n ≈ 3.6174113. This equation can, then, be rearranged to

equation (4.1).

35

Can be expressed as:

€

Ratet * Sizet
0.95 = 4144

Workload

■  Tenants generally have different rates and sizes

■  For a given set of T tenants (on one server) define

■  When Workload = 1

□  System runs at it’s maximum throughput level

□  Further increase of workload will result in violation of
response time goal

€

Workload =
Ratet ∗Sizet

0.95

4144t∈T
∑

Response time

■  Different amounts of data and different request rates (“assorted mix”)

■  Workload is varied by scaling the request rates

 0

 500

 1000

 1500

 2000

 2500

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

99
-th

 P
er

c.
 V

al
ue

 in
 m

s

Workload

Tenant Data 1.5 GB
Tenant Data 2.0 GB
Tenant Data 2.6 GB
Tenant Data 3.2 GB

Prediction

Impact of writes

■  Added periodic batch writes (fact table grows by 0.5% every 5 minutes)

 0

 500

 1000

 1500

 2000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

99
-th

 P
er

c.
 V

al
ue

 in
 m

s

Workload

Without Writes
With Writes

Prediction without Writes
Prediction with Writes

Why is predictability good?
■  Ability to plan and perform resource intensive tasks during normal

operations:

□  Upgrades

□  Merges

□  Migrations of tenants in the cluster (e.g. to dynamically
re-balance the load situation in the cluster)

Cost breakdown for
migration of tenants

Definition

Cloud Computing
=

Data Center + API

Third question

Does virtualization have a negative impact
on in-memory databases?

Impact of virtualization

■  Run multi-tenant OLAP benchmark on either:

□  one TREX instance directly on the physical host vs.

□  one TREX instance inside VM on the physical host

■  Overhead is approximately 7% (both in response time and throughput)

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0 2 4 6 8 10 12

Av
er

ag
e

re
sp

on
se

 ti
m

e

Client Threads

virtual physical
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 0 2 4 6 8 10 12

Q
ue

rie
s

pe
r s

ec
on

d

Client Threads

virtual physical

Impact of virtualization (contd.)

■  Virtualization is often used to get “better” system utilization

□  What happens when a physical machine is split into multiple VMs?

□  Burning CPU cycles does not hurt  memory bandwidth is the
limiting factor

 80 %

 90 %

100 %

110 %

120 %

130 %

140 %

150 %

160 %

1 2 3 4

R
es

po
ns

e
Ti

m
e

as
 a

 P
er

ce
nt

ag
e

of
R

es
po

ns
e

Ti
m

e
w

ith
 1

 A
ct

iv
e

Sl
ot

Concurrently Active VM Slots

Xeon E5450
Xeon X5650

Fourth question

How do I assign tenants to servers
in order to manage fault-tolerance

 and scalability?

Why is it good to have multiple
copies of the data?

■  Scalability beyond a certain number of concurrently active users

■  High availability during normal operations

■  Alternating execution of resource-intensive operations (e.g. merge)

■  Rolling upgrades without downtime

■  Data migration without downtime

■  Reminder: Two in-memory copies allow faster writes and are more
predictable than one in-memory copy plus disk

■  Downsides:

□  Response time goal might be violated during recovery

□  You need to plan for twice the capacity

Tenant placement

Conventional
Mirrored Layout

T1

T2

T1

T2

T3

T4

T3

T4

If a node fails, all work moves to
one other node. The system must

be 100% over-provisioned.

T1

T2
T3

T1

T4
T5

T2

T5
T6

T4

T6
T3

If a node fails, work moves to
many other nodes. Allows

higher utilization of nodes.

Interleaved
Layout

Mirrored Interleaved Improvement

No failures 4218 users 4506 users 7%

Periodic single
failures

2265 users 4250 users 88%

■  Perfect placement:

□  100 tenants

□  2 copies/tenant

□  All tenants have same size

□  10 tenants/server

□  Perfect balancing (same load on all tenants):

□  6M rows (204 MB compressed) of data per tenant

□  The same (increasing) number of users per tenant

□  No writes

Handcrafted best case

Throughput before violating
response time goal

1
2
3

1
2
3

4
5
6

4
5
6

7
8
9

7
8
9

Mirrored

1
2
3

4
5
6

7
8
9

1
4
7

2
5
8

3
6
9

Interleaved

Requirements for placement algorithm

■  An optimal placement algorithm needs to cope with
multiple (conflicting) goals:

□  Balance load across servers

□  Achieve good interleaving

■  Use migrations consciously for online layout improvements
(no big bang cluster re-organization)

■  Take usage patterns into account

□  Request rates double during last week before end of quarter

□  Time-zones, Christmas, etc.

Conclusion

■  Answers to four questions:

□  Why are memory based architectures great for cloud computing?

□  How predictable is the behavior of an in-memory column database?

□  Does virtualization have a negative impact on in-memory databases?

□  How do I assign tenants to servers in order to manage fault-tolerance and
scalability?

■  Questions?

