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Example: Enterprise Benchmarking 
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Definition 

Cloud Computing 
= 

Data Center + API 



What to take home from this talk? 

Answers to four questions: 

□  Why are memory based architectures great for cloud computing? 

□  How predictable is the behavior of an in-memory column database? 

□  Does virtualization have a negative impact on in-memory databases? 

□  How do I assign tenants to servers in order to manage fault-tolerance and 
scalability? 



First question 

Why are memory based architectures 
great for cloud computing? 



Numbers everyone should know 

■  L1 cache reference    0.5 ns 

■  Branch mispredict    5 ns 

■  L2 cache reference    7 ns 

■  Mutex lock/unlock    25 ns 

■  Main memory reference   100 ns (in 2008) 

■  Compress 1K bytes with Zippy   3,000 ns 

■  Send 2K bytes over 1 Gbps network  20,000 ns 

■  Read 1 MB sequentially from memory  250,000 ns 

■  Round trip within same datacenter  500,000 ns (in 2008) 

■  Disk seek     10,000,000 ns 

■  Read 1 MB sequentially from network  10,000,000 ns 

■  Read 1 MB sequentially from disk  20,000,000 ns 

■  Send packet CA  Netherlands  CA  150,000,000 ns 

Source: Jeff Dean 



Memory should be the  
system of record 

■  Typically disks have been the system of record 

□  Slow  wrap them in complicated caching and distributed file 
systems to make them perform 

□  Memory used as cache all over the place but it can be 
invalidated when something changes on disk 

■  Bandwidth: 

□  Disk:    120 MB/s/controller 

□  DRAM (x86 + FSB):  10.4 GB/s/board 

□  DRAM (Nehalem):  25.6 GB/s/socket 

■  Latency: 

□  Disk:   13 milliseconds (up to seconds when queuing) 

□  InfiniBand:  1-2 microseconds 

□  DRAM:   5 nanoseconds 



High-end networks vs. disks 

Maximum bandwidths: 

Hard Disk 100-120 MB/s 

SSD 250 MB/s 

Serial ATA II 600 MB/s 

10 GB Ethernet 1204 MB/s 

InfiniBand 1250 MB/s (4 channels) 

PCIe Flash Storage 1400 MB/s 

PCIe 3.0 32 GB/s 

DDR3-1600 25.6 GB/s (dual channel) 



Even more numbers…  

Maximum bandwidths: 

Hard Disk 100-120 MB/s 

SSD 250 MB/s 

Serial ATA II 600 MB/s 

10 GB Ethernet 1204 MB/s 

InfiniBand 1250 MB/s (4 channels) 

PCIe Flash Storage 1400 MB/s 

PCIe 3.0 32 GB/s 

DDR3-1600 25.6 GB/s (dual channel) 
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  25.5	
  ns	
   105.6	
  -­‐	
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Storage	
   DRAM	
  (Nehalem)	
   65	
  -­‐	
  106	
  ns	
   160	
  -­‐	
  256	
  Gbps	
  /	
  socket	
  

Interconnect	
   SATA	
  3.0	
   at	
  least	
  1	
  µs	
   6	
  Gbps	
  

Interconnect	
   Serial	
  ASached	
  SCSI	
   at	
  least	
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   6	
  Gbps	
  
Interconnect	
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   3.8	
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  5	
  µs	
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  number	
  of	
  lanes	
  

Storage	
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  µs	
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  1	
  ms	
  
	
  per	
  100	
  km)	
  

8	
  Gbps	
  /	
  channel	
  



Designing a database for the cloud 

■  Disks are the limiting factor in contemporary database systems 

□  Sharing a high performance disk on a machine/cluster/cloud is 
fine/troublesome/miserable 

□  While one guy is fetching 100 MB/s, everyone else is waiting 

■  Claim: Two machines + network is better than one machine + disk 

□  Log to disk on a single node:  
> 10,000 µs  (not predictable) 

□  Transactions only in memory but on two nodes: 
< 600 µs  (more predictable) 

■  Concept: Design to the strengths of cloud (redundancy) rather than 
their weaknesses (shared anything) 



■  No disks (in-memory delta tables + async snapshots) 

■  Multi-master replication 

□  Two copies of the data 

□  Load balancing both reads and (monotonic) writes 

□  (Eventual) consistency achieved via MVCC (+ Paxos, later) 

■  High-end hardware 

□  Nehalem for high memory bandwidth 

□  Fast interconnect 

■  Virtualization 

□  Ease of deployment/administration 

□  Consolidation/multi-tenancy 

Design choices for a cloud database 



■  In-memory column databases are ideal for mixed workload 
processing 

■  But: In a SaaS environment it seems costly to give everybody  
their private NewDB box 

■  How much consolidation is possible? 

□  3 years worth of sales records from our favorite  
Fortune 500 retail company 

□  360 million records 

□  Less than 3 GB in compressed columns in memory 

□  Next door is a machine with 2 TB of DRAM  

□  (Beware of overhead) 

 

Why consolidation? 



Multi-tenancy in the database –  
four different options 
■  No multi-tenancy – one VM per tenant 

□  Ex.: RightNow has 3000 tenants in 200 databases (2007): 
3000 vs. 200 Amazon VMs cost $2,628,000 vs. $175,200/year 

□  Very strong isolation 

 

■  Shared machine – one database process per tenant 

□  Scheduler, session manager and transaction manager need  
live inside the individual DB processes: IPC for synchronization 

□  Good for custom extensions, good isolation 

■  Shared instance – one schema instance per tenant 

□  Must support large numbers of tables 

□  Must support online schema extension and evolution 

■  Shared table – use a tenant_id column and partitioning 

□  Bad for custom extensions, bad isolation 

□  Hard to backup/restore/migrate individual tenants 

T1 

T3 

T2 

T1 
T3 

T2 

T1, T2, T3 



Putting it all together: 
Rock cluster architecture 
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Rock Cluster membership, 
Tenant placement 

Forward writes to 
other replicas 

Load balance 
between replicas 

Extract data from 
external system 



Second question 

How predictable is the behavior of an  
in-memory column database? 



What does “predictable” mean? 

■  Traditionally, database people are concerned with the questions of type 
“how do I make a query faster?” 

■  In a SaaS environment, the question is 
“how do I get a fixed (low) response time as cheap as possible?” 

□  Look at throughput 

□  Look at quantiles (e.g. 99-th percentile) 

■  Example formulation of desired performance:  

□  Response time goal “1 second in the 99-th percentile” 

□  Average response time around 200 ms 

□  Less than 1% of all queries exceed 1,000 ms 

□  Results in a maximum number of concurrent queries before  
response time goal is violated 



 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 20  40  60  80  100  120  140  160  180  200  220

R
eq

ue
st

s 
/ s

Tenant Size in MB

Measured
Approx. Function

System capacity 

■  Fixed amount of data split equally among all tenants 

 

■  Capacity ≈ bytes scanned per second  
(there is a small overhead when processing more requests) 

■  In-memory databases behave very linearly! 

4.1. Relation of Request Rate and Tenant Size (Creating a Workload Model)

a similar set of queries as all tenants use the same analytical services. Besides, under

low utilization, all queries could be processed in a very short time frame of less than

150ms.

4.1 Relation of Request Rate and Tenant Size

I define the workload as a function which depends on the size of a tenant and its request

rate which is the number of queries being executed per second. In this setup, I tested

different tenant sizes with an increasing request rate. In particular, I increased the

request rate until the response time goal of 1000 ms for the 99% percentile value was

violated. Figure 4.1 shows the maximum achieved request rate per tenant for different

tenant sizes which did not violate the response time goal.

The 99% percentile value was calculated for a test run lasting ten minutes and, ad-

ditionally, averaged over three test runs with the same parameters. The landscape in

each test contained several tenants of a particular tenant size so that approximately

20% of the available main memory has always been used for tenant data. All data was

preloaded into main memory before each test run and a six minute warm-up time was

performed before each run. The test data was generated by the Star Schema Benchmark

Data Generator [36].

Figure 4.2 shows the same graph using a logarithmic scale. This graph seems to be

linear which means that the relation can be described as

log(f(tSize)) = m · log(tSize) + n

where n is the intercept with the y-axis f(0) and m is the gradient. The y-intercept

n and the gradient m can be estimated using regression and the Least-Squares-Method

(see chapter 2.3.2) or simply by using a slope triangle. The gradient for this graph is

m ≈ −0.945496 and f(0) = n ≈ 3.6174113. This equation can, then, be rearranged to

equation (4.1).
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Can be expressed as: 

€ 

Ratet * Sizet
0.95 = 4144



Workload 

■  Tenants generally have different rates and sizes 

■  For a given set of T tenants (on one server) define 

■  When Workload = 1 

□  System runs at it’s maximum throughput level 

□  Further increase of workload will result in violation of  
response time goal 

€ 

Workload =
Ratet ∗Sizet

0.95

4144t∈T
∑



Response time 

■  Different amounts of data and different request rates (“assorted mix”) 

■  Workload is varied by scaling the request rates 
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Impact of writes 

■  Added periodic batch writes (fact table grows by 0.5% every 5 minutes) 
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Why is predictability good? 
■  Ability to plan and perform resource intensive tasks during normal 

operations: 

□  Upgrades  

□  Merges 

□  Migrations of tenants in the cluster (e.g. to dynamically  
re-balance the load situation in the cluster) 

Cost breakdown for 
migration of tenants 



Definition 

Cloud Computing 
= 

Data Center + API 



Third question 

Does virtualization have a negative impact 
on in-memory databases? 



Impact of virtualization 

■  Run multi-tenant OLAP benchmark on either: 

□  one TREX instance directly on the physical host vs. 

□  one TREX instance inside VM on the physical host 

■  Overhead is approximately 7% (both in response time and throughput) 
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Impact of virtualization (contd.) 

■  Virtualization is often used to get “better” system utilization 

□  What happens when a physical machine is split into multiple VMs? 

□  Burning CPU cycles does not hurt  memory bandwidth is the 
limiting factor 
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Fourth question 

How do I assign tenants to servers  
in order to manage fault-tolerance 

 and scalability? 



Why is it good to have multiple  
copies of the data? 

■  Scalability beyond a certain number of concurrently active users 

■  High availability during normal operations  

■  Alternating execution of resource-intensive operations (e.g. merge) 

■  Rolling upgrades without downtime 

■  Data migration without downtime 

■  Reminder: Two in-memory copies allow faster writes and are more 
predictable than one in-memory copy plus disk 

 

■  Downsides:  

□  Response time goal might be violated during recovery 

□  You need to plan for twice the capacity 

 



Tenant placement 

Conventional  
Mirrored Layout 

T1 

T2 

T1 

T2 

T3 

T4 

T3 

T4 

If a node fails, all work moves to 
one other node. The system must 

be 100% over-provisioned. 

T1 

T2 
T3 

T1 

T4 
T5 

T2 

T5 
T6 

T4 

T6 
T3 

If a node fails, work moves to 
many other nodes. Allows 

higher utilization of nodes. 

Interleaved 
Layout 



Mirrored Interleaved Improvement 

No failures 4218 users 4506 users 7% 

Periodic single 
failures 

2265 users 4250 users 88% 

■  Perfect placement: 

□  100 tenants 

□  2 copies/tenant 

□  All tenants have same size 

□  10 tenants/server 

□  Perfect balancing (same load on all tenants): 

□  6M rows (204 MB compressed) of data per tenant 

□  The same (increasing) number of users per tenant 

□  No writes 

Handcrafted best case 

Throughput before violating 
response time goal 
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Requirements for placement algorithm 

■  An optimal placement algorithm needs to cope with  
multiple (conflicting) goals: 

□  Balance load across servers 

□  Achieve good interleaving 

■  Use migrations consciously for online layout improvements 
(no big bang cluster re-organization) 

■  Take usage patterns into account 

□  Request rates double during last week before end of quarter 

□  Time-zones, Christmas, etc. 

 



Conclusion 

■  Answers to four questions: 

□  Why are memory based architectures great for cloud computing? 

□  How predictable is the behavior of an in-memory column database? 

□  Does virtualization have a negative impact on in-memory databases? 

□  How do I assign tenants to servers in order to manage fault-tolerance and 
scalability? 

■  Questions? 


