

IT Systems Engineering | Universität

Causal Inference Theory and Applications in Enterprise Computing

Dr. Matthias Uflacker, Johannes Huegle, Christopher Schmidt June 4, 2019

Agenda June 04, 2019

- **Recap of Theoretical Background**
- **Introduction to the do-Calculus of Intervention**
	- 1. Introduction
	- 2. The Calculus of Intervention
	- 3. Estimating Causal Effects
	- 4. Causal Inference in Application
	- 5. Excursion Causal Functional System

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

IT Systems Engineering | Universität Potsdam

Recap of Theoretical Background

Recap of Theoretical Background Causal Inference in a Nutshell

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Slide **4**

E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

 $Q(P) = P(recovery|lemons)$

lemons? $Q(G) = P(recovery|do(lemons))$

recovery if **we do** treat them with

Recap of Theoretical Background Causal Graphical Models

- Causal Structures formalized by *DAG (directed acyclic graph) G* with random variables $V_1, ..., V_n$ as vertices.
- *Causal Sufficiency*, *Causal Faithfulness* and *Global Markov Condition* imply $(X \perp Y | Z)_c \Leftrightarrow (X \perp Y | Z)_p.$
- **Local Markov Condition states that the density** $p(v_1, ..., v_n)$ then factorizes into

$$
p(v_1, ..., v_n) = \prod_{i=1}^n p(v_i|Pa(v_i)).
$$

Gausal conditional $p(v_i|Pa(v_i))$ represent *causal mechanisms*.

Data Generating Model Joint Distribution \not **Causal Inference Theory and Applications in Enterprise Computing**

Uflacker, Huegle, Schmidt

Recap of Theoretical Background Statistical Inference

- *Null Hypothesis H*₀ is the claim that is initially assumed to be true
- \blacksquare *Alternative Hypothesis H*₁ is a claim that contradicts the H_0
- How to test a hypothesis?
	- \Box Approximate T under H_0 by a known distribution
	- \Box Different distributions yield to different tests, e.g., T-test, χ^2 -test, etc.
	- \Box Derive rejection criteria for H_0
		- $-$ *c*-value: reject H_0 if $T(x_n) > c$ for a $c \in \mathbb{R}$
		- *p*-value: reject H_0 if $P_{H_0}(T(X) > T(x)) < \alpha$ are equivalent
- *(Conditional) Independence Test*

Distribution of $V_1, ..., V_N$ \Rightarrow dependence measures $T(V_i, V_j, S) \Rightarrow$ test $H_0: t = 0$

■ Allows for *constraint-based causal structure learning*

Uflacker, Huegle, Schmidt

Constraint-based causal structure learning

- Assumptions: *Causal sufficiency*, *Markov condition*, *causal faithfulness*
- X and Y are linked if and only if there is no $S(X, Y)$ such that $(X \perp Y | S(X, Y))_P$
- Identifies causal DAG up to *Markov equivalence class* uniquely described by a *completed partially directed acyclic graph (CPDAG)*
- **PC** algorithm provides efficient framework (under sparseness of G)

□ *Concept:*

- 1. Iterative skeleton discovery
- 2. Edge orientation with deterministic orientation rules
- □ *Polynomial complexity* (exponential in worst case)
- □ Extensions allow for *weaker faithfulness*, *latent variables*, *cycles*, etc.

Other learning methods

- *Score-based methods*, i.e., "search-and-score approach"
- *Hybrid methods*, i.e., combination of constraint- and score-based approach

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Recap of Theoretical Background Inference Opportunities

Data Causal Structure Learning Opportunities Examples

IT Systems Engineering | Universität Potsdam

Introduction to the do-Calculus of Intervention

1. Introduction Causal Inference in a Nutshell

1. Introduction Recap: Simpson's Paradox

Recap the scurvy experiment:

- We observed
	- □ , > ,
	- \Box P(recovery|lemons, young) > P(recovery|no lemons, young)
	- *□ But:* $P(recovery|lemons) < P(recovery|no lemons)$
- This reversal of the association between two variables after considering the third variable is called **Simpson's Paradox**.

Pearl extends probability calculus by introducing a new operator for describing interventions, the **do-operator**.

HPI

Hasso Plattner Institut

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

1. Introduction Recap: The do-Operator

The do-operator

- \blacksquare do(...) marks intervention in the model
	- \Box In an algebraic model: we replace certain functions with a constant $X = x$
	- \Box In a graph: we remove edges going into the target of intervention, but preserve edges going out of the target.

■ The causal calculus uses

- \Box *Bayesian conditioning,* $p(y|x)$ *,* where x is observed variable
- \Box *Causal conditioning,* $p(y|do(x))$ *, where we force a specific value x*
- *Goal:* Generate probabilistic formulas for the effect of interventions in terms of the observed probabilities.

Resolution of Simpson's paradox

- Simpson's paradox is only paradoxical if we misinterpret
	- $P(recovery|lemons)$ as $P(recovery|do(lemons))$
- We should treat scurvy with lemons if $P(recovery|do(lemons)) > P(recovery|do(no~lemons))$

Uflacker, Huegle, Schmidt

■ The treatment does not affect the distribution of the subpopulations, i.e., $P(\text{old}|\text{do}(\text{lemons}) = P(\text{old}|\text{do}(\text{no lemons})) = P(\text{old})$

- Then, it is impossible that we have, simultaneously,
	- \Box $P(recovery|do(lemons), old) > P(recovery|do(no~lemons), old)$
	- \Box P(recovery|do(lemons), young) > P(recovery|do(no lemons), young)
	- \Box **But:** $P(recovery|do(lemons)) < P(recovery|do(no lemons))$

■ **Proof:**

 $P(recovery|do(lemons)) = P(recovery|do(lemons), old) P(old|do(lemons))$ $+ P(recovery | do (lemons), young) P(voung | do (lemons))$ $= P(recovery|do(lemons),old) P(old)$ $+ P(recovery | do (lemons), young) P(young)$ $P(recovery|do(no\ lemons)) = P(recovery|do(no\ lemons),old) P(old)$ $+ P(recovery | do (no lemons), young) P(voung)$ \Box **Hence:** $P(recovery|do(lemons)) > P(recovery|do(no~lemons)$

Schmidt

Slide **13**

1. Introduction Resolution of Simpson's Paradox: Proof

2. The Calculus of Intervention Perturbed Graphs

- G Graph
- U, X, Y, Z disjoint subsets of the variables
- $G_{\overline{X}}$ perturbed graph in which all edges *pointing to X* have been deleted
- G_X perturbed graph in which all edges *pointing from X* have been deleted
- \blacksquare $\mathcal{Z}(U)$ set of nodes in G which are *not ancestors of U*

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, **Schmidt**

2. The Calculus of Intervention Identifiability

Definition:

Let $O(M)$ be any computable quantity of a model M. We say that *Q* is identifiable in a class *M* of models if, for any pairs of models M_1 and M_2 from M , $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$.

■ I.e., $P(y|do(x))$ is identifiable

if it can be consistently estimated from data involving only observed variables.

■ **Examples:**

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

- Can you estimate $P(y | do(x))$, given $P(x, y)$?
	- 1. Yes, since $P(y|do(x)) = P(y|x)$, i.e., $P(y|do(x))$ is identifiable
	- 2. No (observational regime), since $P(x, y) = \sum_{u} P(x, y, u) = \sum_{u} P(y|x, u)P(x|u)P(u)$ Slide 15 $P(y|do(x)) = \sum_{u} P(y|x, u)P(u)$

2. The Calculus of Intervention Back-Door Criterion

■ **But:** after adjustment for direct causes (intervention)

- $P(x, y) = \sum_{u} P(x, y, u) = \sum_{u} P(y|x, u)P(x|u)P(u) = P(y|do(x))$
- \Box Hence, $P(y|do(x))$ is identifiable
- Any common ancestor of *X* and *Y* is a *confounder*
- Confounders originate "back-door" paths that need to be blocked by conditioning
- This defines a basic criterion for identifiability:

Back-Door Criterion (Pearl 1993):

A set of variables *Z* satisfies the *back-door criterion* relative to an ordered pair of variables (V_i, V_j) in a DAG G if: 1.no node in Z is a descendant of V_i ; and 2. Z blocks every path between V_i and V_j that contains an arrow to V_i .

 \implies Back-door adjustment: $P(v_j|do(v_i)) = \sum_z P(v_j|v_i, z)P(z)$


```
Uflacker, Huegle, 
Schmidt
```


\rightarrow Front-door adjustment: $P(v_j|do(v_i)) = \sum_z P(z|v_i) \sum_{v'_i} P(v_j|v'_i, z) P(v'_i)$

2. The Calculus of Intervention Front-Door Criterion

- **But:** If *U* is hidden (unobserved), then there is no data for conditioning
- **Then,** $P(y|do(x))$ is also identifiable!

 $P(y|do(x)) = \sum_{z} P(y|do(z))P(z|do(x))$

 $=\sum_{z} P(y|do(z))P(z|x)$ (direct effect)

 $=\sum_{x'} P(y|x',z)P(x')P(z|x)$ (back-door)

■ This defines a basic criterion for identifiability with unobserved variables:

Front-Door Criterion (Pearl 1993):

A set of variables *Z* satisfies the *front-door criterion* relative to an ordered pair of variables (V_i,V_j) in a DAG G if:

- 1. Z intercepts all directed paths from V_i to V_j ; and
- 2. there is no unblocked back-door path from V_i to Z ; and
- 3. all back-door paths from Z to V_i are blocked by V_i

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Slide **17**

2. The Calculus of Intervention The do-Calculus (Pearl 1995)

The do-Calculus:

Let X, Y, Z , and W be arbitrary disjoint sets of nodes in a causal DAG G . ■ *Rule 1: Ignoring observations* $p(y|do(x), z, w) = p(y|do(x), w)$ if $(Y \perp Z | X, W)_{G_{\nabla}}$ ■ *Rule 2: Action/Observation exchange (Back-Door)* $p(y|do(x), do(z), w) = p(y|do(x), z, w)$ if $(Y \perp Z | X, W)_{G_{\overline{X}/Z}}$ ■ *Rule 3: Ignoring actions/interventions* $p(y|do(x), do(z), w) = p(y|do(x), w)$ if $(Y \perp Z | X, W)_{G_{\overline{X}, \overline{Z(W)}}}$

Notes:

- *Allows a syntactical derivation of claims about interventions*
- *The calculus is sound and complete*
	- □ *Sound*: If the do-operations can be removed by repeated application of these three rules, the causal effect is identifiable. (Galles et al. 1995)
	- □ *Complete:* If identifiable, the do-operations can be removed by repeated application of these three rules. (Huang et al. 2012)
	- \Box I.e., "it works on all inputs and always gets the right result"
- *Also allows for identifiability of causal effects in MAGs*

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

3. Estimating Causal Effects Deriving Causal Effects using the do-Calculus

Example: Compute $P(y|do(z))$

We have $P(y|do(z)) = \sum_{x} P(y|x, do(z)) P(x|do(z))$ $= \sum_{x} P(y|x, do(z)) P(x)$ (Rule 1: $(Z \perp X)_{G_{\overline{Z}}}$) $= \sum_{x} P(y|x, z) P(x)$ (Rule 2: $(Z \perp Y)_{G_Z}$)

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

3. Estimating Causal Effects Quantifying Causal Strength

- \blacksquare The *Causal Effect of V_i =* v_i *on V_j is given by* $P\big(\mathtt{V}_\mathrm{j}\big| do$ $(V_i=v_i)$
	- $\texttt{\texttt{u}}$ I.e., the distribution of V_j given that we force V_i to be v_i
	- \Box This defines the basis of the examination of causal effects
- **But:** Quantifying the causal influence of V_i on V_j is a nontrivial question!
- Many *measures of causal strength* depending on the causal structures have been proposed, e.g.,
	- □ *Average Treatment Effect (ATE):*

 $E[V_j|do(V_i = 1)] - E[V_j|do(V_i = 0)]$ for binary V_i, V_j

□ *Average Causal Effect (ACE)*:

 ∂ $\frac{\partial}{\partial v_i} E[V_j|do(V_i=v_i)]$ for continuous V_i, V_j

□ *Conditional Mutual Information (CI):*

$$
\sum_{v_i, v_j} P(v_i) P(v_j | do(V_i = v_i)) \log \frac{P(v_j | do(V_i = v_i))}{\sum_{v_i'} P(v_i = v_i') P(v_j | do(V_i = v_i'))}
$$
 for categorical V_i, V_j

Causal Inference Theory and Applications in Enterprise Computing

```
Uflacker, Huegle, 
Schmidt
```

```
Slide 20
```
□ *Relative Entropy, etc.*

- We are in the multivariate normal case
- Hence, average causal effects are given by

$$
ACE(V_4, V_1, v_1) = \frac{\partial}{\partial v_1} E[V_4|do(V_1 = v_1)]
$$

= $E[V_4|do(V_1 = v_1 + 1)] - E[V_4|do(V_1 = v_1)]$ (linear f)
= $\beta_{V_1 \to V_4} = 4$

$$
C = \text{ACE}(V_6, V_1, v_1) = \frac{\partial}{\partial v_1} E[V_6|do(V_1 = v_1)]
$$

= $E[V_6|do(V_1 = v_1 + 1)] - E[V_6|do(V_1 = v_1)]$
= $\beta_{V_1 \to V_4} \cdot \beta_{V_4 \to V_6} = 4 \cdot 1.2 = 4.8$

$$
\begin{aligned}\n&\Box \text{ ACE}(V_4, V_2, v_2) = \frac{\partial}{\partial v_2} E[V_4 | do(V_2 = v_2)] \\
&= E[V_4 | do(V_2 = v_2 + 1)] - E[V_4 | do(V_2 = v_2)] \\
&= \beta_{V_2 \to V_4} + \beta_{V_2 \to V_3} \cdot \beta_{V_3 \to V_4} = 5 + 3 \cdot 0.7 = 7.1 \\
&\Box \text{ ACE}(V_6, V_5, v_5) = 0\n\end{aligned}
$$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

HPI

Hasso Plattner Institut

4. Causal Inference in Application Cooling House Example

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Idea:

The identification of the underlying causal graph G allows to learn the functions computing children from parents in the structural causal model.

- I.e., the logical second step after the causal discovery
- The do-operator builds a natural basis of probabilistic learning algorithms for estimating the functional system:
	- □ Active Bayesian learning allows for identification of interventions that are optimally informative about all of the unknown functions (Algorithm 1)
	- Exploiting factorization properties allows for vectorization and simultaneous calculations in a dynamic programming approach (Algorithm 2)
- *Probabilistic active learning of functions* significantly improves the estimation compared to unstructured base-lines (Observe only, random intervention).

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

HPI

Hasso Plattner Institut

5. Excursion Causal Functional System (A Naive Example!) **HPI Hasso Plattner** Institut

- **Goal:** Estimate $\beta_{V_1\rightarrow V_4}$
- **Recall**: True $\beta_{V_1 \rightarrow V_4} = 4$
- **Linear Regression Model Approach:**
	- \Box Fit linear model $V_4 = lm(V_1, V_2, V_3, V_5, V_6)$ \Box Then $\hat{\beta}_{V_1 \rightarrow V_4} = 1.14$ \Rightarrow Underestimated $\beta_{V_{\alpha} \rightarrow V_{\alpha}}$

■ **Causal Structural Approach:**

 \Box From estimated CPDAG \hat{G} we know $V_1 = Pa(V_4)$ □ Hence, $\hat{\beta}_{V_1 \to V_4} = \widehat{ACE} (V_4, V_1, v_1) \in \{4.09, 4.09\}$ \Rightarrow Estimated $\beta_{V_1 \rightarrow V_4}$ (up to the equivalence class)

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

References Literature

- Pearl, J. (2009). *[Causal inference in statistics: An overview](http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf).* Statistics Surveys.
- Pearl, J. (2009). *[Causality: Models, Reasoning, and Inference](http://bayes.cs.ucla.edu/BOOK-2K/).* Cambridge University Press.
- Spirtes et al. (2000). *Causation, Prediction, and Search*. The MIT Press.
- Pearl, J. (1995). *[Causal diagrams for empirical research](http://bayes.cs.ucla.edu/R218-B.pdf)*. Biometrika.
- Maathuis et al. (2013). *[A generalized backdoor criterion](https://arxiv.org/pdf/1307.5636.pdf)*. arXiv.
- Galles et al. (1995). *[Testing identifiability of causal effects](https://arxiv.org/ftp/arxiv/papers/1302/1302.4948.pdf)*. In Proceedings of UAI-95.
- Huang et al. (2012). *[Pearl's Calculus of Intervention Is Complete](https://arxiv.org/ftp/arxiv/papers/1206/1206.6831.pdf).* arXiv.
- Pearl, J (2012). *[The Do-Calculus Revisited.](https://arxiv.org/ftp/arxiv/papers/1210/1210.4852.pdf)* arXiv.
- Janzing et al. (2013) *[Quantifying causal influences](https://arxiv.org/pdf/1203.6502.pdf)*. The Annals of Statistics.
- Rubenstein et al. (2017). *[Probabilistic Active Learning of Functions in](https://arxiv.org/pdf/1706.10234.pdf) Structural Causal Models*. arXiv.

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt