Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

| PRI

Causal Inference
Theory and Applications in Enterprise Computing

Dr. Matthias Uflacker, Johannes Huegle, Christopher Schmidt
April 16, 2019




Agenda
April 16, 2019

Hasso
Plattner
Institut

= Recap Causal Inference in a Nutshell
= Introduction to Structural Causal Models

Preliminaries

[y

Structural Causal Models

(Local) Markov Condition

Factorization

Global Markov Condition

Functional Model and Markov Conditions

Faithfulness

Constraint-based Causal Inference $;gfya:n£“::;i:§fns
Markov Equivalence Class in Enterprise Computing

Uflacker, Huegle,
Schmidt

© © N o v s W N

-
o

Summary

=
=

Structural Causal Models in Application
Slide 2

-
N

Excursion: Maximal Ancestral Graphs



Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

| FELIR]

Causal Inference in a Nutshell




Plattner
Institut

Causal Inference in a Nutshell ﬂ Hasso

Paradigm of Structural
Causal Models

Recap: The Concept

Traditional Statistical

Inference Paradigm

Data Generating

Model

Joint Distribution P

G

Aspects of P @(ZP)

Inference Inference Causal Inference
Data 8 Theory and Applications
in Enterprise Computing
. . , - . . ’ - Uflacker, Huegle,
E.g., what is the sailors’ probability of E.g., what is the sailors’ probability of g migt
recovery when we see a treatment with  recovery if we do treat them with
lemons? lemons? Slide 4

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))
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1. Preliminaries ﬂlﬁllasgo
Notation Institut

s A, B events

s X,Y,Z random variables
s x value of random variable

= Pr probability measure
s Py probability distribution of X

= p density
s p(X) density of Py
» p(x) density of Py evaluated at the point x Causal Inference
Theory and Applications
in Enterprise Computing
. Uflacker, Huegle,
= X lYindependence of X and Y Schmidt

= X LY|Z conditional independence of X and Y given Z Slide 7



1. Preliminaries ﬂIF-)IIaSSO
Independence of Events Inatmat

s Two events A and B are called independent if
Pr(An B) = Pr(4) - Pr(B),

or - rewritten in conditional probabilities - if

ANB
Pr(A) = 5 = Pr(A|B),

Pr(B) = # = Pr(B|A).

s Ay, .., A, are called (mutually) independent if for every subset S c {1, ...,n}

we have
Pr (ﬂ A; ) = 1_[ Pr(4;). Causal Inference
. L Theory and Applications
lES LES in Enterprise Computing
= Note: Uflacker, Huegle,

for n > 3, pairwise independence Pr(4; n 4;) = Pr(4,) - Pr(4;) for all i,j does ~ Schmidt

not imply (mutual) independence. Slide 8



1. Preliminaries ﬂ IF-,IIasso
Independence of Random Variables Inatmat

= Two real-valued random variables X and Y are called independent,
X 1Y,

if for every x,y € R, the events {X < x} and {Y < y} are independent,

Or, in terms of densities: for all x,y,
p(x,y) = p(x)p(y).

= Note:
If X 1Y, then E[XY] = E[X]E[Y], and cov(X,Y) = E[XY] — E[X]E[Y] = 0.
The converse is not true: If con(¥—6—tHTeM X LY.
Causal Inference

. 0 . Th d Applicati
No correlation does not imply independence in Enterprise Computing

Uflacker, Huegle,
However, we have, for large F: (Vf,g € F:cov(f(X),g(Y)) =0), then X LY. Schmidt

Slide 9




1. Preliminaries ﬂIF-)IIaSSO
Conditional Independence of Random Variables Inatmat

= Two real-valued random variables X and Y are called conditionally
independent given Z,

XL1Y|Zor(XLY|Z)p
if

p(x,ylz) = p(x|2)p(y|2)
For all x,y and for all z s.t. p(z) > 0.

= Note:
It is possible to find X,Y which are conditionally independent given a | Ing
variable Z but unconditionally dependent, and vice versa. A erence

in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 10



2. Structural Causal Models IF-,Ilasso
Definition (Pearl) Inatitut

» Directed Acyclic Graph (DAG) ¢ = (V,E)
o Vertices Vy, ..., V,
o Directed edges E = (V;,V)), i.e., Vi >V},
o No cycles
= Use kinship terminology, e.g., for path V; - V; -V,

o Vi = Pa(V;) parent of V;
o {V,,V;} = Ang(V}) ancestors of V; =V, = N(0,1)

o {V;,Vk} = Des(V;) descendants of V, "V B N(O,1)

. . . V3 =3V +N(OD Causal Inference
= Directed Edges encode direct causes via =V, =4V, +5V,+0.7Vs + N(0,1) Theory and Applications

. . . Ve =V, + N(O 1) in Enterprise Computing
o V; = f;(Pa(V;),N;) with independent noise N, ..., N, Vs =Va : Uflacker, Huegle,
e ——

=) This forms the Causal Graphical Model Slide 11



2. Structural Causal Models ﬂHasso

. PI
Connecting ¢ and P Inatitut

s Basic Assumption: Causal Sufficiency
o All relevant variables are included in the DAG G

7

Causal Inference
(X LY|Z)6=> (X LY|Z)p Theory and Applications

» Key Postulate: (Local) Markov Condition ggﬁrﬂ(‘gz Huegle,

m Essential mathematical concept: d-separation Slide 12

(describes the conditional independences required by a causal DAG)



3. (Local) Markov Condition ﬂ Hasso
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Theorem Institut

(Local) Markov Condition:
V; independent of nondescendants ND(V;), given parents Pa(V)), i.e.,

Vil VV/(Des(Vj)UPa(Vj))lp a(V]-).

s I.e., every information exchange with its nondescendants involves its parents
s Example:

Causal Inference
Theory and Applications
in Enterprise Computing

= Ve L{V, V5, Vs, VeV, Uflacker, Huegle,

Schmidt
= Vs L{V, V), V3, Ve} Vs Slide 13




3. (Local) Markov Condition
Supplement (Lauritzen 1996)

m Assume 1}, has no descendants, then ND(1},) = {V4, ..., V_1}-
s Thus the local Markov condition implies
Vo L{V1, .., Vi_1}/Pa() | Pa(Vy).
s Hence, the general decomposition
p(vy, ., ) = p(nlvy, o, V1) PV, s Vi)
becomes

p1, .., ) = P(0n|Pa(vy)) p({v1, ..., va_1}/Pal(vy)).

= Induction over n yields to

p(vg, o vy) = Hp(vilPa(vi)).
i=1

= Il.e., the graph shows us how to factor the joint distribution Py.
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Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt
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4. Factorization ﬂ Hasso

.y Pl
Definition Ingﬁ?ﬂ

Factorization:

n

P, v = | [p@ilPa).

i=1

= l.e., conditionals as causal mechanisms generating statistical dependence

= Example:
p(V)

= p(vq, ..., V)

= ' C | Inf
pvs) pv) Causal Inference
. p(vg | vz) . p(v4|v1, vy, ’Ug) in Enterprise Computing

Uflack_er, Huegle,

- p(wslvy) - p(velvy) Schmidt

= [1L, p(vi|Pa(vy)) Slide 15




5. Global Markov Condition ﬂ Hasso
D-Separation (Pearl 1988) [attner

Institut

s Path = sequence of pairwise distinct vertices where consecutive ones are
adjacent

s A path g is said to be blocked by a set S if

o g contains a chain V; » V; -V, or a fork V; « V; -V, such that the
middle node isin S, or

o q contains a collider V; - V; « Vi such that the middle node is notin §
and such that no descendant of V; is in S.

Causal Inference

D-Sepa ration: Theory and Applications
Sis said to d-separate X and Y in the DAG g, i.e.,

in Enterprise Computing

Uflacker, Huegle,
(X1 YlS)G' Schmidt

if S blocks every path from a vertex in X to a vertex in Y.

Slide 16



5. Global Markov Condition ﬂHasso

. PI
Examples of d-Separation Inatitut

= Example:

= The path from V; to V, is blocked by V,.
= 1, and V, are d-separated by V,.

= The path V, - V; -V, - Vg is blocked by
V5 or V, or both.

= But: V, and V, are d-separated only by
v, or {V3,V,}.

= 1, and V, are not blocked by V,. Causal Inference .

in Enterprise Computing

- V,is aforkin Vs <V, > V. Uflacker, Huegle,

Schmidt
= Vs and V, are d-separated by V,.
Slide 17




5. Global Markov Condition ﬂ Hasso

Plattner
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Global Markov Condition:

For all disjoint subsets of vertices X,Y and Z we have that
X,Y d-separated by Z = (X LY |Z2),.

m l.e, wehave X 1Y|Z);=> X LY|Z)p

[ Data Generating G

Model Causal Inference

Theory and Applications
in Enterprise Computing
Uflacker, Huegle,

Schmidt

Joint Distribution P

Slide 18




6. Functional Model and Markov Conditions ﬂ Hasso
Theorem (Lauritzen 1996, Pearl 2000) [attner

Institut

Theorem:
The following are equivalent:
s Existence of a functional causal model G;

m Local Causal Markov condition: V; statistically independent of nondescendants,
given parents
(i.e.: every information exchange with its nondescendants involves its parents)

m Global Causal Markov condition: d-separation
(characterizes the set of independences implied by local Markov condition)
m Factorization: p(vy, ...,v,) = [Ii~; p(v;|Pa(vy)).

Causal Inference

(subject to technical conditions) In Entarprise Computing

Uflacker, Huegle,

Schmidt
Le, X LY|Z)¢= (X LY|Z)p Slide 19



7. Causal Faithfulness
The key-postulate

Causal Faithfulness:
p is called faithful relative to G if only those independencies hold true

that are implied by the Markov condition, i.e.,
XLY|Dee X LY|Dp

I.e., we assume that any population P produced by this causal graph G
has the independence relations obtained by applying d-separation to it

Seems like a hefty assumption, but it really isn’t: It assumes that
whatever independencies occur in it arise not from incredible coincidence
but rather from structure, i.e., data generating model G.

Hence:

Data Generating @\

Model

z

Joint Distribution ZP

\_

/
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8. Constraint-based Causal Inference ﬂHasso
Concept (Spirtes, Glymor, Scheines and Pearl) pattner

= Assumptions:
o Causal Sufficiency
o Global Markov Condition
o Causal Faithfulness

= Causal Structure Learning:

o Accept only those DAG’s G as causal hypothesis for which
X LY| D)o X LY|2)p.

o Defines the basis of constraint-based causal structure learning Causal Inference
.o . Th d Applicati
o Identifies causal DAG up to Markov equivalence class in Enterprise Computing
(DAGs that imply the same conditional independencies) Uflacker, Huegle,
Schmidt

Slide 21



9. Markov Equivalence Class ﬂ Hasso

Pl
Theorem (Verma and Pearl) Iniﬁ?ﬂ

Theorem:

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same v-structures

m  Skeleton:
corresponding undirected graph

m v-Structure:
substructure X - Y « Z with no

edges between X and Z. Causal Inference

Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 22



9. Markov Equivalence Class ﬂ Hasso

Plattner
Examples Institut

s Same skeleton, no v-structure =« Same skeleton, same v-structure at W

Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
X1Z|Y Schmidt

Causal Inference

Slide 23



10. Summary ﬂIF-)IIaSSO
Causal Structural Models |n§?i't1§tr

s Causal Structures formalized by DAG (directed acyclic graph) ¢ with
random variables V, ..., V}, as vertices.

s Causal Sufficiency, Causal Faithfulness and Markov Condition imply
X LY| D)o X LY|Z)p.

» Local Markov Condition states that the density p(v4, ..., v,;,) then factorizes
into

p(q, ..., vp) =112, p(wi|Pa(v;)).

Causal Inference
Theory and Applications
in Enterprise Computing

= Causal conditional p(v;|Pa(v;)) represent causal mechanisms. Uflacker, Huegle,

Schmidt

Slide 24



11. Structural Causal Models in Application
Cooling House Example

"] Causal Inference_in_Applica X

B + X

B B » m C Markdownv R

T

<= 16808
coolingData <- rmvDAG(n,coolingDAG)
#head (coolingData)

plot (density(coolingDatal1,1), mai

Density Plot")
This introduces the functional mechanisms in our system, which are described by the following equations

s Vi=NO.1)

V2 =N(@©. 1)

© V3=3-V+N0O, 1)

o Va=4-Vi+5-V2+07- V3 +NO. 1)
Vs = Vy+N@O, 1)

Vo =1.2-Va+N(O,1)

In the following, we assume that these functional mechanisms are not known such that the goal remains to derive the causal relationships and the causal effects

When looking at the correlationmatrix as a first examination step, we see that all variables are highly correlated:

round (cor (coolingbata), 2)

3. Causal Graphical Models

In the framework causal graphical models, a directed edge Vi — V; in our DAG represents a direct causal relationship of V; to Vj.

3.A. D-Separation

Causal Sufficiency, Causal Faithfulness and Markoy Condition imply that (X L ¥|Z)g & (X L ¥|Z)p. The essential mathematical concept is to find the d-separating sets 5, e.g.,

# Are V2 and V6 are d-separated by an empy set
dsep("V2","V6" NULL ,c0614ngDAG)

# Are V2 and V6 are d-separated by V3 and V4?
dsep("V2","V6" ,¢("V3","Va") , coolingDAG)

3.B. Conditional Independence

Then causal faithfulness and the Markov condition imply that two vertices V;, V; are conditionally independent given a set S(V;, V;) if and only if the vertices V; and V; are d-separated by the set S(V, Vj), eg:

# Are V2 and V6 are independent?

x <2
y <6
S < <0

condIndFisherZ(x,y,S,cor(coolingData) ,n,qnorm(1- ©.65/2))

# Are V2 and V6 are independent given V3 and V47
x <2

Hasso
Plattner
Institut

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 25
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12. Excursion: Maximal Ancestral Graphs
Motivating Example

= Suppose, we are given the following list of conditional independencies
among X,Y,Z and W:

e X1 Z, e XLY,
e YUW, e YU Z,
e X1 W. e Z U W.

s  Which DAG could have generated these, and only these, independencies
and dependencies?

= The pattern of dependencies must be:
X Y Z w
= And there must be the following colliders:
X—Y—Z
Y —Z—W

s There is no orientation of Y-Z that is consistent with the independencies.

Hasso
Plattner
Institut

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 26



12. Excursion: Maximal Ancestral Graphs ﬂ Hasso

DAG Models and Marginalization mittti?ftr

s Let’s include an additional variable U:

U
e e
X—Y Z——W

= This DAG model generates a probability distribution Py 7w,y in which:

¢« X12Z, o« X 1Y,
cYLW, e« Y4Z
« X LW. « ZAW.

= The marginal distribution Py 7wy = Pixy,zw,uydu must adhere the same

independencies. But: this marginal distribution cannot be faithfully Causal Inference
generated by any DAG. Theory and Applications

in Enterprise Computing

Uflacker, Huegle,
Schmidt

m) DAG models are not closed under marginalization!

Slide 27




12. Excursion: Maximal Ancestral Graphs ﬂHasso

) PI
Ancestral Graphs (informally) Institut

= Ancestral Graph (AG)

is @ graph containing both directed and bi-directed edges, where the
bi-directed edges stand for /atent variables, e.qg.,

U
/N
X—Y Z— W X—Y Z— W

= mMm-Separation

If S m-separates X and Y in an ancestral graph M, then X LY | S in every
density p that factorizes according to any DAG G that is represented by the AG M.

Causal Inference

Th d Applicati
[ ] Example / U, \ /U1\ /U1\\ in ‘Eeg::r:r:ise I():':)rlrtl::ult?:;
(O] Uflacker, Huegle,
L X—U—Y X Up—Y X—U2—Y Schmidt ’

Slide 28
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12. Excursion: Maximal Ancestral Graphs ﬂglasso
DAGs vs. AGs Inatitut

= Advantages of AGs
o AGs can faithfully represent more probability distributions than DAGs.
o AG models are closed under marginalization.

o AGs can (implicitly) represent unobserved variables, which exist in
many (possibly almost all) applications.

= Disadvantages of AGs
o Parameterization is difficult in the general case.

o Markov equivalence is difficult.
Causal Inference

Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 29
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