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Recap of Causal Graphical Models



Recap of Causal Graphical Models
The Concept of Causal Inference
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Traditional Statistical 
Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷

Aspects of 𝑮

Inference

E.g., what is the sailors’ probability of 
recovery when we see a treatment with 
lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ probability of 
recovery if we do treat them with 
lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)
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■ Causal Structures formalized by DAG (directed acyclic graph) 𝐺 with 
random variables 𝑉1, … , 𝑉𝑛 as vertices.

■ Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply

𝑋 ⊥ 𝑌 𝑍 𝐺 ⇔ 𝑋 ⊥ 𝑌 𝑍 𝑃.

■ Local Markov Condition states that the density 𝑝(v1, … , 𝑣𝑛) then factorizes 
into

𝑝 𝑣1, … , 𝑣𝑛 = ς𝑖=1
𝑛 𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖 .

■ Causal conditional 𝑝 𝑣𝑗 𝑃𝑎 𝑣𝑗 represent causal mechanisms.
Uflacker, Huegle, 
Schmidt
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Recap of Causal Graphical Models
Summary (I/II)
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■ Assumptions:

□ Causal Sufficiency

□ Global Markov Condition

□ Causal Faithfulness

■ Causal Structure Learning: 

□ Accept only those DAG’s 𝐺 as causal hypothesis for which

𝑋 ⊥ 𝑌 𝑍 𝐺 ⇔ 𝑋 ⊥ 𝑌 𝑍 𝑃.

□ Defines the basis of constraint-based causal structure learning, i.e., 
use statistical hypothesis testing theory to derive 𝑋 ⊥ 𝑌 𝑍 𝑃.

□ Identifies causal DAG up to Markov equivalence class 
(DAGs that imply the same conditional independencies in 𝑃.)
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Schmidt
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Recap of Causal Graphical Models
Summary (II/II)
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Introduction to Statistical Hypothesis Testing



1. Preliminaries
Statistical Inference: Draw Conclusion on 𝑃 from Data
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Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷

Aspects of 𝑮

Inference

E.g., what is the sailors’ probability of 
recovery when we see a treatment with 
lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ probability of 
recovery if we do treat them with 
lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)
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■ Random samples 𝑋1, … , 𝑋𝑛

independent and identically distributed (i.i.d.) random variables 𝑋1, … , 𝑋𝑛

■ Statistic 𝑇

□ function 𝑔(𝑋1, … , 𝑋𝑛) of the observations in a random sample 𝑋1, … , 𝑋𝑛

□ is a random variable with probability distribution (sampling distribution)

■ Point estimator ෡Θ

Statistic to estimate a population parameter Θ
Uflacker, Huegle, 
Schmidt
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1. Preliminaries
Statistical Inference

Statistical Inference:

Deduce properties of a population’s probability distribution 𝑃
on the basis of random sampling    .

Examples:

Sample mean 𝑋𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 with value ҧ𝑥𝑛 is an estimator of the 

population mean 𝜇
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■ We write 𝑋~𝑁(𝜇, 𝜎2)

■ Φ𝜇𝜎2 𝑥 = 𝐹𝑋(𝑥) = 𝑃𝑟(𝑋 ≤ x) is the cumulative distribution function

■ 𝑋~𝑁 0, 1 with f x =
1

2𝜋
𝑒−

1

2
𝑥2

is called standard normal distributed

■ If 𝑋~𝑁 𝜇, 𝜎2 , then 

□
𝑋−𝜇

𝜎
~N(0,1) (Standardization) 

□ 𝑋 = 𝜇 + 𝜎𝑍 with 𝑍~𝑁 0,1
Uflacker, Huegle, 
Schmidt
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1. Preliminaries
Normal Distribution

Normal Distribution:

We say a random variable 𝑋 has a normal distribution with mean 𝜇
and standard deviation 𝜎 if its density function 𝑓 is given

f x =
1

𝜎 2𝜋
𝑒
−
1
2
𝑥−𝜇
𝜎

2

, 𝑥 ∈ ℝ.
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■ Therefore, 𝑋𝑛 is approximately normal distributed with mean 𝜇 and 

standard deviation 𝜎/ 𝑛, i.e., 𝑋𝑛~𝑁(𝜇, 𝜎
2/𝑛)

■ Hence, for the sum 𝑆𝑛 = σ𝑖=1
𝑛 𝑋𝑖 we have Sn~𝑁 𝑛𝜇, 𝑛𝜎2

Uflacker, Huegle, 
Schmidt
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1. Preliminaries
Central Limit Theorem

Central Limit Theorem:

For a random sample 𝑋1, … , 𝑋𝑛 of size 𝑛 from a population 
with mean 𝜇 and finite variance 𝜎2 then, for 𝑛 → ∞, 

𝑍 = 𝑛
ത𝑋𝑛 − 𝜇

𝜎
→ 𝑁 0,1 .
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■ Suppose that 𝑃𝑟 𝐿 ≤ 𝜇 ≤ 𝑈 = 1 − 𝛼, 𝛼 ∈ (0,1). Then for 𝑙 ≤ 𝜇 ≤ 𝑢:

□ 𝑙 and 𝑢 are called lower- and upper-confidence bounds

□ 1 − 𝛼 is called the confidence level

■ Recall that 𝑋𝑛~𝑁 𝜇, 𝜎2/𝑛 . For some positive scalar value 𝑧1−𝛼/2 we have

□ Pr 𝑋𝑛 ≤ 𝜇 + 𝑧1−𝛼/2
𝜎

𝑛
= Pr

𝑋𝑛−𝜇
𝜎

𝑛

≤ 𝑧1−𝛼/2 = Φ0,1(𝑧1−𝛼/2)

□ Pr 𝑋𝑛 ≤ 𝜇 − 𝑧1−𝛼/2
𝜎

𝑛
= 1 −Φ0,1(𝑧1−𝛼/2)

Uflacker, Huegle, 
Schmidt
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1. Preliminaries
Confidence Intervals (I/II)

Confidence Interval:

A confidence interval estimate for the mean 𝜇 is an interval of the form

𝑙 ≤ 𝜇 ≤ 𝑢,

With endpoints 𝑙 and 𝑢 computed from 𝑋1, … , 𝑋𝑛.
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■ Therefore

Pr 𝜇 − 𝑧
1−

𝛼
2

𝜎

𝑛
≤ 𝑋𝑛 ≤ 𝜇 + 𝑧

1−
𝛼
2

𝜎

𝑛
= 2Φ0,1(−𝑧1−𝛼/2)

■ Recall, we want

Pr 𝜇 − 𝑧1−𝛼/2
𝜎

𝑛
≤ 𝑋𝑛 ≤ 𝜇 + 𝑧1−𝛼/2

𝜎

𝑛
= 1 − 𝛼

■ With 𝛼 = 2Φ0,1(𝑧1−𝛼/2) the 100 1 − 𝛼 % confidence interval on 𝜇 is given by

𝑋𝑛 − 𝑧1−𝛼/2
𝜎

𝑛
≤ 𝜇 ≤ 𝑋𝑛 + 𝑧1−𝛼/2

𝜎

𝑛

■ Since 𝛼 = 2Φ0,1(−𝑧1−𝛼/2), we can choose 𝑧1−𝛼/2 as follows:

□ 99% ⇒ 𝛼 = 0.01 ⇒ Φ0,1 −𝑧1−𝛼/2 = 0.005 ⇒ 𝑧1−𝛼/2 = 2.57

□ 95% ⇒ 𝛼 = 0.05 ⇒ Φ0,1 −𝑧1−𝛼/2 = 0.025 ⇒ 𝑧1−𝛼/2 = 2.32
Uflacker, Huegle, 
Schmidt
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1. Preliminaries
Confidence Intervals (II/II)
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2. Statistical Hypothesis Testing
Introduction

Knowing the sampling distribution is the key of statistical inference:

■ Confidence intervals

Framework to derive error bounds on point estimates of the population 
distribution based on the sampling distribution

■ Hypothesis testing

Methodology for making conclusions about estimates of the population 
distribution based on the sampling distribution

A hypothesis test is a decision rule that is a function of the test statistic. 
E.g., reject 𝐻0 if the test statistic is below a threshold, otherwise don’t.

Statistical Hypothesis:

Statement about parameters of one or more populations

▪ Null Hypothesis 𝐻0 is the claim that is initially assumed to be true 

▪ Alternative Hypothesis 𝐻1 is a claim that contradicts the 𝐻0

Causal Inference 
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For some arbitrary value 𝜇0
■ one-sided hypothesis test: 

𝐻0: 𝜇 ≥ 𝜇0 𝑣𝑠 𝐻1: 𝜇 < 𝜇0
𝐻0: 𝜇 ≤ 𝜇0 𝑣𝑠 𝐻1: 𝜇 > 𝜇0

■ Significance level of the statistical test
𝛼 = Pr type I error = 𝑃𝑟 reject 𝐻0 𝐻0 is true

■ Power of the statistical test
𝛽 = Pr type II error = 𝑃𝑟(retain 𝐻0| 𝐻1 is true)

■ Hypothesis testing
Desire: 𝛼 is low and the power 1 − 𝛽 as high as can be

Uflacker, Huegle, 
Schmidt
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2. Statistical Hypothesis Testing
Hypothesis Types and Errors

■ two-sided hypothesis test: 
𝐻0: 𝜇 = 𝜇0 𝑣𝑠 𝐻1: 𝜇 ≠ 𝜇0

𝑯𝟎 is true 𝑯𝟎 is false (𝑯𝟏 is true)

Retain 𝐻0 OK Type II error

Reject 𝐻0 Type I error OK

Causal Inference 
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■ Suppose 𝑋1, … , 𝑋𝑛~𝑁(𝜇, 𝜎
2) (𝜎 is known)

■ We would like to test 𝐻0: 𝜇 = 𝜇0 𝑣𝑠 𝐻1: 𝜇 > 𝜇0

■ Choose test statistic 𝑇 to be 𝑋𝑛

■ Under 𝐻0, we have 𝑇~𝑁(𝜇0, 𝜎
2/𝑛)

■ 𝛼 = 𝑃𝜇0 𝑋𝑛 > 𝑐 = 𝑃𝜇0
𝑛 𝑋𝑛−𝜇0

𝜎
>

𝑛 𝑐−𝜇0

𝜎

= 𝑃𝜇0 𝑍 >
𝑛 𝑐−𝜇0

𝜎
= 1 −Φ0,1

𝑛 𝑐−𝜇0

𝜎

■ Therefore, 𝑐 = 𝜇0 +Φ0,1
−1 1 − 𝛼

𝜎

𝑛

Uflacker, Huegle, 
Schmidt
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2. Statistical Hypothesis Testing
Critical Value

Goal:
Decision rule, i.e., reject 𝐻0: 𝜇 = 𝜇0 if ҧ𝑥𝑛 > c for a 𝑐 ∈ ℝ

𝛼
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■ Rule of thumb: 𝑝-value low ⇒ 𝐻0 must go

■ We would like to test 𝐻0: 𝜇 = 𝜇0 𝑣𝑠 𝐻1: 𝜇 > 𝜇0

■ Here, the p-value is 𝑃𝐻0 𝑋𝑛 > 𝑥𝑛 = ⋯

= 𝑃𝐻0 𝑍 >
𝑋𝑛−𝜇0

𝜎/ 𝑛
= 1 −Φ0,1

𝑋𝑛−𝜇0

𝜎/ 𝑛

■ If 𝑃𝐻0 𝑋𝑛 > 𝑥𝑛 < 𝛼 we reject 𝐻0: 𝜇 = 𝜇0

■ Absolutely identical to the usage of the 
critical value Uflacker, Huegle, 

Schmidt
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2. Statistical Hypothesis Testing
P-Value

The 𝑝-value is the probability that under the null hypothesis, 
the random test statistic takes a value as extreme as or more 
extreme than the one observed.
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2. Statistical Hypothesis Testing
Supplement: Z-Test

■ If the distribution of the test statistic 𝑇 under 𝐻0 can be approximated by 
a normal distribution the corresponding statistical test is called 𝑧-test

■ Overview for 𝑍-tests with known 𝜎:

Causal Inference 
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■ Hypothesis

□ Null Hypothesis 𝐻0 is the claim that is initially assumed to be true 

□ Alternative Hypothesis 𝐻1 is a claim that contradicts 𝐻0

■ Hypothesis test is a decision rule that is a function of the test statistic 𝑇

■ How to test a hypothesis?

□ Relation test and confidence interval

□ Approximate 𝑇 under 𝐻0 by a known distribution

□ Different distributions yield to different tests, e.g., 𝑇-test, 𝜒2-test, etc.

□ Derive rejection criteria for 𝐻0

– 𝑐-value: reject 𝐻0 if 𝑇(𝑥𝑛) > c for a 𝑐 ∈ ℝ

– 𝑝-value: reject 𝐻0 if 𝑃𝐻0 𝑇 𝑋 > 𝑇 𝑥 < 𝛼
Uflacker, Huegle, 
Schmidt
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2. Statistical Hypothesis Testing
Summary

are equivalent
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3. (Conditional) Independence Testing
Concept (I/II)

Traditional Statistical 
Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷

Aspects of 𝑮

Inference

Use statistical hypothesis tests to obtain information about 𝑋 ⊥ 𝑌 𝑍 𝑃.
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3. (Conditional) Independence Testing
Concept (II/II)

Basic idea:
Find a measure 𝑇 of (conditional) dependence within the random 
samples 𝑋1, … , 𝑋𝑁 and apply statistical hypothesis tests whether 
𝑇 𝑋1, … , 𝑋𝑁 is zero or not, i.e.,

𝐻0: 𝑡 = 0 𝑣𝑠 𝐻1: 𝑡 ≠ 0

Cooling House Example:
𝑉1, … , 𝑉𝑁 multivariate normal

Correlation coefficient 

𝜌𝑉𝑖,𝑉𝑗 = 𝑐𝑜𝑟 𝑉𝑖 , 𝑉𝑗 =
𝑐𝑜𝑣(𝑉𝑖 , 𝑉𝑗)

𝜎𝑉𝑖𝜎𝑉𝑗
as measure of linear relationship

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6
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■ Hence, we test whether the correlation coefficient 𝜌𝑉𝑖,𝑉𝑗,

𝜌𝑉𝑖,𝑉𝑗 =
𝐸 𝑉𝑖 − 𝜇𝑉𝑖 𝑉𝑗 − 𝜇𝑉𝑗

𝜎𝑉𝑖𝜎𝑉𝑗
,

is equal to zero or not, i.e.,   𝐻0: 𝜌𝑉𝑖,𝑉𝑗 = 0 𝑣𝑠 𝐻1: 𝜌𝑉𝑖,𝑉𝑗 ≠ 0

■ For i.i.d. normal distributed 𝑉𝑖 , 𝑉𝑗, applying Fisher’s 𝑧-transformation 𝜌𝑉𝑖,𝑉𝑗,

𝑍 𝜌𝑉𝑖,𝑉𝑗 =
1

2
log

1 + 𝜌𝑉𝑖,𝑉𝑗
1 − 𝜌𝑉𝑖,𝑉𝑗

,

yields to 𝑍 𝜌𝑉𝑖,𝑉𝑗 ~ N
1

2
ln

1+𝜌𝑉𝑖,𝑉𝑗

1−𝜌𝑉𝑖,𝑉𝑗
,

1

𝑛−3
.

Uflacker, Huegle, 
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3. (Conditional) Independence Testing
Multivariate Normal Data (I/II)

Theorem:
Two variables bi-variate normal distributed variables 𝑉𝑖 and 𝑉𝑗 are 

independent if and only if the correlation coefficient 𝜌𝑉𝑖,𝑉𝑗 is zero.  
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■ Thus, we can apply standard statistical hypothesis tests, i.e.,

□ Derive 𝑝-value 

𝑝 𝑉𝑖 , 𝑉𝑗 = 2 1 − Φ0,1 𝑛 − 3 𝑍 𝜌𝑉𝑖,𝑉𝑗

□ Given significance level 𝛼, we reject the null-hypothesis 𝐻0: 𝜌𝑉𝑖,𝑉𝑗 = 0 against 

𝐻0: 𝜌𝑉𝑖,𝑉𝑗 ≠ 0 if for the corresponding estimated 𝑝-value it holds that Ƹ𝑝 𝑉𝑖 , 𝑉𝑗 ≤ 𝛼

■ This can be easily extended for conditional independence:

■ I.e., we can apply the same procedure to receive information about
conditional independencies

Uflacker, Huegle, 
Schmidt
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3. (Conditional) Independence Testing
Multivariate Normal Data (II/II)

Theorem:
For multivariate normal distributed variables 𝑉 = {𝑉1, … , 𝑉𝑁} we have 
that two variables Vi and Vj are conditionally independent given the 

separation set 𝑺 ⊂ 𝑉/{𝑉𝑖 , 𝑉𝑗} if and only if the partial correlation 

𝜌 𝑉𝑖 , 𝑉𝑗 𝑺 between 𝑉𝑖 and 𝑉𝑗 given 𝑺 is equal to zero.  
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■ Statistical hypothesis testing theory allows to obtain 𝑋 ⊥ 𝑌 𝑍 𝑃 from data

■ Distribution of 𝑉1, … , 𝑉𝑁 ⇒ dependence measures 𝑇(𝑉𝑖 , 𝑉𝑗 , 𝑺) ⇒ hypothesis test 𝐻0: 𝑡 = 0

■ This defines the basis of constraint-based causal structure learning

Uflacker, Huegle, 
Schmidt
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3. (Conditional) Independence Testing
Overview

Examples

▪ Multivariate normal data:

𝑍 𝑣𝑖 , 𝑣𝑗 𝒔 =
1

2
ln

1+ ෝ𝜌𝑣𝑖,𝑣|𝒔

1+ෝ𝜌𝑣𝑖,𝑣𝑗|𝒔

𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ො𝜌𝑣𝑖,𝑣𝑗|𝒔

▪ Categorical data:

𝜒2 𝑣𝑖 , 𝑣𝑗 𝒔 = σ𝑣𝑖 𝑣𝑗 𝒔

𝑁𝑣𝑖𝑣𝑗𝒔−𝐸𝑣𝑖 𝑣𝑗 𝒔
2

𝐸𝑣𝑖 𝑣𝑗 𝒔
𝑎𝑛𝑑 𝐺2 𝑉𝑖 , 𝑉𝑗 S = 2σ𝑣𝑖𝑣𝑗𝑺

𝑁𝑣𝑖𝑣𝑗𝒔 ln
𝑁𝑣𝑖𝑣𝑗𝒔

𝐸𝑣𝑖𝑣𝑗𝒔

𝑤𝑖𝑡ℎ 𝐸𝑣𝑖 𝑣𝑗 𝒔 =
𝑁𝑣𝑖+𝒔𝑁+𝑣𝑗𝒔

𝑁++𝒔
𝑤ℎ𝑒𝑟𝑒 𝑁𝑣𝑖+ = σ𝑣𝑗𝑁𝑣𝑖𝑣𝑗 , 𝑁𝑣𝑖+ = σ𝑣𝑗𝑁𝑣𝑖𝑣𝑗 ,

𝑁+𝒗𝒋= σ𝑣𝑖𝑁𝑣𝑖𝑣𝑗 𝑎𝑛𝑑 𝑁++ = σ𝑣𝑖𝑣𝑗𝑁𝑣𝑖𝑣𝑗 𝑎𝑟𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑺
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4. Independence Testing in Application
Cooling House Example
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