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Recap of Causal Graphical Models ﬂ Hasso
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Data Theory and Applications
in Enterprise Computing

E.g., what is the sailors’ probability of E.g., what is the sailors’ probability of gracker fueste
recovery when we see a treatment with  recovery if we do treat them with
lemons? lemons? Slide 4

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))



Recap of Causal Graphical Models ﬂHasso

Summary (I/1I) mgiti?g{

» Causal Structures formalized by DAG (directed acyclic graph) G with
random variables V;, ..., V;, as vertices.

m Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply
X LY|ZD)e X LY|Z)p.

s Local Markov Condition states that the density p(v4, ..., v,,) then factorizes
into

p(vy, -, vn) = [lic p(vi | Pa(vy)).
Causal Inference

Theory and Applications
in Enterprise Computing

» Causal conditional p(v;|Pa(v;)) represent causal mechanisms. Uflacker, Huegle,

Schmidt

Slide 5



Recap of Causal Graphical Models ﬂHasso

Summary (II/II) mg:[cti?s{

= Assumptions:
o Causal Sufficiency
o Global Markov Condition
o Causal Faithfulness

= Causal Structure Learning:

o Accept only those DAG's ¢ as causal hypothesis for which
X LY|ZD)geo X LY|Z)p.

o Defines the basis of constraint-based causal structure learning, i.e., Causal Inference
use statistical hypothesis testing theory to derive (X L Y| 2)p. ?nhﬁgi‘éri':?sf'éﬂ'.if.?ﬂit?:;

o Identifies causal DAG up to Markov equivalence class Uflacker, Huegle,
(DAGs that imply the same conditional independencies in P.) Schmidt

Slide 6
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1. Preliminaries
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Inference

E.g., what is the sailors’ probability of E.g., what is the sailors’ probability of or-cker Huedle:
recovery when we see a treatment with  recovery if we do treat them with
lemons? lemons? Slide 8

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))



1. Preliminaries ﬂ Hasso
.. Plattner
Statistical Inference Institut

Statistical Inference:

Deduce properties of a population’s probability distribution P
on the basis of random sampling 8.

= Random samples X, ..., X,
independent and identically distributed (i.i.d.) random variables X, ..., X,
s StatisticT
o function g(Xi, ..., X,,) of the observations in a random sample X, ..., X,
o is a random variable with probability distribution (sampling distribution)

= Point estimator 0 Causal Inference
Theory and Applications

in Enterprise Computing

Statistic to estimate a population parameter ©
Uflacker, Huegle,

Schmidt

Sample mean X, =% . X; with value x, is an estimator of the Slide 9
population mean u




1. Preliminaries ﬂ Hasso
] . . Plattner
Normal Distribution Institut

Normal Distribution:

We say a random variable X has a normal distribution with mean u
and standard deviation ¢ if its density function f is given

1
f(x) = , x € R.
x) o

= We write X~N(u,0?)
n d,,2(x) = Fx(x) = Pr(X < x) is the cumulative distribution function

1
s X~N(0,1) with f(x) = \/%e‘?‘z is called standard normal distributed

m If X~N(u,0?), then — —— Causal Inference

X—p i i Theory and Applications
o —~N(0,1) (Standardization)

in Enterprise Computing

Uflacker, Huegle,
Schmidt

Po(X)
G, (x)

o X =u+0oZ with Z~N(0,1)

Slide 10




1. Preliminaries
Central Limit Theorem

Central Limit Theorem:
For a random sample X;, ..., X,, of size n from a population

with mean u and finite variance ¢? then, for n - o,

X —
Z=+n "0 “—»N(o,1).

p Gaussian

samples
of size n

population sampling distribution
distribution of the mean

= Therefore, X,, is approximately normal distributed with mean p and

standard deviation o/vn, i.e., X,,~N(u, 02/n)
= Hence, for the sum S, =Y, X; we have S,~N(nu,no?)

Hasso
Plattner
Institut

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 11



1. Preliminaries ﬂ Hasso
Confidence Intervals (I/1I) pattner

Confidence Interval:
A confidence interval estimate for the mean u is an interval of the form
l<pu<u,

With endpoints [ and u computed from X, ..., X,,.

m SupposethatPr(L<u<U)=1-a, a€(0,1). Then forl<u<u:
o [ and u are called lower- and upper-confidence bounds
o 1—a is called the confidence level

= Recall that X,~N(u,0%/n). For some positive scalar value Zi_q/2 WE have

Causal Inference
Theory and Applications

o Pr (Yn <u+ Zl—a/Z \7_) Pr ( - < A a/2> = CDO,l(Zl—a/Z) in Enterprise Computing
‘/ﬁ Uflacker, Huegle,
Schmidt

O PI‘(Yn <U—2z_ a/Z\/—) 1_CI)Ol(Zl a/2)
Slide 12



1. Preliminaries ﬂHasso
Confidence Intervals (II/II) pattner

Therefore

o
Priu—z <X,<u+z a—|=2Py1(—2z1_
(H 1_%\/% n=H 1‘%@) 01(—=21 a/Z)
s Recall, we want
- o
Pr #—21—a/2\/_%5Xn5#+Z1—a/2\/—ﬁ =1—-«a

With a = 2®;(z;_4/2) the 100(1 — @)% confidence interval on u is given by

— o — o
Xn — Z1-q/2 ﬁ SusXp+ Z1-q/2

n
s Since a = 2®;(—z;_4/2), We can choose z;_,,, as follows: Causal Inference
'_I'heory ans:l Applicatiqns
0 99% = a =001 = ®y(—2z1_4/2) = 0.005 = z,_4/, = 2.57 in Enterprise Computing
Uflacker, Huegle,
o 95% = a=0.05 = ®y;(—2z1_455) = 0.025 = z;_4/, = 2.32 Schmidt

Slide 13



2. Statistical Hypothesis Testing ﬂ Hasso

) Platt
Introduction |n§ti?3{

Knowing the sampling distribution is the key of statistical inference:

s Confidence intervals

Framework to derive error bounds on point estimates of the population
distribution based on the sampling distribution

= Hypothesis testing

Methodology for making conclusions about estimates of the population
distribution based on the sampling distribution

o

Statistical Hypothesis:

Statement about parameters of one or more populations S:usal Idn:erlc_en:;e
= Null Hypothesis H, is the claim that is initially assumed to be true in Enterprise Computing
= Alternative Hypothesis H, is a claim that contradicts the H, lSJflﬁclfgz, Huegle,
cnmi
A hypothesis test is a decision rule that is a function of the test statistic. Slide 14

E.g., reject H, if the test statistic is below a threshold, otherwise don't.



2. Statistical Hypothesis Testing ﬂ Hasso

Hypothesis Types and Errors pattner

For some arbitrary value pu,

m one-sided hypothesis test: m two-sided hypothesis test:
Ho:p = po vs Hytpt < po Ho:p = po vs Hytph # U
Ho:p = po vs Hytp > o

N— _/

Reject H, Type I error OK

= Significance level of the statistical test Causal Inference
a = Pr(type I error) = Pr(reject Hy| Hy is true) fnhgg:‘éri':?s:'é';';f:z‘g:;
= Power of the statistical test Uflacker, Huegle,
B = Pr(type Il error) = Pr(retain H,| H; is true) Schmidt
= Hypothesis testing Slide 15

Desire: «a is low and the power (1 — ) as high as can be



2. Statistical Hypothesis Testing
Critical Value
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= Suppose Xj, ..., X,~N(u,c?) (o is known)

= We would like to test Hy: u = oy vs Hy:pu > pg

¥

Goal:
Decision rule, i.e., reject Hy:u = o if X, >cforaceR

= Choose test statistic T to be X, 3 ~
= Under H,, we have T~N(uy, d2/n) f \,

Va(Xn—po) > Va(c—po)

n azPuo(Yn >c) =PM0<

=P, (Z > Vn(c—po) ) =1-d, (\/ﬁ(c—uo)

g

= Therefore, ¢ =y + d51(1 — a)”—n

g

g

a

n

)

0.

[\
) ~ / 4
|
\

01

00

critical value

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 16



2. Statistical Hypothesis Testing

P-Value

= Here, the p-value is Py (X, > X,) = -

w If Py (X, >*%,) < a we reject Ho:pt = g

The p-value is the probability that under the null hypothesis,

the random test statistic takes a value as extreme as or more

extreme than the one observed.

Rule of thumb: p-value low = H, must go
We would like to test Hy: u = py vs Hy:p > g

by (7> B

Absolutely identical to the usage of the

critical value

(Yn_ﬂo)

R

}n_ﬂo

o/Nn

)

04
L

01

Y p-value
T
4

7

Observed T{x)
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2. Statistical Hypothesis Testing
Supplement: Z-Test

» If the distribution of the test statistic T under H, can be approximated by
a normal distribution the corresponding statistical test is called z-test

s Overview for Z-tests with known o:

Testing Hypotheses on the Mean, Variance Known (Z-Tests)

Model: X; bk N(p,a?) with g unknown but ¢2 known.
Null hypothesis:  Hp : 1 = po.
b ataiiii: _T—Ho _X-mo
Test statistic: = R Z= P
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
Hy:p# o P=2[1-®(z|)] 2> 21 g3 OF 2< 24
Hy:p>po P:l—(I)(:) F R X T
Hy:p < pg P=298(2) BET
— = il
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Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 18



2. Statistical Hypothesis Testing ﬂ Hasso

Plattner
Summary Institut

s Hypothesis

o Null Hypothesis H, is the claim that is initially assumed to be true

o Alternative Hypothesis H, is a claim that contradicts H,
m Hypothesis test is a decision rule that is a function of the test statistic T
= How to test a hypothesis?

o Relation test and confidence interval

o Approximate T under H, by a known distribution

o Different distributions yield to different tests, e.g., T-test, y?-test, etc.

o Derive rejection criteria for H, Causal Inference
Theory and Applications

—- c-value: reject H, if T(x,) >cforaceR I in Enterprise Computing
: : are equivalent
- p-value: reject H, if Py (T(X) >T(x)) < a 9 gzlﬁﬁqlfgz Huegle,

Slide 19



3. (Conditional) Independence Testing ﬂ Hasso

Concept (I/II) FA‘Z—E?S{

Traditional Statistical Paradigm of Structural

Causal Models

Inference Paradigm

Data Generating G
Model

r

Aspects of P @(P) Joint Distribution ZP

Inference

Inference Causal Inference

Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

m) Use statistical hypothesis tests to obtain information about (X L Y| Z)5. Slide 20




3. (Conditional) Independence Testing
Concept (II/II)

Basic idea:
Find a measure T of (conditional) dependence within the random

samples X, ..., Xy and apply statistical hypothesis tests whether
T(Xy,...,Xy) is zero or not, i.e.,
Hy:t=0 vs Hi:t #0

Vi, ...,Vy multivariate normal

~
Bl
o

V, ro) V. ﬁ Correlation coefficient
3 cov(V;, Vj)
O-ViO-Vj
as measure of linear relationship

pVi,Vj = COT(Vil V]) =

Hasso
Plattner
Institut

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt

Slide 21



3. (Conditional) Independence Testing ﬂ Hasso

Multivariate Normal Data (I/1II) mg!cti't]f{

Theorem:
Two variables bi-variate normal distributed variables V; and V; are

independent if and only if the correlation coefficient pv,v; IS zero.

= Hence, we test whether the correlation coefficient Pvivir

_E| 0 =) (1 )|

Pvyv;, = )
v O-ViO-Vj

is equal to zero or not, i.e., Ho:py,v; =0 vs Hy:pyy, # 0

= Fori.i.d. normal distributed V;,V;, applying Fisher’s z-transformation Pvvir

Causal Inference
1 (1 + le',Vj)

Theory and Applications
Z (pVi,Vj) = Elog in Enterprise Computing

) 1+py. v ) Schmidt
yields to Z (le.,Vj) ~N (5 ln( - f), )

1- Pviv; Uflacker, Huegle,

1_pVi'Vj n-3 Slide 22



3. (Conditional) Independence Testing ﬂ Hasso

Multivariate Normal Data (II/II) mgiti't]f{

s Thus, we can apply standard statistical hypothesis tests, i.e.,
o Derive p-value

(V) =2 (1= @0, (V=3 [2 (o1, )] )

o Given significance level a, we reject the null-hypothesis Ho: py,v; =0 against
Ho: py,v; # 0 if for the corresponding estimated p-value it holds that p(V,,V}) < «

= This can be easily extended for conditional independence:

Theorem:
For multivariate normal distributed variables V = {V,, ...,Vy} we have
that two variables V; and V; are conditionally independent given the

Causal Inference
. . . . . Theory and Applications
separation set § c V/{V;,V;} if and only if the partial correlation in Enterprise Computing

p(V;,V;|S) between V; and V; given S is equal to zero. Uflacker, Huegle,
Schmidt

s I.e., we can apply the same procedure to receive information about Slide 23
conditional independencies



3. (Conditional) Independence Testing
Overview
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m Statistical hypothesis testing theory allows to obtain (X 1 Y| Z2), from data
= Distribution of 13, ...,Vy = dependence measures T(V;,V;,S) = hypothesis test Hy:t =0

= Multivariate normal data: = Categorical data:

-~ 2
1 1+ Dy v|s (N v:s—Ep.v. ) Ny.y -
7 vi vils =—ll‘1 — Pvpvls 2 _ vivjsTEvivjs 2 _ vivjs
, > V,Vi|S) = Dy p.s——————— and G=(V,Vi|S)=2),.,.¢ Np.py.sIn| ——
( ]| ) 2 L4Dy;w)1s X ( ir jl ) Zvlv]s Eojuys ( i jl ) Zvlvjs vivjs Evgujs
with sample (partial) correlation Ny 4sNiw s
. — J — —
With Ey . s = ——— where Ny y = ¥y Ny, Ny = X0 Ny,
J Nits J J J J

coef ficient ﬁvi'vﬂs
N+”i= v, va,- and Ny, = va; N,,i,,]. are calculated for every realization of S

m This defines the basis of constraint-based causal structure learning Causal Inference
Theory and Applications
in Enterprise Computing

S

Uflacker, Huegle,
Schmidt

Slide 24
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4. Independence Testing in Application
Cooling House Example

% Causal_Inference_in_Applica X

B + XD 0B » = C Markdown v R

4. Conditional Independence Testing
{Conditional) independence information about our variables allows to derive the underlying skeleton C.
4.A. The Multivariate Normal Case

In our multivariate normal distribution model, two variables V; and V; are (conditionally) independent (given the set S(V;, ;) if and only if the (partial) correlation p between V; and V; (given S(V;, V})) is equal to zero

Therefore, we estimate (partial) correlations and apply standard statistical hypothesis testing theory.

Distribution of Correlations

First, we look at the correlation of Vi and V2 for 1000 samples of our distribution model. .. we have cor(V1, V2) = 0 which fits Ho.

sample.correlations < rep(lA,1008)
for(i in 1:1000){

sample.data <- rmvDAG(n,coolingDAG)

sample.correlations[i] <- cor(sample.datall,],sample.datal2,])
3

plot(density(sample.correlations), main="Density Plot of the Correlations of V1 and V2",xlab="Correlations")

Distribution of Z-Transformations

When looking at the Z-statistics of the correlation of V) and V2 for 1000 samples, we see the statistic is normal distributed under Ho.

In [ ]: sample.z.transforms < rep(lA,1000)
for(i in 1:1000){
sample.z.tronsforms[i] <= sqrt(1660- 3) * 6.5 * loglp(2ssample.correlations[1/(1-sample.correlations(i1))

plot(density(sample.z.transforms), main="Density Plot of the z-Transformations under He",xlab="Z-Values'")

Hence, we can use the critical value or the p-value to deside whether we reject or remain to Hy.

4.B. Conditional Independence Testing in the Cooling House Example

Thus, the multivariate normal distribution model of our cooling house example leads to the following (conditional) independence test: Given the significance level @, we reject the null-hypothesis » = 0 against the two sided
alternative j # 0 if for the corresponding p-value it holds that p < a.

In [ 1: suffStat <= list(C = cor(coolingData), n = nrow(coolingData))
gaussCItest(4,5,NULL, suffStat) ## dependent [highly signif.]
gaussCItest(5,6,NULL, suffStat) ## dependent [highly signif.]

CItest(s,6, 4, #2 4 /s

In [ 1: # DO NOT RUN!
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Theory and Applications
in Enterprise Computing

Uflacker, Huegle,
Schmidt
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