

Digital Engineering • Universität Potsdan

Causal Inference Theory and Applications in Enterprise Computing

Christopher Hagedorn, Johannes Huegle, Dr. Michael Perscheid April 29, 2020

Agenda April 29, 2020

• Recap: Causal Inference in a Nutshell

Causal Inference in Applications

- 1. Research Insights
- 2. Lecture Scenario

Jupyter Lab

- 1. Access Information
- **2.** Introduction to R
- 3. Replicated RStudio

Digital Engineering • Universität Potsdam

1. Recap: Causal Inference in a Nutshell

1. Recap: Causal Inference in a Nutshell Summary

- About associations
- Model the distribution of the data
- Predict given observations

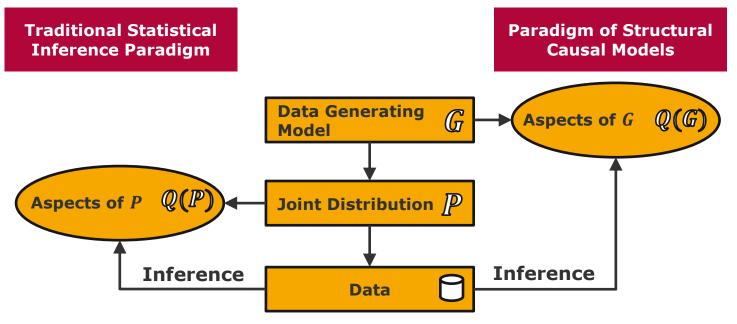
Causal Inference

- About causation
- Model the mechanism that generates the data
- Predict results of interventions

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

1. Recap: Causal Inference in a Nutshell Concept



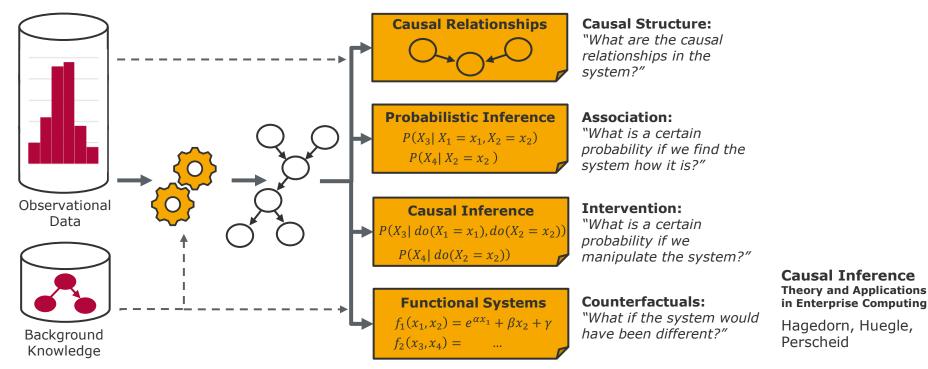
E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery | lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons? Q(G) = P(recovery|do(lemons)) **Causal Inference** Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

1. Recap: Causal Inference in a Nutshell Inference Procedure



Slide 6

Data Causal Structure Learning

Opportunities

Digital Engineering • Universität Potsdam

2. Causal Inference in Applications Research Insights - Topics

Data-Driven Causal Inference

Concepts and Methods

Research Objectives:

- **Improvement of flexibility** of CSL to address real-world settings, e.g., entropy-based CI tests
- **Improvement of applicability** to real-world setting, e.g., through the implementation of an evaluation pipeline

Hardware-Acceleration

Research Objectives:

- Improvement of performance of CSL through parallel execution on multi-core CPUs or GPUs
- **Improvement of scalability** of GPUaccelerated CSL, e.g., executing on multiple GPUs or overcoming on-chip memory limits

Transfer to application and validation together with cooperation partner, e.g., case studies in real-world setting

Evaluation Pipeline for Causal Structure Learning

Probabilistic Inference

 $P(X_3 | X_1 = x_1, X_2 = x_2)$

Causal Relationships

Causal Inference $P(X_3| do(X_1 = x_1), do(X_2 = x_2)$

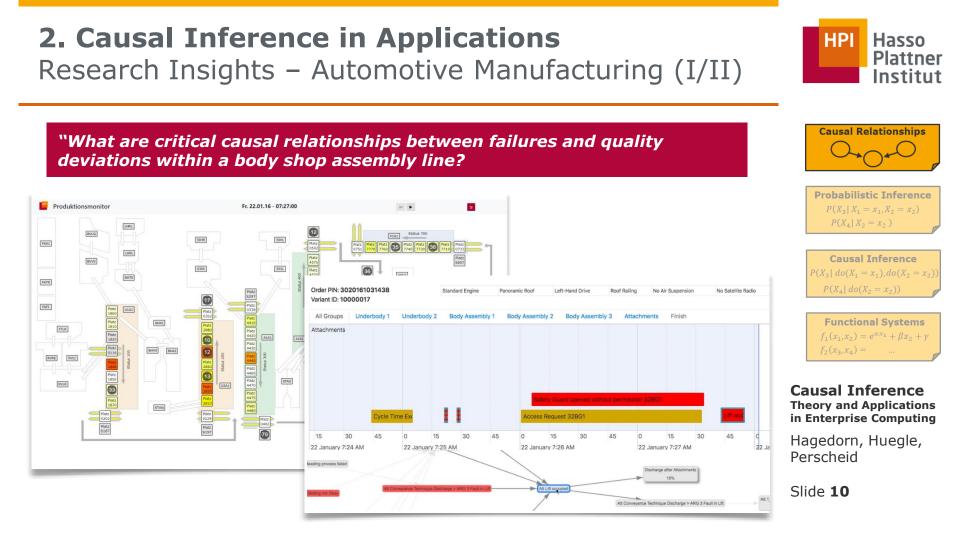
Functional Systems $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3, x_4) = \dots$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

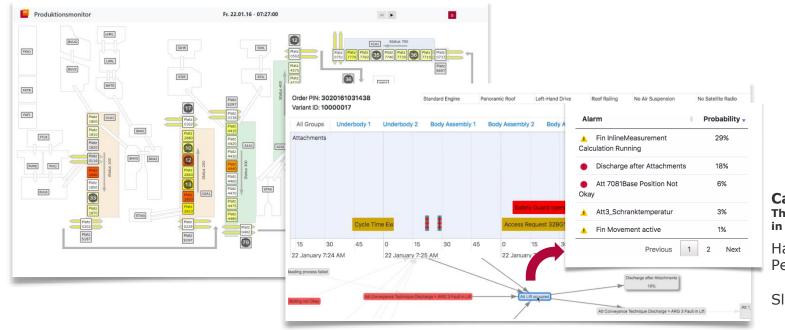
2. Causal Inference in Applications Research Insights - Genetics

Causal Relationships "What are the principal structural properties of genetic control programs of the cell's biological processes?" **Probabilistic Inference** $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$ **Causal Inference** TCGA-THCA: Immunoglobulin-Cluster MS4A1 **Functional Systems** $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ **Causal Inference TCGA-GBM: TP53 proto-oncogenes** Theory and Applications in Enterprise Computing Hagedorn, Huegle, Perscheid -Slide 9



2. Causal Inference in Applications Research Insights – Automotive Manufacturing (II/II)

"Given the knowledge about critical causal relationships what is the probability of failures and quality deviation in the current situation?"



Probabilistic Inference $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$ Causal Inference

Causal Relationships

HPI

Hasso Plattner

Institut

Causal Inference $P(X_3| do(X_1 = x_1), do(X_2 = x_2)$ $P(X_4| do(X_2 = x_2))$

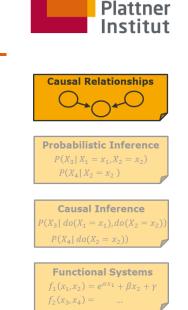
Functional Systems $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3, x_4) = \dots$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

2. Causal Inference in Applications Research Insights - Mechanical Engineering (I/III)

"How are configurations of a printing press and manual adjustments causally related to the quality of the printing output and stopper events?"



HPI

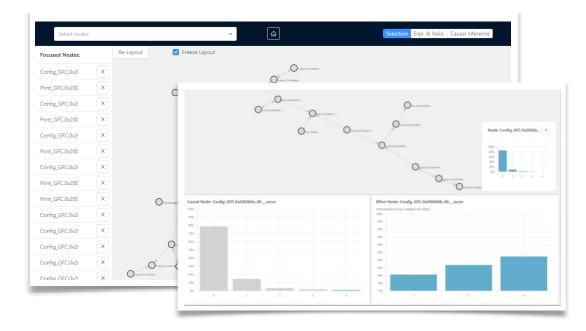
Hasso

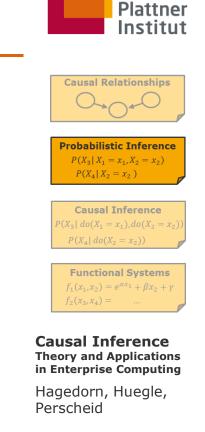
Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

2. Causal Inference in Applications Research Insights - Mechanical Engineering (II/III)

"What are the observed distribution characteristics of printing output and stopper events given a specific configuration of a printing press?"





HPI

Hasso



2. Causal Inference in Applications

Causal Relationships

Hasso

HPI

 $P(X_3 \mid do(X_1 = x_1), do(X_2 = x_2))$

Functional Systems

Causal Inference Theory and Applications in Enterprise Computing

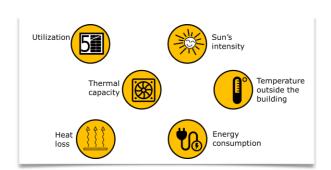
2. Causal Inference in Applications Lecture Scenario - Overview

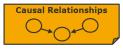
A Cooling House

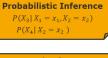
- Step by step causal inference walkthrough given the simple example of a cooling house
- Solutions to ubiquitous questions of causal inference in application scenarios:
 - 1. What are the causal relationships between the variables our system?
 - 2. How to derive these causal relationships from observational data?
 - 3. What are causal effects in our system?
 - 4. How to estimate the effect of interventions?
 - 5. What are omnipresent challenges of causal inference in application scenarios?

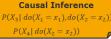
Variables Defining our Energy System

- V₁ Utilization of the cooling house
- V₂ Sun's intensity
- V₃ Temperature outside the building
- V₄ Thermal capacity of the cooling house
- V₅ Heat loss
- V₆ Energy consumption







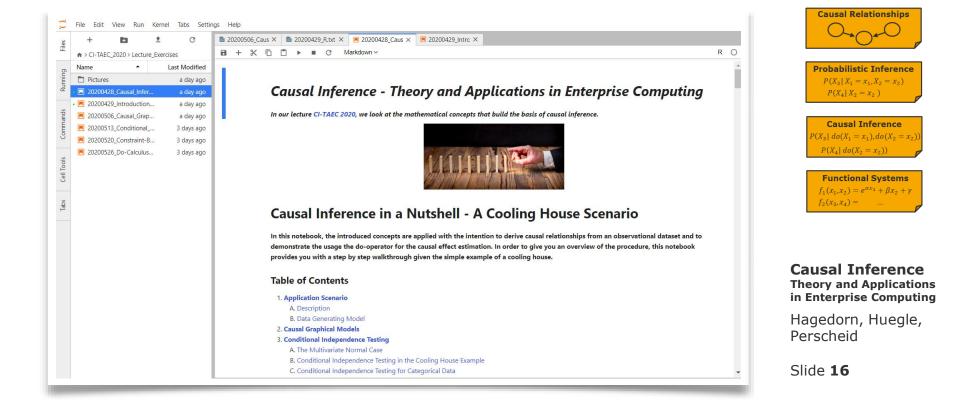


Functional Systems $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3, x_4) = \dots$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

2. Causal Inference in Applications Lecture Scenario – Jupyter Notebook



HPI

Hasso Plattner

Institut

Digital Engineering • Universität Potsdam

2. Jupyter Lab Access Information

System

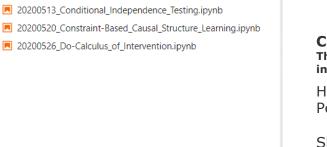
Link was provided via email

Access

Login via LDAP (standard HPI credentials)

Exercises (Wednesdays)

- 1. We copy currently relevant notebooks including exercises into your own user space
- Adapt and work on the exercises in your own notebooks
- **3.** Together, we discuss challenges, ideas and solution proposals
- A solution is provided in your Jupyter Lab file system afterwards



Help

.

ŧ

Run

20200428_Causal_Inference_in_a_Nutshell.ipynb

20200506 Causal Graphical Models.ipynb

63

View

♠ > CI-TAEC_2020 > Lecture_Exercises

20200429 Introduction to R.ipynb

File

Name

Pictures

 \smile

Files

Running

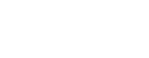
Commands

Cell Tools

Tabs

Fdit

Kernel Tabs Settings



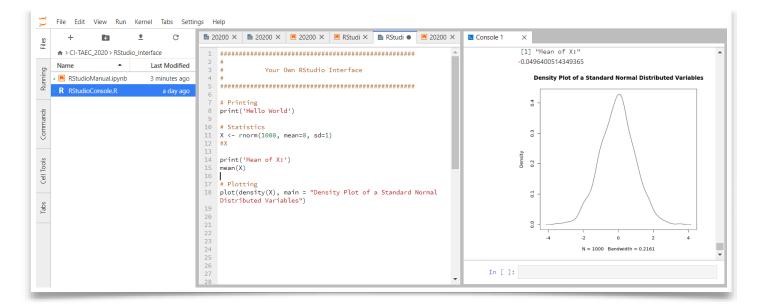
Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

2. Jupyter Lab RStudio

Replicated RStudio Environment

- Take the opportunity to strengthen your R programing skills in your own environment
- Let us know if you require new packages or if anything does not work, as intended



Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

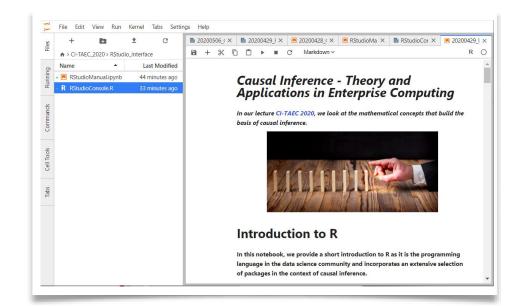
2. Jupyter Lab Introduction to R

What is R?

- Free Software under the terms of GNU General Public License
- R provides a wide variety of statistical and graphical techniques, see <u>CRAN</u>

Table of Contents

- Getting Started
- The Basics
- Exercises
- Further Reading



Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

IT Systems Engineering | Universität Potsdam

Thank you for your attention!