

Digital Engineering · Universität Potsdar

Causal Inference Theory and Applications in Enterprise Computing

Christopher Hagedorn, Johannes Huegle, Dr. Michael Perscheid May 27, 2020

▪ **Recap: Causal Inference in a Nutshell**

□ Causal Calculus

▪ **Jupyter Lab**

- 1. Causal Inference in a Nutshell Cooling House Scenario
- 2. Causal Calculus Exercises

Digital Engineering · Universität Potsdam

Recap: Causal Inference in a Nutshell

Recap: Causal Inference in a Nutshell Concept

probability of recovery when **we see** a treatment with lemons?

 $Q(P) = P(recovery|lemons)$

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons? $Q(G) = P(recovery|do(lemons))$ **Causal Inference Theory and Applications in Enterprise Computing**

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Graphical Models

Causal Graphical Model

- **Directed Acyclic Graph (DAG)** $G = (V, E)$
	- \Box Vertices V_1, \ldots, V_n
	- \Box Directed edges $E=(V_i,V_j)$, i.e., $V_i\rightarrow V_j$
	- □ *No cycles*
- *Directed Edges* encode direct causes via
	- $\Box \;\; V_j = f_j\big(\text{Pa(V}_j),\text{N}_j\big)$ with independent noise $N_1,...,N_m$

Causal Sufficiency

 \blacksquare All relevant variables are included in the DAG G

Causal Inference Theory and Applications in Enterprise Computing

Recap: Causal Inference in a Nutshell Connecting G and P

$(X \perp\!\!\!\perp Y | Z)_G \Rightarrow (X \perp\!\!\!\perp Y | Z)_P$

- Key postulate: *(Local) Markov Condition*
- Essential mathematical concept: *d-Separation*
	- □ Idea: *Blocking* of paths
	- □ Implication: *Global Markov Condition*

$(X \perp\!\!\!\perp Y | Z)_G \Leftarrow (X \perp\!\!\!\perp Y | Z)_P$

■ Key postulate: *Causal Faithfulness*

Causal Inference Theory and Applications in Enterprise Computing

Recap: Causal Inference in a Nutshell Connecting P and \Box

Statistical Inference

- Essential concept: *Point estimator* $\widehat{\Theta}$
	- \Box *Statistic* $g(X_1, ..., X_n)$ of *random samples* $X_1, ..., X_n$ to estimate *population parameter* Θ
- Inference: *Statistical Hypothesis Test*
	- □ *Null Hypothesis H*₀, claim on a population's property initially assumed to be true
	- \Box *Alternative Hypothesis H*₁, a claim that contradicts H_0
	- \Box Rejection criteria for H_0 : c-value $T(x) > c$ or equivalently p -value $P_{H_0}\bigl(T(X) > T(x)\bigr) < \alpha$

$(X \perp\!\!\!\perp Y | Z)_P \Leftarrow \Box$

■ Method: *Conditional Independence Test*

 \Box Distribution of $V = \{V_1, ..., V_N\} \Rightarrow$ dependence measure $T(V_i, V_j, S) \Rightarrow$ hypothesis $H_0: t = 0$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Structure Learning

Causal Structure Learning

- Assumptions: *Causal Sufficiency, Markov Condition, Causal Faithfulness*
- **■** Idea: Accept only those DAG's G for which $(X \perp\!\!\!\perp Y | Z)_G \Leftrightarrow (X \perp\!\!\!\perp Y | Z)_P$
	- □ Identifies DAG up to *Markov equivalence class* (i.e., same *skeleton C* and *v-structures*)
	- □ Markov equivalence class uniquely described by *completed partially directed acyclic graph (CPDAG)*
- $\bullet\,$ Basis: V_i and V_j are linked if and only if there is no $S\big(V_i,V_j\big)$ s.t. $\big(V_i\perp\!\!\!\perp V_j\big|\:S(V_i,V_j)\big)_P$
- Methods:
	- □ *Constraint-based*: CI testing to derive skeleton together with edge orientation rules
	- □ *Score-based*: "search-and-score approach"
	- □ *Hybrid*: Constraint-based skeleton derivation and score-based edge orientation

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Calculus

Do-Calculus

- **D** Overview: Simpson's paradox is only paradoxical if we misinterpret $P(y|x)$ as $P(y|do(x))$
	- \Box *Bayesian conditioning,* $p(y|x)$ *, where x is observed variable*
	- \Box *Causal conditioning,* $p(y|do(x))$ *,* where we force a specific value x
- Key postulate: *Identifiability*
- Essential mathematical concepts: *Perturbed Graphs*
	- □ *Back-Door Criterion*, adjustment by conditioning on confounding back-door paths
	- □ *Front-Door Criterion*, adjustment if conditioning on confounding path is not possible
- Formalism of interventions: *do-Calculus*
	- □ Rules: *Ignoring observations, action exchange, ignoring actions*
	- □ Properties: *Calculus is sound and complete*

Causal Inference Theory and Applications

in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Adjustment

Back-Door Criterion

- **A** set of variables Z satisfies the *back-door criterion* relative to (V_i, V_j) in a DAG G if:
	- \Box no node in Z is a descendant of V_i ; and
	- \Box Z blocks every path between V_i and V_j that contains an arrow to V_i
- **Back-door adjustment:** $P(v_j|do(v_i)) = \sum_z P(v_j|v_i, z)P(z)$

Front-Door Criterion

- **A** set of variables *Z* satisfies the *front-door criterion* relative to (V_i, V_j) in a DAG G if:
	- \Box Z intercepts all directed paths from V_i to V_j ; and
	- \Box there is no unblocked back-door path from V_i to Z ; and
	- \Box all back-door paths from Z to V_i are blocked by V_i
- **Front-door adjustment:** $P(v_j|do(v_i)) = \sum_z P(z|v_i) \sum_{v'_i} P(v_j|v'_i,z) P(v'_i)$

Causal Inference Theory and Applications

in Enterprise Computing

Slide **10**

Recap: Causal Inference in a Nutshell do-Calculus

do-Calculus

- **Example 1** Let X , Y , Z , and W be arbitrary disjoint sets of nodes in a causal DAG G .
	- □ *Rule 1: Ignoring observations*

 $p(y|do(x), z, w) = p(y|do(x), w)$ if $(Y \perp\!\!\!\perp Z \mid X, W)_{G_{\nabla}}$

- □ *Rule 2: Action/Observation exchange (Back-Door)* $p(y|do(x), do(z), w) = p(y|do(x), z, w)$ if $(Y \perp\!\!\!\perp Z \mid X, W)_{G_{\overline{X}}Z}$
- □ *Rule 3: Ignoring actions/interventions* $p(y|do(x), do(z), w) = p(y|do(x), w)$ if $(Y \perp\!\!\!\perp Z \mid X, W)_{G_{\overline{X}, \overline{Z(W)}}}$

Causal Effects

- Gausal effect of $V_i = v_i$ on V_i : $P(V_i|do(V_i = v_i))$
- *Causal strength:* Dependent to the causal structures, e.g., *ATE* for binary V_i

Causal Inference Theory and Applications in Enterprise Computing

Slide **11**

Digital Engineering · Universität Potsdam

Jupyter Lab Causal Inference in a Nutshell - Cooling House

Topics

- Estimating Causal Effects in the Cooling House Example
- Further Opportunities of Causal Structures

Causal Inference Theory and Applications in Enterprise Computing

Jupyter Lab Causal Calculus - Exercises

Table of Contents

1. Preliminaries 2. Exercises (~40 Minutes)

- A. Exercises Fair Coin Tosses and Point Estimator
- B. Exercises A Statistical Hypothesis Test for Fairness C. Exercises - Derivation of Indepencenc Test for Two Repeated Coin Tosses
- 3. Excurs Direct Statistical Hypothesis Test

1. Preliminaries

Some preliminary libraries required in the provision of functionality to examine the following exercises. Note, that more information about the functionalities of the R-library pcalg can be found in the documentation provi https://cran.r-project.org/web/packages/pcalg/pcalg.pdf.

2. Exercises

Please take approx 40-50 minutes to examine the following exercises

2.A. Exercises - Fair Coin Tosses and Point Estimator

We speak of the tossing of a fair coin, if the toss result of this coin has an equal propability of 50% to be either head (1) or number (1), i.e. we assume probability of head is given by $p_1 := P$ (coin toss = 1) = 0.5 and hance. Picoin toos is $0i = 1 - P$ coin toos = $1i = 0.5$.

• Given 100 samples of a fainress study that contain the results of 100 independent coin tosses, what may be a good point estimator $\hat{\rho}_1$ to estimate the population parameter p_1 ?

Write your assessment and demonstrate its application within our fairness example and the samples in the variable Study Fa fr Assessment:

Exercises

- Seeing vs. Doing
- Identifiability
- Causal Effects from Observational Data

Causal Inference Theory and Applications in Enterprise Computing

IT Systems Engineering | Universität Potsdam

Thank you for your attention!