

Digital Engineering • Universität Potsdan

Causal Inference Theory and Applications in Enterprise Computing

Christopher Hagedorn, Johannes Huegle, Dr. Michael Perscheid May 27, 2020

• Recap: Causal Inference in a Nutshell

Causal Calculus

Jupyter Lab

- 1. Causal Inference in a Nutshell Cooling House Scenario
- 2. Causal Calculus Exercises

Digital Engineering • Universität Potsdam

Recap: Causal Inference in a Nutshell

Recap: Causal Inference in a Nutshell Concept

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(P) = P(recovery|lemons)

we see a treatment with lemons?

E.g., what is the sailors'

probability of recovery when

Q(G) = P(recovery|do(lemons))

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Graphical Models

Causal Graphical Model

- Directed Acyclic Graph (DAG) G = (V, E)
 - \Box Vertices V_1, \ldots, V_n
 - □ Directed edges $E = (V_i, V_j)$, i.e., $V_i \rightarrow V_j$
 - No cycles
- Directed Edges encode direct causes via
 - \Box $V_j = f_j(Pa(V_j), N_j)$ with independent noise $N_1, ..., N_n$

Causal Sufficiency

• All relevant variables are included in the DAG ${\it G}$

Causal Inference Theory and Applications in Enterprise Computing

Recap: Causal Inference in a Nutshell Connecting *G* and *P*

$(X \perp Y | Z)_G \Rightarrow (X \perp Y | Z)_P$

- Key postulate: (Local) Markov Condition
- Essential mathematical concept: *d-Separation*
 - Idea: *Blocking* of paths
 - Implication: Global Markov Condition

$(X \perp Y | Z)_G \leftarrow (X \perp Y | Z)_P$

• Key postulate: *Causal Faithfulness*

Causal Inference Theory and Applications in Enterprise Computing

Recap: Causal Inference in a Nutshell Connecting *P* and

Statistical Inference

- Essential concept: *Point estimator* $\hat{\Theta}$
 - □ Statistic $g(X_1, ..., X_n)$ of random samples $X_1, ..., X_n$ to estimate population parameter Θ
- Inference: Statistical Hypothesis Test
 - \square *Null Hypothesis* H_0 , claim on a population's property initially assumed to be true
 - \square Alternative Hypothesis H_1 , a claim that contradicts H_0
 - □ Rejection criteria for H_0 : *c*-value T(x) > c or equivalently *p*-value $P_{H_0}(T(X) > T(x)) < \alpha$

$(X \perp Y | Z)_P \Leftarrow \bigcirc$

Method: Conditional Independence Test

Distribution of $V = \{V_1, ..., V_N\} \Rightarrow$ dependence measure $T(V_i, V_j, S) \Rightarrow$ hypothesis $H_0: t = 0$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Structure Learning

Causal Structure Learning

- Assumptions: Causal Sufficiency, Markov Condition, Causal Faithfulness
- Idea: Accept only those DAG's G for which $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$
 - □ Identifies DAG up to *Markov equivalence class* (i.e., same *skeleton C* and *v-structures*)
 - Markov equivalence class uniquely described by completed partially directed acyclic graph (CPDAG)
- Basis: V_i and V_j are linked if and only if there is no $S(V_i, V_j)$ s.t. $(V_i \perp V_j \mid S(V_i, V_j))_p$
- Methods:
 - *Constraint-based*: CI testing to derive skeleton together with edge orientation rules
 - Score-based: "search-and-score approach"
 - Hybrid: Constraint-based skeleton derivation and score-based edge orientation

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Calculus

Do-Calculus

- Overview: Simpson's paradox is only paradoxical if we misinterpret P(y|x) as P(y|do(x))
 - **Bayesian conditioning**, p(y|x), where x is observed variable
 - □ *Causal conditioning*, p(y|do(x)), where we force a specific value x
- Key postulate: *Identifiability*
- Essential mathematical concepts: Perturbed Graphs
 - Back-Door Criterion, adjustment by conditioning on confounding back-door paths
 - □ *Front-Door Criterion*, adjustment if conditioning on confounding path is not possible
- Formalism of interventions: *do-Calculus*
 - Rules: Ignoring observations, action exchange, ignoring actions
 - □ Properties: *Calculus is sound and complete*

Causal Inference Theory and Applications in Enterprise Computing

```
Hagedorn, Huegle,
Perscheid
```

Recap: Causal Inference in a Nutshell Adjustment

Back-Door Criterion

- A set of variables Z satisfies the *back-door criterion* relative to (V_i, V_j) in a DAG G if:
 - \square no node in Z is a descendant of V_i ; and
 - \Box Z blocks every path between V_i and V_j that contains an arrow to V_i
- Back-door adjustment: $P(v_j | do(v_i)) = \sum_z P(v_j | v_i, z) P(z)$

Front-Door Criterion

- A set of variables Z satisfies the *front-door criterion* relative to (V_i, V_j) in a DAG G if:
 - \Box Z intercepts all directed paths from V_i to V_j ; and
 - $\hfill\square$ there is no unblocked back-door path from V_i to Z; and
 - \square all back-door paths from Z to V_i are blocked by V_i
- Front-door adjustment: $P(v_j | do(v_i)) = \sum_z P(z | v_i) \sum_{v'_i} P(v_j | v'_i, z) P(v'_i)$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell do-Calculus

do-Calculus

- Let X, Y, Z, and W be arbitrary disjoint sets of nodes in a causal DAG G.
 - Rule 1: Ignoring observations

 $p(y|do(x), z, w) = p(y|do(x), w) \quad if \ (Y \perp Z \mid X, W)_{G_{\overline{X}}}$

□ Rule 2: Action/Observation exchange (Back-Door) p(y|do(x), do(z), w) = p(y|do(x), z, w) if $(Y \perp Z \mid X, W)_{G_{\overline{X}, Z}}$

□ Rule 3: Ignoring actions/interventions p(y|do(x), do(z), w) = p(y|do(x), w) if $(Y \perp Z \mid X, W)_{G_{\overline{X}, \overline{Z}(W)}}$

Causal Effects

- Causal effect of $V_i = v_i$ on V_j : $P(V_j | do(V_i = v_i))$
- Causal strength: Dependent to the causal structures, e.g., ATE for binary V_i

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Digital Engineering • Universität Potsdam

Jupyter Lab Causal Inference in a Nutshell - Cooling House

Topics

- Estimating Causal Effects in the Cooling House Example
- Further Opportunities of Causal Structures

Causal Inference Theory and Applications in Enterprise Computing

Jupyter Lab Causal Calculus - Exercises

Table of Contents

1. Preliminaries 2. Exercises (~40 Minutes)

- A. Exercises Fair Coin Tosses and Point Estimator B. Exercises - A Statistical Hypothesis Test for Fairness C. Exercises - Derivation of Indepencenc Test for Two Repeated Coin Tosses
- 3. Excurs Direct Statistical Hypothesis Test

1. Preliminaries

i # install.packages(c("graph","&graphviz","pcalg")) Study1 ← rbhom(n, 1, p.samlse11)) Study2 ← rbhom(n, 1, p.samlse12)) Study3 ← rbhom(n, 1, p.samlse13)) Study4 ← rbhom(n, 1, p.samlse13)) Study5 ← rbhom(n, 1, p.samlse13))

2. Exercises

Please take approx 40-50 minutes to examine the following exercises

2.A. Exercises - Fair Coin Tosses and Point Estimator

We speak of the tossing of a fair coin; if the toss result of this coin has an equal propubliky of 50% to be either head (1) or number (1); i.e., we assume probability of head is given by p_1 ; and Proximin son s = 1 = 0.5 and hence, Receim sons 0 = 1 - Receim tass = 0.

• Given 100 samples of a faincess study that contain the results of 100 independent coin tosses, what may be a good point estimator p₁² to estimate the population parameter p₁?

Write your assessment and demonstrate its application within our fairness example and the samples in the variable StudyFaTer Assessment:

Exercises

- Seeing vs. Doing
- Identifiability
- Causal Effects from Observational Data

Causal Inference Theory and Applications in Enterprise Computing

IT Systems Engineering | Universität Potsdam

Thank you for your attention!