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Traditional Statistical Paradigm of Structural
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E.g., what is the sailors’ E.g., what is the sailors’ Perscheid
probability of recovery when probability of recovery if
we see a treatment with lemons? we do treat them with lemons? Slide 4

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))
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Causal Graphical Models Inatitut

Causal Graphical Model
» Directed Acyclic Graph (DAG) G = (V,E)
o Vertices V3, ..., V,
o Directed edges E = (V;,V;), i.e., V; = V;

o No cycles Causal Inference

» Directed Edges encode direct causes via Theory and Applications
in Enterprise Computing

0 V] = fj(Pa(Vj), Nj) with independent noise N, ..., N, Hagedorn, Huegle,
Perscheid
Causal Sufficiency Slide 5

s All relevant variables are included in the DAG G



Recap: Causal Inference in a Nutshell

Connecting ¢ and P

ata Generating G
Model

Joint Distribution [P

(XLY|Z)e= (X LY|Z)p

» Key postulate: (Local) Markov Condition

s Essential mathematical concept: d-Separation

o Idea: Blocking of paths

o Implication: Global Markov Condition

XLY|Z); =X LYIZ)p

» Key postulate: Causal Faithfulness
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Recap: Causal Inference in a Nutshell Hasso
Connecting P and & atiner

Statistical Inference

s Essential concept: Point estimator @

o Statistic g(Xy, ..., X,) of random samples Xi, ..., X, to estimate population parameter 6
s Inference: Statistical Hypothesis Test
o Null Hypothesis H,, claim on a population’s property initially assumed to be true
o Alternative Hypothesis Hy, a claim that contradicts H, S;‘;rsf:nﬂ“::;i';g:ns
o Rejection criteria for Hy: c-value T(x) > c or equivalently p-value PHO(T(X) > T(x)) < a inEnterprise Computing
Hagedorn, Huegle,

(X 1L YlZ)P e B Perscheid

= Method: Conditional Independence Test Slide 7
o Distribution of ¥V = {V,, ...,Vy} = dependence measure T(V;,V;,S) = hypothesis Hy:t = 0
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Causal Structure Learning
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Causal Structure Learning
s Assumptions: Causal Sufficiency, Markov Condition, Causal Faithfulness
= Idea: Accept only those DAG’s G for which (X LY|Z); © (X L Y| Z)p
o Identifies DAG up to Markov equivalence class (i.e., same skeleton C and v-structures)
o Markov equivalence class uniquely described by
completed partially directed acyclic graph (CPDAG) Causal Inference
= Basis: V; and V; are linked if and only if there is no S(V;,V;) s.t. (V; L V| S(Vl-,Vj))P e e
s Methods: Hagedorn, Huegle,
» Constraint-based: CI testing to derive skeleton together with edge orientation rules ~Perscheid
o Score-based: “search-and-score approach” Slide 8

o Hybrid: Constraint-based skeleton derivation and score-based edge orientation
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Causal Calculus

o/

Do-Calculus

m Overview: Simpson's paradox is only paradoxical if we misinterpret P(y|x) as P(y|do(x))
o Bayesian conditioning, p(y|x), where x is observed variable
o Causal conditioning, p(y|do(x)), where we force a specific value x

» Key postulate: Identifiability

= Essential mathematical concepts: Perturbed Graphs Causal Inference
o Back-Door Criterion, adjustment by conditioning on confounding back-door paths e e
o Front-Door Criterion, adjustment if conditioning on confounding path is not possible Hagedorn, Huegle,
= Formalism of interventions: do-Calculus Perscheid
o Rules: Ignoring observations, action exchange, ignoring actions Slide 9

o Properties: Calculus is sound and complete
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Adjustment et
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Back-Door Criterion

m A set of variables Z satisfies the back-door criterion relative to (V;,V;) in a DAG G if:
o ho node in Z is a descendant of V;; and
o Z blocks every path between V; and V; that contains an arrow toV;

» Back-door adjustment: P(v;|do(v))) = ¥, P(vj|v;, z)P(2)

Causal Inference
Theory and Applications
in Enterprise Computing

Front-Door Criterion
m A set of variables Z satisfies the front-door criterion relative to (V;,V;) in a DAG G if:

o Z intercepts all directed paths from V; to V; ; and E:%iﬂgg’ Huegle,
I |

o there is no unblocked back-door path from V;to Z; and

o all back-door paths from Z to V; are blocked by V; Slide 10

= Front-door adjustment: P(v;|do(v;)) = ¥, P(z|v)) X, P(vj| v{, ) P(v))



Recap: Causal Inference in a Nutshell
do-Calculus

do-Calculus

m Let X, Y, Z, and W be arbitrary disjoint sets of nodes in a causal DAG G.

o Rule 1: Ignoring observations
p(yldo(x),z,w) = p(yldo(x),w) if (V¥ LZ|X,W)g,

o Rule 2: Action/Observation exchange (Back-Door)
p(yldo(x),do(z),w) = p(yldo(x),z,w) if (Y L Z|X, W)GY,Z
o Rule 3: Ignoring actions/interventions
p(yldo(x),do(2),w) = p(yldo(x),w) if (Y LZ|X,W)s_

X, Z(W)

Causal Effects
= Causal effect of V; = v; on V;: P(Vi|do(V; = v)))
» Causal strength: Dependent to the causal structures, e.g., ATE for binary V;
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Jupyter Lab
Causal Inference in a Nutshell - Cooling House
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Causal Inference in a Nutshell - A Cooling House Scenario

In this notebook, the deri al

demonstrate the usage the do-operator for the causal In order to give. dure, this notebook
2 step by step given the simple example of a cooling house.

Table of Contents

1. Applicati

Topics

= Estimating Causal Effects in the Cooling House Example
s Further Opportunities of Causal Structures
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Jupyter Lab
Causal Calculus - Exercises

Table of Contents

1. Preliminaries

Some preliminary lioraries requited i the provision of functional Note. that about the

2. Exercises

Prease take approx 40-50 minutes 1o eiamine the fA0wIng eneroies

2.A. Exercises - Fair Coin Tosses and Point Estimator

VWIHte 0T SS3ESITIE and GHMCASITICE 15 JPPACILCN WER Cur {4Tess EXamEie Ind the SamGkes i the \anatie Stud,Fatr
Assessmant:

Exercises

= Seeing vs. Doing

s Identifiability

= Causal Effects from Observational Data
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for your attention!




