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Traditional Statistical 
Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷

Aspects of 𝑮

Inference

E.g., what is the sailors’ 
probability of recovery when 
we see a treatment with lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ 
probability of recovery if 
we do treat them with lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)
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Causal Graphical Model

■ Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸)

□ Vertices 𝑉1, … , 𝑉𝑛

□ Directed edges 𝐸 = (𝑉𝑖 , 𝑉𝑗), i.e., 𝑉𝑖 → 𝑉𝑗

□ No cycles

■ Directed Edges encode direct causes via

□ 𝑉𝑗 = 𝑓𝑗 Pa Vj , Nj with independent noise 𝑁1, … , 𝑁𝑛

Causal Sufficiency

■ All relevant variables are included in the DAG 𝐺

Joint Distribution   

Data Generating     
Model
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Joint Distribution   

Data Generating     
Model

■ Key Postulate: (Local) Markov Condition

■ Essential mathematical concept: d-Separation

□ Idea: Blocking of paths

□ Implication: Global Markov Condition

■ Key Postulate: Causal Faithfulness

𝑿 ⫫ 𝒀 𝒁 𝑮 ⇒ 𝑿 ⫫ 𝒀 𝒁 𝑷

𝑿 ⫫ 𝒀 𝒁 𝑮 ⇐ 𝑿 ⫫ 𝒀 𝒁 𝑷
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Data

Joint Distribution   

Statistical Inference

■ Essential concept: Point estimator 𝛩

□ Statistic 𝑔(𝑋1, … , 𝑋𝑛) of random samples 𝑋1, … , 𝑋𝑛 to estimate population parameter 𝛩

■ Inference: Statistical Hypothesis Test

□ Null Hypothesis 𝐻0, claim on a population’s property initially assumed to be true 

□ Alternative Hypothesis 𝐻1, a claim that contradicts 𝐻0

□ Rejection criteria for 𝐻0: 𝑐-value 𝑇(𝑥) > c or equivalently 𝑝-value 𝑃𝐻0 𝑇 𝑋 > 𝑇 𝑥 < 𝛼

■ Key idea: Conditional Independence Test

□ Distribution of 𝑽 = 𝑉1, … , 𝑉𝑁 ⇒ dependence measure 𝑇(𝑉𝑖, 𝑉𝑗, 𝑺) ⇒ hypothesis 𝐻0: 𝑡 = 0

𝑿 ⫫ 𝒀 𝒁 𝑷 ⇐
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Data Generating     
Model

Causal Structure Learning

■ Assumptions: Causal Sufficiency, Markov Condition, Causal Faithfulness

■ Idea: Accept only those DAG’s 𝐺 for which 𝑋 ⫫ 𝑌 𝑍 𝐺 ⇔ 𝑋 ⫫ 𝑌 𝑍 𝑃

□ Identifies DAG up to Markov equivalence class (i.e., same skeleton 𝐶 and 𝑣-structures)

□ Markov equivalence class uniquely described by 
completed partially directed acyclic graph (CPDAG)

■ Basis: 𝑉𝑖 and 𝑉𝑗 are linked if and only if there is no 𝑆 𝑉𝑖 , 𝑉𝑗 s.t. 𝑉𝑖 ⫫ 𝑉𝑗 𝑆(𝑉𝑖 , 𝑉𝑗) 𝑃

■ Methods:

□ Constraint-based: CI testing to derive skeleton together with edge orientation rules

□ Score-based: “search-and-score approach”

□ Hybrid: Constraint-based skeleton derivation and score-based edge orientation

Data
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1. Introduction

▪ The Concept and Simpson’s Paradox

▪ The do-Operator and the Resolution of Simpson’s Paradox

2. The Calculus of Intervention

▪ Perturbed Graphs 

▪ Identifiability

▪ Back-Door Criterion

▪ Front-Door Criterion

▪ The do-Calculus

3. Estimating Causal Effects

▪ Deriving Causal Effects 

▪ Quantifying Causal Strength

4. Excursion – Causal Functional System

Introduction to Causal Calculus
Content
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Traditional Statistical 
Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷

Aspects of 𝑮

Inference

E.g., what is the sailors’ 
probability of recovery when 
we see a treatment with lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ 
probability of recovery if 
we do treat them with lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)



Recap the scurvy experiment:

■ We observed
𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑜𝑙𝑑 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑜𝑙𝑑

𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑦𝑜𝑢𝑛𝑔 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑦𝑜𝑢𝑛𝑔

But: 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠 < 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠

■ This reversal of the association between two variables after considering 

the third variable is called Simpson’s paradox.

■ Pearl extends probability calculus by introducing a new operator for 
describing interventions, the do-operator.

Hagedorn, Huegle, 
Perscheid
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1. Introduction
Simpson’s Paradox

Observational Regime Interventional Regime

vs. 
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The do-operator

■ 𝑑𝑜(… ) marks intervention in the model

□ In an algebraic model: we replace certain functions with a constant 𝑋 = 𝑥

□ In a graph: we remove edges going into the target of intervention, but preserve edges 
going out of the target. 

■ The causal calculus uses

□ Bayesian conditioning, 𝑝(𝑦|𝑥), where 𝑥 is observed variable

□ Causal conditioning, 𝑝(𝑦|𝑑𝑜(𝑥)), where we force a specific value 𝑥

■ Goal: Generate probabilistic formulas for the effect of interventions 
in terms of the observed probabilities.

Resolution of Simpson’s paradox

■ Simpson's paradox is only paradoxical if we misinterpret

𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠 as 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠)

■ We should treat scurvy with lemons if

𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠) > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠)
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1. Introduction
The do-Operator
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■ The treatment does not affect the distribution of the subpopulations, i.e.,

𝑃(𝑜𝑙𝑑|𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃 𝑜𝑙𝑑 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃(𝑜𝑙𝑑)

■ Then, it is impossible that we have, simultaneously,

𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑜𝑙𝑑 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑜𝑙𝑑
𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑦𝑜𝑢𝑛𝑔 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑦𝑜𝑢𝑛𝑔

But: 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠 < 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠

■ Proof:

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑜𝑙𝑑 𝑃 𝑜𝑙𝑑 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠

+ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑦𝑜𝑢𝑛𝑔 𝑃 𝑦𝑜𝑢𝑛𝑔 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠)

= 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑜𝑙𝑑 𝑃 𝑜𝑙𝑑

+ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑦𝑜𝑢𝑛𝑔 𝑃 𝑦𝑜𝑢𝑛𝑔

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑜𝑙𝑑 𝑃 𝑜𝑙𝑑

+ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑦𝑜𝑢𝑛𝑔 𝑃(𝑦𝑜𝑢𝑛𝑔)

□ Hence: 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 > 𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦|𝑑𝑜(𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠)
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Resolution of Simpson’s Paradox
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■ 𝐺 Graph

■ 𝑊,X, Y, Z, U disjoint subsets of the variables

■ 𝐺𝑋 perturbed graph in which all edges pointing to 𝑋 have been deleted

■ 𝐺𝑋 perturbed graph in which all edges pointing from 𝑋 have been deleted

■ 𝑍(𝑊) set of nodes in 𝑍 which are not ancestors of 𝑊

Hagedorn, Huegle, 
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2. The Calculus of Intervention
Perturbed Graphs

𝑋

𝑈

𝑌𝑍

𝐺 (𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑋

𝑈

𝑌𝑍

𝐺𝑍 = 𝐺𝑋

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍
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■ I.e., 𝑃(𝑦|𝑑𝑜 𝑥 ) is identifiable 

if it can be consistently estimated from data involving only observed variables. 

■ Examples:

■ Can you estimate 𝑃(𝑦 | 𝑑𝑜(𝑥)), given 𝑃(𝑥, 𝑦)?

1. Yes, since 𝑃 𝑦 𝑑𝑜 𝑥 = 𝑃(𝑦|𝑥), i.e., 𝑃(𝑦|𝑑𝑜 𝑥 ) is identifiable

2. No (observational regime), since 𝑃 𝑥, 𝑦 = σ𝑢𝑃 𝑥, 𝑦, 𝑢 = σ𝑢𝑃 𝑦|𝑥, 𝑢 𝑃 𝑥 𝑢 𝑃(𝑢)

𝑃 𝑦|𝑑𝑜(𝑥) = σ𝑢𝑃 𝑦|𝑥, 𝑢 𝑃(𝑢)
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Perscheid

Slide 16

2. The Calculus of Intervention
Identifiability

Definition:

Let 𝑄(𝑀) be any computable quantity of a model 𝑀. We say that 
𝑄 is identifiable in a class 𝑀 of models if, for any pairs of models 
𝑀1 and 𝑀2 from 𝑀, 𝑄(𝑀1) = 𝑄(𝑀2)whenever 𝑃𝑀1

(𝑣) = 𝑃𝑀2
(𝑣).

𝑋 𝑌

𝑋 𝑌

𝑈1. 2.
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■ But: after adjustment for direct causes (intervention)

□ 𝑃 𝑥, 𝑦 = σ𝑢𝑃 𝑥, 𝑦, 𝑢 = σ𝑢𝑃 𝑦|𝑥, 𝑢 𝑃 𝑥 𝑢 𝑃 𝑢 = 𝑃 𝑦|𝑑𝑜(𝑥)

□ Hence, 𝑃(𝑦|𝑑𝑜 𝑥 ) is identifiable

■ Any common ancestor of 𝑋 and 𝑌 is a confounder

■ Confounders originate “back-door” paths that need to be blocked by conditioning 

■ This defines a basic criterion for identifiability:

■ Back-door adjustment: 𝑃 𝑣𝑗 𝑑𝑜 𝑣𝑖 = σ𝑧 𝑃 𝑣𝑗|𝑣𝑖 , 𝑧 𝑃(𝑧)
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2. The Calculus of Intervention
Back-Door Criterion

Back-Door Criterion (Pearl 1993):

A set of variables 𝑍 satisfies the back-door criterion relative to
an ordered pair of variables (𝑉𝑖 , 𝑉𝑗) in a DAG 𝐺 if:

1.no node in 𝑍 is a descendant of 𝑉𝑖; and
2. 𝑍 blocks every path between 𝑉𝑖 and 𝑉𝑗 that contains an arrow to 𝑉𝑖.

𝑌

𝑈

𝑋

𝐺𝑋
2.
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■ But: If 𝑈 is hidden (unobserved), then there is no data for conditioning

■ Then, 𝑃 𝑦 𝑑𝑜 𝑥 is also identifiable!

𝑃(𝑦|𝑑𝑜 𝑥 ) = σ𝑧𝑃 𝑦 𝑑𝑜 𝑧 𝑃(𝑧|𝑑𝑜(𝑥))

= σ𝑧𝑃 𝑦 𝑑𝑜 𝑧 𝑃(𝑧|𝑥) (direct effect)

= σ𝑥′ 𝑃 𝑦 𝑥′, 𝑧 𝑃(𝑥′)𝑃(𝑧|𝑥) (back-door)

■ This defines a basic criterion for identifiability with unobserved variables:

■ Front-door adjustment: 𝑃 𝑣𝑗 𝑑𝑜 𝑣𝑖 = σ𝑧𝑃 𝑧|𝑣𝑖 σ
𝑣𝑖
′ 𝑃( 𝑣𝑗 𝑣𝑖

′, 𝑧 𝑃(𝑣𝑖
′)
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2. The Calculus of Intervention
Front-Door Criterion

Front-Door Criterion (Pearl 1993):

A set of variables 𝑍 satisfies the front-door criterion relative to
an ordered pair of variables (𝑉𝑖 , 𝑉𝑗) in a DAG 𝐺 if:

1. 𝑍 intercepts all directed paths from 𝑉𝑖 to 𝑉𝑗 ; and

2. there is no unblocked back-door path from 𝑉𝑖 to 𝑍; and
3. all back-door paths from 𝑍 to 𝑉𝑗 are blocked by 𝑉𝑖

𝑋

𝑈

𝑌𝑍

𝐺 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑋

𝑈

𝑌𝑍

𝐺𝑋
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Notes:

■ Allows a syntactical derivation of claims about interventions
■ The calculus is sound and complete 

□ Sound: If the do-operations can be removed by repeated application of these 
three rules, the causal effect is identifiable. (Galles et al. 1995)

□ Complete: If identifiable, the do-operations can be removed by repeated 
application of these three rules. (Huang et al. 2012)  

□ I.e., “it works on all inputs and always gets the right result”

■ Also allows for identifiability of causal effects in MAGs

Hagedorn, Huegle, 
Perscheid
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2. The Calculus of Intervention
The do-Calculus (Pearl 1995)

The do-Calculus:

Let 𝑋, 𝑌, 𝑍, and 𝑊 be arbitrary disjoint sets of nodes in a causal DAG 𝐺.
■ Rule 1: Ignoring observations

𝑝 y 𝑑𝑜 𝑥 , 𝑧, 𝑤 = 𝑝 𝑦 𝑑𝑜 𝑥 ,𝑤 𝑖𝑓 𝑌 ⫫ 𝑍 𝑋,𝑊)𝐺ഥ𝑋
■ Rule 2: Action/Observation exchange (Back-Door) 

𝑝 y 𝑑𝑜 𝑥 , 𝑑𝑜(𝑧),𝑤 = 𝑝 𝑦 𝑑𝑜 𝑥 , 𝑧, 𝑤 𝑖𝑓 𝑌 ⫫ 𝑍 𝑋,𝑊)𝐺
𝑋, 𝑍

■ Rule 3: Ignoring actions/interventions
𝑝 y 𝑑𝑜 𝑥 , 𝑑𝑜(𝑧), 𝑤 = 𝑝 𝑦 𝑑𝑜 𝑥 ,𝑤 𝑖𝑓 𝑌 ⫫ 𝑍 𝑋,𝑊)𝐺

𝑋, 𝑍(𝑊)

Causal Inference 
Theory and Applications 
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3. Estimating Causal Effects
Deriving Causal Effects using the do-Calculus

𝑋

𝑈

𝑌𝑍

𝐺 (𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑋

𝑈

𝑌𝑍

𝐺𝑍 = 𝐺𝑋

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍

■ Example: Compute 𝑷 𝒚 𝒅𝒐 𝒛

We have 𝑃 𝑦 𝑑𝑜 𝑧 = σ𝑥𝑃 𝑦 𝑥, 𝑑𝑜(𝑧))𝑃 𝑥 𝑑𝑜(𝑧))

= σ𝑥𝑃 𝑦 𝑥, 𝑑𝑜(𝑧)) 𝑃 𝑥 (Rule 1: (Z ⫫ 𝑋)𝐺ഥ𝑍) 

= σ𝑥𝑃 𝑦 𝑥, 𝑧) 𝑃 𝑥 (Rule 2: (Z ⫫ 𝑌)𝐺𝑍) 
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■ The Causal Effect of 𝑉𝑖 = 𝑣𝑖 on 𝑉𝑗 is given by 𝑃 Vj 𝑑𝑜 𝑉𝑖 = 𝑣𝑖
□ I.e., the distribution of 𝑉𝑗 given that we force 𝑉𝑖 to be 𝑣𝑖

□ This defines the basis of the examination of causal effects

■ But: Quantifying the causal influence of 𝑉𝑖 on 𝑉𝑗 is a nontrivial question!

■ Many measures of causal strength depending on the causal structures have been 
proposed, e.g.,

□ Average Treatment Effect (ATE): 

𝐸[𝑉𝑗|𝑑𝑜(𝑉𝑖 = 1)] − 𝐸[𝑉𝑗|𝑑𝑜(𝑉𝑖 = 0)] for binary 𝑉𝑖

□ Average Causal Effect (ACE):

𝜕

𝜕𝑣𝑖
𝐸 𝑉𝑗 𝑑𝑜 𝑉𝑖 = 𝑣𝑖 for continuous 𝑉𝑖, 𝑉𝑗

□ Conditional Mutual Information (CI):

σ𝑣𝑖,𝑣𝑗 𝑃 𝑣𝑖 𝑃 𝑣𝑗|𝑑𝑜(𝑉𝑖 = 𝑣𝑖) log
𝑃(𝑣𝑗|𝑑𝑜(𝑉𝑖=𝑣𝑖))

σ𝑣𝑖′
𝑃 𝑉𝑖= 𝑣𝑖

′ 𝑃(𝑣𝑗|𝑑𝑜 𝑉𝑖= 𝑣𝑖
′ )

for categorical 𝑉𝑖 , 𝑉𝑗

□ Relative Entropy, etc.
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3. Estimating Causal Effects
Quantifying Causal Strength
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Recap the cooling house example

■ We are in the multivariate normal case

■ Hence, average causal effects are given by

□ ACE 𝑉4, 𝑉1, 𝑣1 =
𝜕

𝜕𝑣1
𝐸 𝑉4 𝑑𝑜(𝑉1 = 𝑣1)]

= 𝐸[𝑉4 𝑑𝑜 𝑉1 = 𝑣1 + 1 − 𝐸[𝑉4 𝑑𝑜 𝑉1 = 𝑣1 (linear f)
= 𝛽𝑉1→𝑉4 = 4

□ ACE 𝑉6, 𝑉1, 𝑣1 =
𝜕

𝜕𝑣1
𝐸 𝑉6 𝑑𝑜(𝑉1 = 𝑣1)]

= 𝐸[𝑉6 𝑑𝑜 𝑉1 = 𝑣1 + 1 − 𝐸[𝑉6 𝑑𝑜 𝑉1 = 𝑣1
= 𝛽𝑉1→𝑉4 ⋅ 𝛽𝑉4→𝑉6 = 4 ⋅ 1.2 =4.8

□ ACE V4, 𝑉2, 𝑣2 =
𝜕

𝜕𝑣2
𝐸 𝑉4 𝑑𝑜(𝑉2 = 𝑣2)]

= 𝐸[𝑉4 𝑑𝑜 𝑉2 = 𝑣2 + 1 − 𝐸[𝑉4 𝑑𝑜 𝑉2 = 𝑣2
= 𝛽𝑉2→𝑉4 + 𝛽𝑉2→𝑉3 ⋅ 𝛽𝑉3→𝑉4 = 5 + 3 ⋅ 0.7 = 7.1

□ ACE V6, 𝑉5, 𝑣5 = 0
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3. Estimating Causal Effects
Cooling House Example – Quantifying Causal Effects

Cooling House Example:

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6

▪𝑉1 = 𝑁 0,1

▪𝑉2 = 𝑁 0,1

▪𝑉3 = 3 𝑉2 + 𝑁(0,1)

▪𝑉4 = 4 𝑉1 + 5 𝑉2 + 0.7 𝑉3 +𝑁(0,1)

▪𝑉5 = 𝑉4 + 𝑁(0,1)

▪𝑉6 = 1.2 𝑉4 + 𝑁(0,1)
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■ I.e., the logical second step after the causal discovery

■ The do-operator builds a natural basis of probabilistic learning algorithms for 
estimating the functional system:

□ Active Bayesian learning allows for identification of 
interventions that are optimally informative about 
all of the unknown functions (Algorithm 1)

□ Exploiting factorization properties allows for 
vectorization and simultaneous calculations
in a dynamic programming approach (Algorithm 2)

■ Probabilistic active learning of functions significantly 
improves the estimation compared to unstructured 
base-lines (Observe only, random intervention).
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4. Excursion
Causal Functional System (e.g., Rubenstein 2017)

Idea:

The identification of the underlying causal graph 𝐺 allows to learn the 
functions computing children from parents in the structural causal model.
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■ Goal: Estimate 𝛽𝑉1→𝑉4

■ Recall: True 𝛽𝑉1→𝑉4 = 4

■ Linear Regression Model Approach:

□ Fit linear model 𝑉4 = 𝑙𝑚(𝑉1, 𝑉2, 𝑉3, 𝑉5, 𝑉6)

□ Then መ𝛽𝑉1→𝑉4 = 1.14

□ Underestimated 𝛽𝑉1→𝑉4

■ Causal Structural Approach:

□ From estimated CPDAG 𝐺 we know 𝑉1 = 𝑃𝑎 𝑉4

□ Hence, መ𝛽𝑉1→𝑉4 = 𝐴𝐶𝐸 V4, 𝑉1, 𝑣1 ∈ {4.09, 4.09}

□ Estimated 𝛽𝑉1→𝑉4 (up to the equivalence class)
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4. Excursion
Causal Functional System (A Naive Example!)

Cooling House Example:

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6

▪𝑉1 = 𝑁 0,1

▪𝑉2 = 𝑁 0,1

▪𝑉3 = 3 𝑉2 + 𝑁(0,1)

▪𝑉4 = 4 𝑉1 + 5 𝑉2 + 0.7 𝑉3 +𝑁(0,1)

▪𝑉5 = 𝑉4 + 𝑁(0,1)

▪𝑉6 = 1.2 𝑉4 + 𝑁(0,1)
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