

Digital Engineering • Universität Potsdan

Causal Inference Theory and Applications in Enterprise Computing

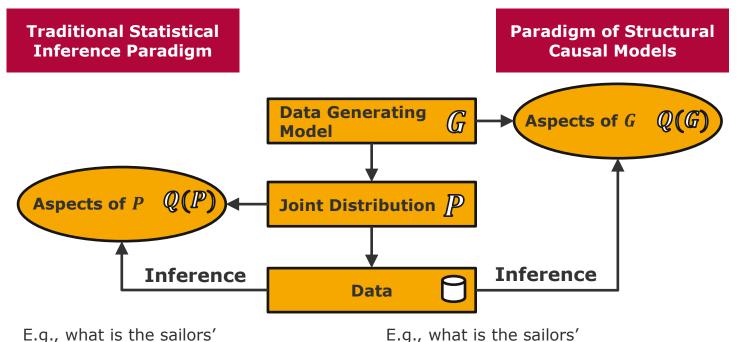
Christopher Hagedorn, Johannes Huegle, Dr. Michael Perscheid May 26, 2020

- Embedding: Causal Inference in a Nutshell
- Introduction to Causal Calculus

Digital Engineering • Universität Potsdam

Embedding: Causal Inference in a Nutshell

Embedding: Causal Inference in a Nutshell Concept



probability of recovery if

we do treat them with lemons?

Q(G) = P(recovery|do(lemons))

Theory and Applications in Enterprise Computing Hagedorn, Huegle, Perscheid

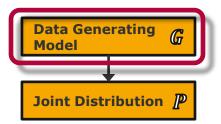
Causal Inference

Slide 4

we see a treatment with lemons? Q(P) = P(recovery | lemons)

probability of recovery when

Recap: Causal Inference in a Nutshell Causal Graphical Models



Causal Graphical Model

- Directed Acyclic Graph (DAG) G = (V, E)
 - \Box Vertices V_1, \ldots, V_n
 - □ Directed edges $E = (V_i, V_j)$, i.e., $V_i \rightarrow V_j$
 - No cycles
- Directed Edges encode direct causes via
 - \Box $V_j = f_j(Pa(V_j), N_j)$ with independent noise $N_1, ..., N_n$

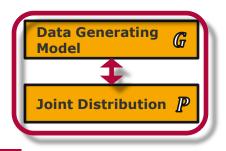
Causal Sufficiency

• All relevant variables are included in the DAG ${\it G}$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Connecting *G* and *P*



$(X \perp Y | Z)_G \Rightarrow (X \perp Y | Z)_P$

- Key Postulate: (Local) Markov Condition
- Essential mathematical concept: *d-Separation*
 - Idea: *Blocking* of paths
 - Implication: Global Markov Condition

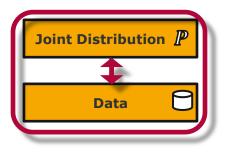
$(X \perp Y | Z)_G \leftarrow (X \perp Y | Z)_P$

• Key Postulate: Causal Faithfulness

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Connecting *P* and



Statistical Inference

- Essential concept: *Point estimator* $\hat{\Theta}$
 - □ Statistic $g(X_1, ..., X_n)$ of random samples $X_1, ..., X_n$ to estimate population parameter Θ
- Inference: Statistical Hypothesis Test
 - \square *Null Hypothesis* H_0 , claim on a population's property initially assumed to be true
 - \Box Alternative Hypothesis H_1 , a claim that contradicts H_0
 - □ Rejection criteria for H_0 : *c*-value T(x) > c or equivalently *p*-value $P_{H_0}(T(X) > T(x)) < \alpha$

$(X \perp Y | Z)_P \Leftarrow \bigcirc$

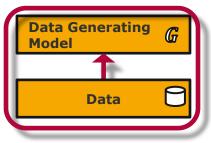
Key idea: Conditional Independence Test

Distribution of $V = \{V_1, ..., V_N\} \Rightarrow$ dependence measure $T(V_i, V_j, S) \Rightarrow$ hypothesis $H_0: t = 0$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Structure Learning



Causal Structure Learning

- Assumptions: Causal Sufficiency, Markov Condition, Causal Faithfulness
- Idea: Accept only those DAG's G for which $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$
 - □ Identifies DAG up to *Markov equivalence class* (i.e., same *skeleton C* and *v-structures*)
 - Markov equivalence class uniquely described by completed partially directed acyclic graph (CPDAG)
- Basis: V_i and V_j are linked if and only if there is no $S(V_i, V_j)$ s.t. $(V_i \perp V_j \mid S(V_i, V_j))_p$
- Methods:
 - *Constraint-based*: CI testing to derive skeleton together with edge orientation rules
 - Score-based: "search-and-score approach"
 - Hybrid: Constraint-based skeleton derivation and score-based edge orientation

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Digital Engineering • Universität Potsdam

Introduction to Causal Calculus

Introduction to Causal Calculus Content

HPI Hasso Plattner Institut

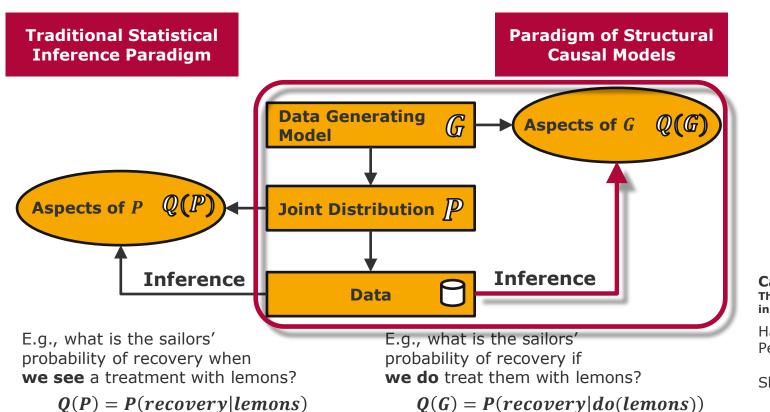
1. Introduction

- The Concept and Simpson's Paradox
- The do-Operator and the Resolution of Simpson's Paradox
- 2. The Calculus of Intervention
 - Perturbed Graphs
 - Identifiability
 - Back-Door Criterion
 - Front-Door Criterion
 - The do-Calculus
- 3. Estimating Causal Effects
 - Deriving Causal Effects
 - Quantifying Causal Strength
- 4. Excursion Causal Functional System

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

1. Introduction The Concept



Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

1. Introduction Simpson's Paradox

Recap the scurvy experiment:

We observed

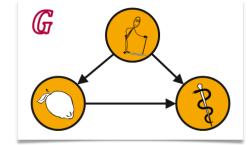
P(recovery|lemons, old) > P(recovery|no lemons, old)P(recovery|lemons, young) > P(recovery|no lemons, young)

But:

P(recovery|lemons) < P(recovery|no lemons)

 This reversal of the association between two variables after considering the third variable is called **Simpson's paradox**.

 Pearl extends probability calculus by introducing a new operator for describing interventions, the **do-operator**.



Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

1. Introduction The do-Operator

The do-operator

- *do*(...) marks intervention in the model
 - □ *In an algebraic model:* we replace certain functions with a constant X = x
 - In a graph: we remove edges going into the target of intervention, but preserve edges going out of the target.
- The causal calculus uses
 - □ *Bayesian conditioning*, p(y|x), where x is observed variable
 - □ *Causal conditioning*, p(y|do(x)), where we force a specific value x
- Goal: Generate probabilistic formulas for the effect of interventions in terms of the observed probabilities.

Resolution of Simpson's paradox

- Simpson's paradox is only paradoxical if we misinterpret
 - *P*(*recovery*|*lemons*) as *P*(*recovery*|*do*(*lemons*))
- We should treat scurvy with lemons if *P*(recovery|do(lemons)) > *P*(recovery|do(no lemons))

Hagedorn, Huegle, Perscheid

1. Introduction Resolution of Simpson's Paradox

The treatment does not affect the distribution of the subpopulations, i.e.,
 P(old|do(lemons) = P(old|do(no lemons)) = P(old)

Then, it is impossible that we have, simultaneously,

P(recovery|lemons,old) > P(recovery|no lemons,old) P(recovery|lemons,young) > P(recovery|no lemons,young) P(recovery|lemons) < P(recovery|no lemons)

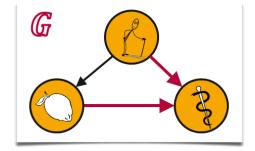
Proof:

But:

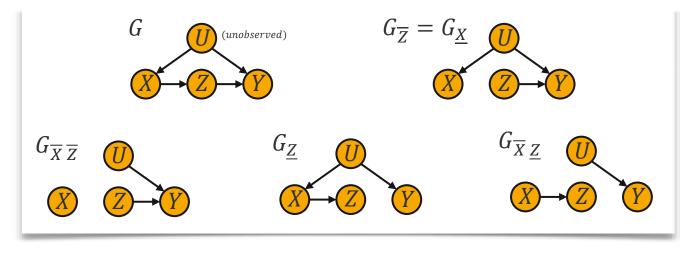
 P(recovery|do(lemons)) = P(recovery|do(lemons), old) P(old|do(lemons)) + P(recovery|do(lemons), young) P(young|do(lemons))
 = P(recovery|do(lemons), old) P(old) + P(recovery|do(lemons), young) P(young)
 P(recovery|do(no lemons)) = P(recovery|do(no lemons), old) P(old) + P(recovery|do(no lemons), young) P(young)
 Hence: P(recovery|do(lemons)) > P(recovery|do(no lemons))

Causal Inference Theory and Applications in Enterprise Computing

```
Hagedorn, Huegle,
Perscheid
```



2. The Calculus of Intervention Perturbed Graphs



- Graph
- *W*, X, Y, Z, U disjoint subsets of the variables
- $G_{\overline{X}}$ perturbed graph in which all edges *pointing to X* have been deleted
- G_X perturbed graph in which all edges *pointing from X* have been deleted
- Z(W) set of nodes in Z which are *not ancestors of* W

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

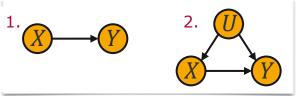
2. The Calculus of Intervention Identifiability

Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$.

• I.e., P(y|do(x)) is identifiable

if it can be consistently estimated from data involving only observed variables.

Examples:



- Can you estimate P(y | do(x)), given P(x, y)?
 - 1. Yes, since P(y|do(x)) = P(y|x), i.e., P(y|do(x)) is identifiable
 - 2. No (observational regime), since $P(x, y) = \sum_{u} P(x, y, u) = \sum_{u} P(y|x, u)P(x|u)P(u)$ $P(y|do(x)) = \sum_{u} P(y|x, u)P(u)$
- **Causal Inference** Theory and Applications in Enterprise Computing
- Hagedorn, Huegle, Perscheid

Slide 16

Back-door adjustment: $P(v_j | do(v_i)) = \sum_z P(v_j | v_i, z) P(z)$

an ordered pair of variables (V_i, V_i) in a DAG G if:

2. The Calculus of Intervention Back-Door Criterion

- But: after adjustment for direct causes (intervention)
 - $P(x,y) = \sum_{u} P(x,y,u) = \sum_{u} P(y|x,u) \frac{P(x|u)}{P(x|u)} P(u) = P(y|do(x))$
 - Hence, P(y|do(x)) is identifiable
- Any common ancestor of *X* and *Y* is a *confounder*

Back-Door Criterion (Pearl 1993):

1.no node in Z is a descendant of V_i ; and

Confounders originate "back-door" paths that need to be blocked by conditioning

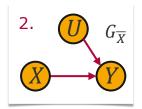
A set of variables Z satisfies the *back-door criterion* relative to

2. Z blocks every path between V_i and V_i that contains an arrow to V_i .

This defines a basic criterion for identifiability:

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid



Front-door adjustment: $P(v_j | do(v_i)) = \sum_z P(z | v_i) \sum_{v'_i} P(v_j | v'_i, z) P(v'_i)$

2. The Calculus of Intervention Front-Door Criterion

- But: If U is hidden (unobserved), then there is no data for conditioning
- Then, P(y|do(x)) is also identifiable!

 $P(y|do(x)) = \sum_{z} P(y|do(z))P(z|do(x))$

 $=\sum_{z} P(y|do(z))P(z|x)$ (direct effect)

 $=\sum_{x'} P(y|x',z)P(x')P(z|x)$ (back-door)

This defines a basic criterion for identifiability with unobserved variables:

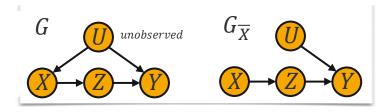
Front-Door Criterion (Pearl 1993):

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (V_i, V_j) in a DAG G if: 1. Z intercepts all directed paths from V_i to V_j ; and 2. there is no unblocked back-door path from V_i to Z; and

3. all back-door paths from Z to V_j are blocked by V_i

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid



2. The Calculus of Intervention The do-Calculus (Pearl 1995)

The do-Calculus:

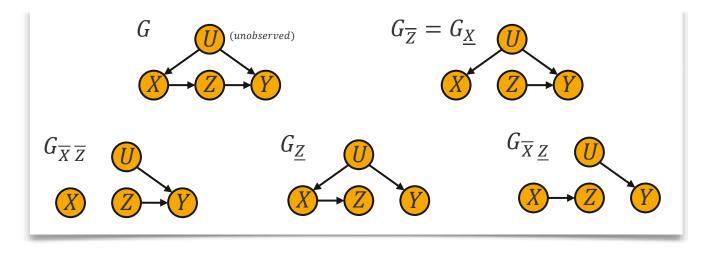
Let *X*,*Y*,*Z*, and *W* be arbitrary disjoint sets of nodes in a causal DAG *G*. *Rule 1: Ignoring observations* p(y|do(x), z, w) = p(y|do(x), w) if $(Y \perp Z \mid X, W)_{G_{\overline{X}}}$ *Rule 2: Action/Observation exchange (Back-Door)* p(y|do(x), do(z), w) = p(y|do(x), z, w) if $(Y \perp Z \mid X, W)_{G_{\overline{X}, \overline{Z}}}$ *Rule 3: Ignoring actions/interventions* p(y|do(x), do(z), w) = p(y|do(x), w) if $(Y \perp Z \mid X, W)_{G_{\overline{X}, \overline{Z}(W)}}$

Notes:

- Allows a syntactical derivation of claims about interventions
- The calculus is sound and complete
 - Sound: If the do-operations can be removed by repeated application of these three rules, the causal effect is identifiable. (Galles et al. 1995)
 - Complete: If identifiable, the do-operations can be removed by repeated application of these three rules. (Huang et al. 2012)
 - I.e., "it works on all inputs and always gets the right result"
- Also allows for identifiability of causal effects in MAGs

Hagedorn, Huegle, Perscheid

3. Estimating Causal Effects Deriving Causal Effects using the do-Calculus



Example: Compute P(y|do(z))

We have $P(y|do(z)) = \sum_{x} P(y|x, do(z)) P(x|do(z))$ = $\sum_{x} P(y|x, do(z)) P(x)$ (Rule 1: $(\mathbb{Z} \perp X)_{G_{\overline{Z}}}$) = $\sum_{x} P(y|x, z) P(x)$ (Rule 2: $(\mathbb{Z} \perp Y)_{G_{Z}}$) **Causal Inference** Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

3. Estimating Causal Effects Quantifying Causal Strength

- The *Causal Effect of* $V_i = v_i$ on V_j is given by $P(V_j | do(V_i = v_i))$
 - \square I.e., the distribution of V_j given that we force V_i to be v_i
 - This defines the basis of the examination of causal effects
- But: Quantifying the causal influence of V_i on V_j is a nontrivial question!
- Many measures of causal strength depending on the causal structures have been proposed, e.g.,
 - Average Treatment Effect (ATE):

$$E[V_j|do(V_i = 1)] - E[V_j|do(V_i = 0)]$$
 for binary V_i

Average Causal Effect (ACE):

$$\frac{\partial}{\partial v_i} E[V_j | do(V_i = v_i)] \text{ for continuous } V_i, V_j$$

Conditional Mutual Information (CI):

$$\sum_{v_i,v_j} P(v_i) P(v_i| do(V_i = v_i)) \log \frac{P(v_j| do(V_i = v_i))}{\sum_{v_i'} P(v_i = v_i') P(v_j| do(V_i = v_i'))}$$
for categorical V_i, V_j

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Relative Entropy, etc.

3. Estimating Causal Effects Cooling House Example – Quantifying Causal Effects

- We are in the multivariate normal case
- Hence, average causal effects are given by

• ACE
$$(V_4, V_1, v_1) = \frac{\partial}{\partial v_1} E[V_4 | do(V_1 = v_1)]$$

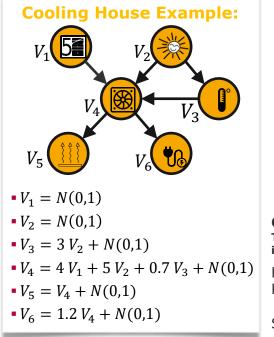
= $E[V_4 | do(V_1 = v_1 + 1)] - E[V_4 | do(V_1 = v_1)]$ (linear f)
= $\beta_{V_1 \to V_4} = 4$

$$ACE(V_6, V_1, v_1) = \frac{\partial}{\partial v_1} E[V_6 | do(V_1 = v_1)]$$

= $E[V_6 | do(V_1 = v_1 + 1)] - E[V_6 | do(V_1 = v_1)]$
= $\beta_{V_1 \to V_4} \cdot \beta_{V_4 \to V_6} = 4 \cdot 1.2 = 4.8$

□ ACE(V₄, V₂, v₂) =
$$\frac{\partial}{\partial v_2} E[V_4 | do(V_2 = v_2)]$$

= $E[V_4 | do(V_2 = v_2 + 1)] - E[V_4 | do(V_2 = v_2)]$
= $\beta_{V_2 \to V_4} + \beta_{V_2 \to V_3} \cdot \beta_{V_3 \to V_4} = 5 + 3 \cdot 0.7 = 7.1$
□ ACE(V₆, V₅, v₅) = 0



Causal Inference Theory and Applications in Enterprise Computing

HPI

Hasso Plattner

Institut

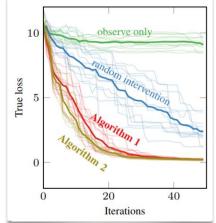
Hagedorn, Huegle, Perscheid

Idea:

4. Excursion

The identification of the underlying causal graph *G* allows to learn the functions computing children from parents in the structural causal model.

- I.e., the logical second step after the causal discovery
- The do-operator builds a natural basis of probabilistic learning algorithms for estimating the functional system:
 - Active Bayesian learning allows for identification of interventions that are optimally informative about all of the unknown functions (Algorithm 1)
 - Exploiting factorization properties allows for vectorization and simultaneous calculations in a dynamic programming approach (Algorithm 2)
- Probabilistic active learning of functions significantly improves the estimation compared to unstructured base-lines (Observe only, random intervention).



Causal Inference Theory and Applications in Enterprise Computing

HPI

Hasso Plattner

Institut

Hagedorn, Huegle, Perscheid

4. Excursion Causal Functional System (A Naive Example!)

- **Goal:** Estimate $\beta_{V_1 \rightarrow V_4}$
- **Recall**: True $\beta_{V_1 \rightarrow V_4} = 4$

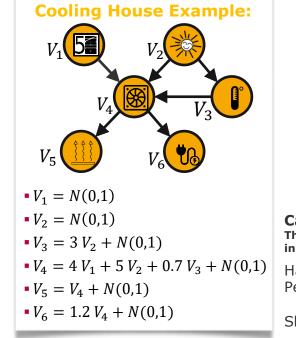
Linear Regression Model Approach:

- Fit linear model $V_4 = lm(V_1, V_2, V_3, V_5, V_6)$
- Then $\hat{\beta}_{V_1 \rightarrow V_4} = 1.14$

 \Box Underestimated $\beta_{V_1 \rightarrow V_4}$

Causal Structural Approach:

■ From estimated CPDAG \hat{G} we know $V_1 = Pa(V_4)$ ■ Hence, $\hat{\beta}_{V_1 \to V_4} = \widehat{ACE}(V_4, V_1, v_1) \in \{4.09, 4.09\}$ ⇒ Estimated $\beta_{V_1 \to V_4}$ (up to the equivalence class)



Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Slide 25

References Literature

- Pearl, J. (2009). *Causal inference in statistics: An overview*. Statistics Surveys.
- Pearl, J. (2009). <u>Causality: Models, Reasoning, and Inference</u>. Cambridge University Press.
- Spirtes et al. (2000). Causation, Prediction, and Search. The MIT Press.
- Pearl, J. (1995). *Causal diagrams for empirical research*. Biometrika.
- Maathuis et al. (2013). <u>A generalized backdoor criterion</u>. arXiv.
- Galles et al. (1995). *Testing identifiability of causal effects*. In Proceedings of UAI-95.
- Huang et al. (2012). *Pearl's Calculus of Intervention Is Complete*. arXiv.
- Pearl, J (2012). <u>The Do-Calculus Revisited</u>. arXiv.
- Janzing et al. (2013) *Quantifying causal influences*. The Annals of Statistics.
- Rubenstein et al. (2017). <u>Probabilistic Active Learning of Functions in Structural Causal</u> <u>Models</u>. arXiv.

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

IT Systems Engineering | Universität Potsdam

Thank you for your attention!