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Causal Models
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Data Generating     
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Aspects of 𝑷

Aspects of 𝑮

Inference

E.g., what is the sailors’ 
probability of recovery when 
we see a treatment with lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ 
probability of recovery if 
we do treat them with lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)
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Causal Graphical Model

■ Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸)

□ Vertices 𝑉1, … , 𝑉𝑛

□ Directed edges 𝐸 = (𝑉𝑖 , 𝑉𝑗), i.e., 𝑉𝑖 → 𝑉𝑗

□ No cycles

■ Directed Edges encode direct causes via

□ 𝑉𝑗 = 𝑓𝑗 Pa Vj , Nj with independent noise 𝑁1, … , 𝑁𝑛

Causal Sufficiency

■ All relevant variables are included in the DAG 𝐺

Joint Distribution   

Data Generating     
Model
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Joint Distribution   

Data Generating     
Model

■ Key Postulate: (Local) Markov Condition

■ Essential mathematical concept: d-Separation

□ Idea: Blocking of paths

□ Implication: Global Markov Condition

■ Key Postulate: Causal Faithfulness

𝑿 ⫫ 𝒀 𝒁 𝑮 ⇒ 𝑿 ⫫ 𝒀 𝒁 𝑷

𝑿 ⫫ 𝒀 𝒁 𝑮 ⇐ 𝑿 ⫫ 𝒀 𝒁 𝑷
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Data

Joint Distribution   

Statistical Inference

■ Essential concept: Point estimator 𝛩

□ Statistic 𝑔(𝑋1, … , 𝑋𝑛) of random samples 𝑋1, … , 𝑋𝑛 to estimate population parameter 𝛩

■ Inference: Statistical Hypothesis Test

□ Null Hypothesis 𝐻0, claim on a population’s property initially assumed to be true 

□ Alternative Hypothesis 𝐻1, a claim that contradicts 𝐻0

□ Rejection criteria for 𝐻0: 𝑐-value 𝑇(𝑥) > c or equivalently 𝑝-value 𝑃𝐻0 𝑇 𝑋 > 𝑇 𝑥 < 𝛼

■ Key idea: Conditional Independence Test

□ Distribution of 𝑽 = 𝑉1, … , 𝑉𝑁 ⇒ dependence measure 𝑇(𝑉𝑖, 𝑉𝑗, 𝑺) ⇒ hypothesis 𝐻0: 𝑡 = 0

𝑿 ⫫ 𝒀 𝒁 𝑷 ⇐
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1. Introduction

2. Constraint-Based Causal Structure Learning

▪ Foundation 

▪ Algorithmic Construction

3. PC Algorithm

▪ The Idea

▪ Skeleton Discovery

▪ Edge Orientation

▪ Review

▪ Cooling House Example

▪ Extensions of the PC Algorithm

4. Other Methods of Causal Structure Learning
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Inference Paradigm

Paradigm of Structural 
Causal Models

Data Generating     
Model

Inference

Aspects of 𝑷
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Causal Inference 
- Theory and 
Applications

Inference

E.g., what is the sailors’ 
probability of recovery when 
we see a treatment with lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ 
probability of recovery if 
we do treat them with lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)

Joint Distribution   

Data



■ Assumptions:

□ Causal Sufficiency

□ Markov Condition

□ Causal Faithfulness

■ Causal Structure Learning:

□ Accept only those DAG’s 𝐺 as causal hypothesis for which

𝑋 ⫫ 𝑌 𝑍 𝐺 ⇔ 𝑋 ⫫ 𝑌 𝑍 𝑃.

□ Identifies causal DAG up to Markov equivalence class 
(DAGs that imply the same conditional independencies)

□ The Markov equivalence class of a DAG 𝐺 includes all DAGs 𝐺′ that have the same 

skeleton 𝐶 and the same 𝑣-structures

□ Markov equivalence class of the true DAG 𝐺 that can be uniquely described by a 

completed partially directed acyclic graph (CPDAG)

1. Introduction
Recap: Basis of Causal Structure Learning (Pearl et al.)
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■ I.e., dependence mediated by other variables can be screened off 
by conditioning on an appropriate set

…but not by conditioning on all other variables!

■ 𝑆(𝑉𝑖 , 𝑉𝑗) is called separation set of 𝑉𝑖 and 𝑉𝑗

2. Constraint-Based Causal Structure Learning
Basis

Slide 14

Theorem
Assume Markov condition and faithfulness holds. Then 𝑉𝑖 and 𝑉𝑗 are 

linked by an edge if and only if there is no set 𝑆 𝑉𝑖 , 𝑉𝑗 such that

𝑉𝑖 ⫫ 𝑉𝑗 𝑆(𝑉𝑖 , 𝑉𝑗) 𝑃.

𝑋 𝑌

𝑍

𝑊

𝑈

▪ 𝑋 ⫫ 𝑌|{𝑍,𝑊}

▪ But: 

▫ 𝑋 𝑌| 𝑈

▫ 𝑋 𝑌| {𝑍,𝑊,𝑈}
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Idea:

1. Construct skeleton 𝐶

2. Find 𝑣-structures

3. Direct further edges that follow from

□ Graph is acyclic

□ All 𝑣-structures have been found in 2.

■ IC algorithm by Verma and Pearl (1990) to reconstruct CPDAG 𝐺 from 𝑃

2. Constraint-Based Causal Structure Learning
Algorithmic Construction
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■ Check 𝑉i ⫫ 𝑉𝑗 | 𝑆(𝑉𝑖 , 𝑉𝑗) for all possible separation sets 𝑆 𝑉𝑖 , 𝑉𝑗 ⊆ 𝑽 ∖ 𝑉𝑖 , 𝑉𝑗

□ Computationally infeasible for large 𝑉

■ Efficient construction of the skeleton 𝐶

□ Iteration over size of the separation sets 𝑆:

1. Remove all edges 𝑉𝑖 − 𝑉𝑗 with 𝑉𝑖 ⫫ 𝑉𝑗

2. Remove all edges 𝑉𝑖 − 𝑉𝑗
for which there is an adjacent 𝑉𝑘 ≠ 𝑉𝑗 of 𝑉𝑖 with 𝑉𝑖 ⫫ 𝑉𝑗 | 𝑉𝑘

3. Remove all edges Vi − 𝑉𝑗
for which there are two adjacent Vk, 𝑉l ≠ 𝑉𝑗 of 𝑉𝑖 with Vi ⫫ 𝑉𝑗 | {𝑉𝑘, 𝑉𝑙}

4. …

■ PC algorithm by Spirtes et al. (1993) to reconstruct CPDAG 𝐺 from 𝑃

3. PC Algorithm
The Idea 
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Question:

How to find the appropriate separation sets 𝑆 𝑉𝑖 , 𝑉𝑗 for all variables 𝑉𝑖 and 𝑉𝑗?
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3. PC Algorithm
Skeleton Discovery: Pseudocode 
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■ Assume the skeleton is given by:

□ Given 𝑉𝑖 − 𝑉𝑘 − 𝑉𝑗 with 𝑉𝑖 and 𝑉𝑗 nonadjacent

□ Given 𝑆 𝑉𝑖 , 𝑉𝑗 with 𝑉𝑖 ⫫ 𝑉𝑗| 𝑆(𝑉𝑖 , 𝑉𝑗)

■ A priori, there are 4 possible orientations

□ 𝑉𝑖 → 𝑉𝑘 → 𝑉𝑗

□ 𝑉𝑖 ← 𝑉𝑘 → 𝑉𝑗 𝑉𝑘 ∈ 𝑆 𝑉𝑖 , 𝑉𝑗

□ 𝑉𝑖 ← 𝑉𝑘 ← 𝑉𝑗

□ 𝑉𝑖 → 𝑉𝑘 ← 𝑉𝑗 𝑉𝑘 ∉ 𝑆(𝑉𝑖, 𝑉𝑗)

3. PC Algorithm
Edge Orientation: 𝑣-Structures
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𝒗-Structures:

If Vk ∉ 𝑆(𝑉𝑖 , 𝑉𝑗) then replace  Vi − 𝑉𝑘 − 𝑉𝑗 by Vi → 𝑉𝑘 ← 𝑉𝑗 .

𝑉𝑖

𝑉𝑘

𝑉𝑗

𝑉𝑖

𝑉𝑘

𝑉𝑗

𝑉𝑘 ∉ 𝑆(𝑉𝑖 , 𝑉𝑗)
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3. PC Algorithm
Edge Orientation: Rule 1
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Rule 1:

Orient 𝑉𝑘 − 𝑉𝑗 to 𝑉𝑘 → 𝑉𝑗 whenever 

there is an arrow 𝑉𝑖 → 𝑉𝑘 s.t. 𝑉𝑘 and 𝑉𝑗 are nonadjacent

𝑉𝑖 𝑉𝑘 𝑉𝑗 𝑉𝑖 𝑉𝑘 𝑉𝑗

(Otherwise we get a new 𝑣-structure)
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Rule 2:

Orient 𝑉𝑖 − 𝑉𝑗 to 𝑉𝑖 → 𝑉𝑗 whenever 

there is a chain 𝑉𝑖 → 𝑉𝑘 → 𝑉𝑗

3. PC Algorithm
Edge Orientation: Rule 2
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𝑉𝑖

𝑉𝑘

𝑉𝑗

(Otherwise we get a cycle)

𝑉𝑖

𝑉𝑘

𝑉𝑗
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3. PC Algorithm
Edge Orientation: Rule 3
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Rule 3:

Orient 𝑉𝑖 − 𝑉𝑗 to 𝑉𝑖 → 𝑉𝑗 whenever 

there are two chains 𝑉𝑖 − 𝑉𝑘 → 𝑉𝑗, 𝑉𝑖 − 𝑉𝑙 → 𝑉𝑗 s.t. 𝑉𝑘 and 𝑉𝑙 are nonadjacent 

𝑉𝑖

𝑉𝑘

𝑉𝑗

(Could not be completed 
without creating a cycle 
or a new 𝑣-structure)

𝑉𝑙

𝑉𝑖

𝑉𝑘

𝑉𝑗

𝑉𝑙

Hagedorn, Huegle, 
Perscheid

Causal Inference 
Theory and Applications 
in Enterprise Computing



Rule 4:

Orient 𝑉𝑖 − 𝑉𝑗 to 𝑉𝑖 → 𝑉𝑗 whenever 

there are two chains 𝑉𝑖 − 𝑉𝑘 → 𝑉𝑙, 𝑉𝑘 → 𝑉𝑙 → 𝑉𝑗 s.t. 𝑉𝑘 and 𝑉𝑙 are nonadjacent 

3. PC Algorithm
Edge Orientation: Rule 4
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𝑉𝑖

𝑉𝑘

𝑉𝑗

(Could not be completed 
without creating a cycle 
or a new 𝑣-structure)

𝑉𝑙

𝑉𝑖

𝑌

𝑉𝑗

𝑉𝑙
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3. PC Algorithm
Edge Orientation: Pseudocode
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Advantages

■ Testing all sets 𝑆(𝑋, 𝑌) containing the adjacencies of 𝑋 is sufficient

■ Many edges can be removed already for small separation sets

■ Depending on sparseness, the algorithm only requires independence tests with small 

conditioning sets 𝑆 𝑋, 𝑌

■ Polynomial complexity for graph of 𝑁 vertices of bounded degree 𝑘, i.e., 

𝑁2 𝑁 − 1 𝑘−1

𝑘 − 1 !
■ Asymptotic consistency (under technical assumptions), i.e.,

Pr 𝐺 = 𝐺 → 1 (𝑛 → ∞)

Disadvantages

■ In the worst case, complexity exponential to number of vertices 𝑁

■ Assumes causal sufficiency, faithfulness and Markov conditions 

3. PC Algorithm
A Review
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■ Assume the true DAG 𝐺 is given by:

■ We start with a fully connected undirected graph:

4. PC Algorithm in the Cooling House Example
Cooling House Example (I/V)
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■ Assume the true DAG 𝐺 is given by:

■ Remove all edges 𝑉𝑖 − 𝑉𝑗 that are directly independent, i.e., 𝑉𝑖 ⫫ 𝑉𝑗 | ∅

o 𝑉1 ⫫ 𝑉2

o 𝑉1 ⫫ 𝑉3

4. PC Algorithm in Application
Cooling House Example (II/V)
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𝑉3

𝑉2

𝑉4

𝑉5 𝑉6
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■ Assume the true DAG 𝐺 is given by:

■ Remove all edges 𝑉𝑖 − 𝑉𝑗 having separation sets of size 1, i.e., 𝑉𝑖 ⫫ 𝑉𝑗 | 𝑉𝑘

o 𝑉1 ⫫ 𝑉5 | 𝑉4

o 𝑉1 ⫫ 𝑉6 | 𝑉4

o 𝑉2 ⫫ 𝑉5 | 𝑉4

o 𝑉2 ⫫ 𝑉6 | 𝑉4

o 𝑉3 ⫫ 𝑉5 | 𝑉4

o 𝑉3 ⫫ 𝑉6 | 𝑉4

o 𝑉5 ⫫ 𝑉6 | 𝑉4

4. PC Algorithm in Application
Cooling House Example (III/V)
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■ Assume the true DAG 𝐺 is given by:

■ Find 𝑣-structures, i.e., orient 𝑉𝑖 − 𝑉𝑘 − 𝑉𝑗 to 𝑉𝑖 → 𝑉𝑘 ← 𝑉𝑗 if 𝑉𝑘 ∉ 𝑆(𝑉𝑖 , 𝑉𝑗)

o 𝑉4 ∉ 𝑆 𝑉1, 𝑉2

o 𝑉4 ∉ 𝑆 𝑉1, 𝑉3

4. PC Algorithm in Application
Cooling House Example (IV/V)
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■ Assume the true DAG 𝐺 is given by:

■ Orient further edges (such that no further 𝑣-structures arise)

o 𝑉1 → 𝑉4 − 𝑉5 (Rule 1)

o 𝑉1 → 𝑉4 − 𝑉6 (Rule 1)

■ No further edges can be oriented, i.e., V2 − 𝑉3 remain undirected

4. PC Algorithm in Application
Cooling House Example (V/V)
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PC algorithm

Order of 𝑽 = 𝑉1, … , 𝑉𝑁 affects estimation of 

1. Skeleton 𝐶

2. Separating sets 𝑆(𝑉𝑖 , 𝑉𝑗)

3. Edge orientation

PC-stable algorithm

For each level 𝑙

□ Compute  and store the adjacency set 

𝑎(𝑉𝑖) of all vertices 𝑉𝑖

□ Use 𝑎 𝑉𝑖 for search of separation sets

Edge deletion longer affects which 
conditional independencies are checked for 

other pairs of variables at this level 𝑙

5. Extensions of the PC Algorithm
Order Independence (Colombo et al. 2014)
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5. Extensions of the PC Algorithm
Parallelization (Le et al. 2016)
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PC algorithm

Limitations:

1. Order-dependent (→PC-stable)

2. Sequential execution does not utilize modern hardware

Long runtime hinders its application on high 
dimensional datasets

parallelPC algorithm

PC-stable allows for easy parallelization at each level 𝑙, i.e., 

1. CI tests are distributed evenly among the cores 

2. Each core performs its own sets of CI tests in parallel 
with the others

3. Synchronize test results into the global skeleton 𝐶

Efficient in high dimensional datasets and consistent 
with PC-stable algorithm
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■ Weaker form of faithfulness

□ Learn a Markov equivalence class of DAGs under a weaker-than-standard  causal 
faithfulness assumption

□ Assumes Adjacency-Faithfulness to justify the step of recovering adjacencies in constraint-
based algorithms

Conservative PC (CPC) by Ramsey et al. (1995)

■ Allow for cycles

□ Learn Markov equivalence classes of directed (not necessarily acyclic)  graphs under the 
assumption of causal sufficiency.

Cyclic causal discovery (CCD) by Richardson (1996)

■ Allow for latent and selection variables

□ Learn a Markov equivalence class of DAGs with latent and selection variables

□ Follows maximal ancestral graph (MAG) models

Fast causal inference (FCI) by Spirtes et al. (1999)

5. Extensions of the PC Algorithm
Theoretical Extensions (A Selection)
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Score-based methods

■ “search-and-score approach”, i.e., 

1. Assume causal structure 𝐺 and functional restrictions (e.g., linear relations and 

independent Gaussian noise)

2. Optimize some score (e.g., likelihood or BIC) given these restrictions

3. Change 𝐺 and compute new optimal score value 

4. Repeat this for many 𝐺 and return 𝐺𝑜𝑝𝑡 with the best (optimized) score 

E.g., Greedy-Equivalent-Search (GES) by Chickering (2002)

Hybrid methods

■ Combines constraint-based and search-and-score methods, i.e., 

1. Constraint-based search to find skeleton

2. Score-based approach to orient edges 

E.g., Max-Min Hill-Climbing (MMHC) by Tsamardinos et al. (2006)

6. Other Methods of Causal Structure Learning
Overview
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Thank you
for your attention!


