

Christopher Hagedorn, Johannes Huegle, Dr. Michael Perscheid May 19, 2020

Agenda

May 19, 2020

- Embedding: Causal Inference in a Nutshell
- Introduction to Causal Structure Learning

Embedding: Causal Inference in a NutshellConcept

E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell Causal Graphical Models

Causal Graphical Model

- Directed Acyclic Graph (DAG) G = (V, E)
 - \Box *Vertices* V_1, \dots, V_n
 - □ Directed edges $E = (V_i, V_i)$, i.e., $V_i \rightarrow V_i$
 - No cycles
- Directed Edges encode direct causes via
 - $V_j = f_j(Pa(V_j), N_j)$ with independent noise $N_1, ..., N_n$

Causal Sufficiency

All relevant variables are included in the DAG G

Causal Inference

Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell

Connecting G and P

$(X \perp\!\!\!\perp Y|Z)_G \Rightarrow (X \perp\!\!\!\perp Y|Z)_P$

- Key Postulate: (Local) Markov Condition
- Essential mathematical concept: *d-Separation*
 - □ Idea: *Blocking* of paths
 - Implication: Global Markov Condition

$(X \perp\!\!\!\perp Y|Z)_G \leftarrow (X \perp\!\!\!\perp Y|Z)_P$

Key Postulate: Causal Faithfulness

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

Recap: Causal Inference in a Nutshell

Connecting P and \square

Statistical Inference

- Essential concept: *Point estimator* $\hat{\theta}$
 - □ Statistic $g(X_1,...,X_n)$ of random samples $X_1,...,X_n$ to estimate population parameter Θ
- Inference: Statistical Hypothesis Test
 - \square Null Hypothesis H_0 , claim on a population's property initially assumed to be true
 - \Box Alternative Hypothesis H_1 , a claim that contradicts H_0
 - Rejection criteria for H_0 : c-value T(x) > c or equivalently p-value $P_{H_0}(T(X) > T(x)) < \alpha$

$(X \perp\!\!\!\perp Y|Z)_P \Leftarrow \Box$

- Key idea: Conditional Independence Test
 - □ Distribution of $V = \{V_1, ..., V_N\}$ ⇒ dependence measure $T(V_i, V_i, S)$ ⇒ hypothesis $H_0: t = 0$

Causal Inference
Theory and Applications
in Enterprise Computing
Hagedorn, Huegle

Hagedorn, Huegle, Perscheid

Introduction to Causal Structure Learning

Introduction to Causal Structure LearningContent

- 1. Introduction
- 2. Constraint-Based Causal Structure Learning
 - Foundation
 - Algorithmic Construction
- 3. PC Algorithm
 - The Idea
 - Skeleton Discovery
 - Edge Orientation
 - Review
 - Cooling House Example
 - Extensions of the PC Algorithm
- 4. Other Methods of Causal Structure Learning

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

1. Introduction

Causal Inference in a Nutshell

- Theory and **Applications** Uflacker, Huegle,

Schmidt

1. Introduction

Recap: Basis of Causal Structure Learning (Pearl et al.)

Assumptions:

- Causal Sufficiency
- Markov Condition
- Causal Faithfulness

Causal Structure Learning:

 $\ \square$ Accept only those DAG's G as causal hypothesis for which

$$(X \perp\!\!\!\perp Y \mid Z)_G \Leftrightarrow (X \perp\!\!\!\perp Y \mid Z)_P$$
.

- Identifies causal DAG up to Markov equivalence class
 (DAGs that imply the same conditional independencies)
- The Markov equivalence class of a DAG G includes all DAGs G' that have the same $skeleton\ C$ and the same v-structures

Causal Inference Theory and Applications in Enterprise Computing Hagedorn, Huegle,

Perscheid

2. Constraint-Based Causal Structure Learning Basis

Theorem

Assume Markov condition and faithfulness holds. Then V_i and V_j are linked by an edge if and only if there is no set $S(V_i, V_j)$ such that $\left(V_i \perp V_j \middle| S(V_i, V_j)\right)_p$

 I.e., dependence mediated by other variables can be screened off by conditioning on an appropriate set

...but not by conditioning on all other variables!

• $S(V_i, V_j)$ is called separation set of V_i and V_j

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

2. Constraint-Based Causal Structure Learning Algorithmic Construction

Idea:

- 1. Construct skeleton C
- 2. Find v-structures
- 3. Direct further edges that follow from
 - Graph is acyclic
 - \Box All *v*-structures have been found in 2.

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

Slide **15**

 \longrightarrow IC algorithm by Verma and Pearl (1990) to reconstruct CPDAG G from P

The Idea

Question:

How to find the appropriate separation sets $S(V_i, V_j)$ for all variables V_i and V_j ?

- Check $V_i \perp V_i \mid S(V_i, V_i)$ for all possible separation sets $S(V_i, V_i) \subseteq V \setminus \{V_i, V_i\}$
 - \Box Computationally infeasible for large V
- ullet Efficient construction of the skeleton ${\cal C}$
 - Iteration over size of the separation sets S:
 - **1.** Remove all edges $V_i V_i$ with $V_i \perp V_i$
 - 2. Remove all edges $V_i V_j$ for which there is an adjacent $V_k \neq V_j$ of V_i with $V_i \perp \!\!\! \perp V_j \mid V_k$
 - 3. Remove all edges $V_i V_j$ for which there are two adjacent $V_k, V_l \neq V_j$ of V_i with $V_i \perp V_j \mid \{V_k, V_l\}$

4....

Causal Inference
Theory and Applications
in Enterprise Computing
Hagedorn, Huegle,
Perscheid

Slide **16**

 \rightarrow *PC algorithm* by Spirtes et al. (1993) to reconstruct CPDAG *G* from *P*

Skeleton Discovery: Pseudocode

Algorithm 1 The PCpop-algorithm

- 1: **INPUT:** Vertex Set V, Conditional Independence Information
- 2: **OUTPUT:** Estimated skeleton C, separation sets S (only needed when directing the skeleton afterwards)
- 3: Form the complete undirected graph \tilde{C} on the vertex set V.

```
4: \ell = -1; C = \tilde{C}
```

```
5: repeat
```

$$\ell = \ell + 1$$

- 7: repeat
- 8: Select a (new) ordered pair of nodes i, j that are adjacent in C such that $|adj(C,i)\setminus\{j\}| \ge \ell$
- 9: repeat
- 10: Choose (new) $\mathbf{k} \subseteq adj(C,i) \setminus \{j\}$ with $|\mathbf{k}| = \ell$.
- if i and j are conditionally independent given k then
- 12: Delete edge i, j
- 13: Denote this new graph by C
- 14: Save **k** in S(i, j) and S(j, i)
- 15: end if
- 16: **until** edge i, j is deleted or all $\mathbf{k} \subseteq adj(C, i) \setminus \{j\}$ with $|\mathbf{k}| = \ell$ have been chosen
- 17: **until** all ordered pairs of adjacent variables i and j such that $|adj(C,i) \setminus \{j\}| \ge \ell$ and $k \subseteq adj(C,i) \setminus \{j\}$ with $|\mathbf{k}| = \ell$ have been tested for conditional independence
- 18: **until** for each ordered pair of adjacent nodes $i, j: |adj(C, i) \setminus \{j\}| < \ell$.

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Edge Orientation: *v*-Structures

- Assume the skeleton is given by:

 - □ Given $S(V_i, V_j)$ with $V_i \perp V_j \mid S(V_i, V_j)$
- A priori, there are 4 possible orientations

$$\begin{array}{ccc}
 & V_i \to V_k \to V_j \\
 & V_i \leftarrow V_k \to V_j \\
 & V_i \leftarrow V_k \leftarrow V_j \\
 & V_i \to V_k \leftarrow V_j
\end{array}$$

$$V_k \in S(V_i, V_j) \\
V_k \notin S(V_i, V_j)$$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Slide 18

v-Structures:

If $V_k \notin S(V_i, V_j)$ then replace $V_i - V_k - V_j$ by $V_i \rightarrow V_k \leftarrow V_j$.

Edge Orientation: Rule 1

(Otherwise we get a new v-structure)

Rule 1:

Orient $V_k - V_j$ to $V_k \to V_j$ whenever there is an arrow $V_i \to V_k$ s.t. V_k and V_j are nonadjacent

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

Edge Orientation: Rule 2

(Otherwise we get a cycle)

Rule 2:

Orient $V_i - V_j$ to $V_i \rightarrow V_j$ whenever there is a chain $V_i \rightarrow V_k \rightarrow V_j$

Causal Inference

Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Edge Orientation: Rule 3

(Could not be completed without creating a cycle or a new *v*-structure)

Rule 3:

Orient $V_i - V_j$ to $V_i \to V_j$ whenever there are two chains $V_i - V_k \to V_j$, $V_i - V_l \to V_j$ s.t. V_k and V_l are nonadjacent

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Edge Orientation: Rule 4

Rule 4:

Orient $V_i - V_j$ to $V_i \to V_j$ whenever there are two chains $V_i - V_k \to V_l$, $V_k \to V_l \to V_j$ s.t. V_k and V_l are nonadjacent

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

Edge Orientation: Pseudocode

Algorithm 2 Extending the skeleton to a CPDAG

INPUT: Skeleton G_{skel} , separation sets S

OUTPUT: CPDAG G

for all pairs of nonadjacent variables i, j with common neighbour k do

if $k \notin S(i, j)$ then

Replace i - k - j in G_{skel} by $i \rightarrow k \leftarrow j$

end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated application of the following three rules:

R1 Orient j - k into $j \to k$ whenever there is an arrow $i \to j$ such that i and k are nonadjacent.

R2 Orient i - j into $i \rightarrow j$ whenever there is a chain $i \rightarrow k \rightarrow j$.

R3 Orient i - j into $i \to j$ whenever there are two chains $i - k \to j$ and $i - l \to j$ such that k and l are nonadjacent.

R4 Orient i - j into $i \to j$ whenever there are two chains $i - k \to l$ and $k \to l \to j$ such that k and j are nonadjacent.

Causal Inference Theory and Applications in Enterprise Computing Hagedorn, Huegle, Perscheid

A Review

Advantages

- Testing all sets S(X,Y) containing the adjacencies of X is sufficient
- Many edges can be removed already for small separation sets
- Depending on sparseness, the algorithm only requires independence tests with small conditioning sets S(X,Y)
- Polynomial complexity for graph of N vertices of bounded degree k, i.e.,

$$\frac{N^2(N-1)^{k-1}}{(k-1)!}$$

Asymptotic consistency (under technical assumptions), i.e.,

$$\Pr(\hat{G} = G) \to 1 \quad (n \to \infty)$$

Disadvantages

- In the worst case, complexity exponential to number of vertices N
- Assumes causal sufficiency, faithfulness and Markov conditions

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

4. PC Algorithm in the Cooling House ExampleCooling House Example (I/V)

• Assume the true DAG *G* is given by:

• We start with a fully connected undirected graph:

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Cooling House Example (II/V)

Assume the true DAG G is given by:

- Remove all edges $V_i V_j$ that are directly independent, i.e., $V_i \perp \!\!\! \perp V_j \mid \emptyset$
 - \circ $V_1 \perp \!\!\! \perp V_2$
 - \circ $V_1 \perp \!\!\! \perp V_3$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Cooling House Example (III/V)

Assume the true DAG G is given by:

- Remove all edges $V_i V_j$ having separation sets of size 1, i.e., $V_i \perp \!\!\! \perp V_j \mid V_k$
 - \circ $V_1 \perp \!\!\! \perp V_5 \mid V_4$
 - \circ $V_1 \perp V_6 \mid V_4$
 - \circ $V_2 \perp \!\!\! \perp V_5 \mid V_4$
 - \circ $V_2 \perp V_6 \mid V_4$
 - \circ $V_3 \perp \!\!\! \perp V_5 \mid V_4$
 - $\circ V_3 \perp V_6 \mid V_4$
 - \circ $V_5 \perp \!\!\! \perp V_6 \mid V_4$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Cooling House Example (IV/V)

Assume the true DAG G is given by:

- Find v-structures, i.e., orient $V_i V_k V_j$ to $V_i \to V_k \leftarrow V_j$ if $V_k \notin S(V_i, V_j)$
 - $V_4 \notin S(V_1, V_2)$
 - $\circ V_4 \notin S(V_1, V_3)$

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

Cooling House Example (V/V)

Assume the true DAG G is given by:

• Orient further edges (such that no further *v*-structures arise)

$$\circ V_1 \rightarrow V_4 - V_5$$
 (Rule 1)

$$\circ V_1 \rightarrow V_4 - V_6$$
 (Rule 1)

• No further edges can be oriented, i.e., $V_2 - V_3$ remain undirected

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

5. Extensions of the PC Algorithm

Order Independence (Colombo et al. 2014)

PC algorithm

Order of $V = \{V_1, ..., V_N\}$ affects estimation of

- 1. Skeleton C
- 2. Separating sets $S(V_i, V_j)$
- 3. Edge orientation

PC-stable algorithm

For each level l

- Compute and store the adjacency set $a(V_i)$ of all vertices V_i
- \Box Use $a(V_i)$ for search of separation sets
- \Longrightarrow Edge deletion longer affects which conditional independencies are checked for other pairs of variables at this level l

```
Algorithm 4.1 Step 1 of the PC-stable algorithm (oracle version)
Require: Conditional independence information among all variables in V, and an ordering
    order(V) on the variables
1: Form the complete undirected graph \mathcal{C} on the vertex set V
 2: Let ℓ = −1:
       for all vertices X_i in C do
         Let a(X_i) = \operatorname{adj}(C, X_i)
       end for
         Select a (new) ordered pair of vertices (X_i, X_j) that are adjacent in C and satisfy
          |a(X_i) \setminus \{X_i\}| \ge \ell, using order(V);
10:
         repeat
            Choose a (new) set \mathbf{S} \subseteq a(X_i) \setminus \{X_i\} with |\mathbf{S}| = \ell, using order(V);
11:
            if X_i and X_j are conditionally independent given S then
12:
13:
               Delete edge X_i - X_j from C;
               Let sepset(X_i, X_i) = \text{sepset}(X_i, X_i) = \mathbf{S};
15:
         until X_i and X_j are no longer adjacent in \mathcal{C} or all \mathbf{S} \subseteq a(X_i) \setminus \{X_j\} with |\mathbf{S}| = \ell
         have been considered
     until all ordered pairs of adjacent vertices (X_i, X_i) in \mathcal{C} with |a(X_i) \setminus \{X_i\}| \ge \ell have
18: until all pairs of adjacent vertices (X_i, X_j) in \mathcal{C} satisfy |a(X_i) \setminus \{X_j\}| \leq \ell
19: return C, sepset.
```

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle, Perscheid

5. Extensions of the PC Algorithm

Parallelization (Le et al. 2016)

PC algorithm

Limitations:

- Order-dependent (→PC-stable)
- 2. Sequential execution does not utilize modern hardware
- Long runtime hinders its application on high dimensional datasets

parallelPC algorithm

PC-stable allows for easy parallelization at each level l, i.e.,

- 1. CI tests are distributed evenly among the cores
- 2. Each core performs its own sets of CI tests in parallel with the others
- 3. Synchronize test results into the global skeleton ${\cal C}$
- Efficient in high dimensional datasets and consistent with PC-stable algorithm

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

5. Extensions of the PC Algorithm

Theoretical Extensions (A Selection)

Weaker form of faithfulness

- Learn a Markov equivalence class of DAGs under a weaker-than-standard causal faithfulness assumption
- Assumes Adjacency-Faithfulness to justify the step of recovering adjacencies in constraintbased algorithms
- ⇒ Conservative PC (CPC) by Ramsey et al. (1995)

Allow for cycles

- Learn Markov equivalence classes of directed (not necessarily acyclic) graphs under the assumption of causal sufficiency.
- ⇒ *Cyclic causal discovery (CCD)* by Richardson (1996)

Allow for latent and selection variables

- Learn a Markov equivalence class of DAGs with latent and selection variables
- Follows maximal ancestral graph (MAG) models
- ⇒ Fast causal inference (FCI) by Spirtes et al. (1999)

Causal Inference Theory and Applications

Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

6. Other Methods of Causal Structure LearningOverview

Score-based methods

- "search-and-score approach", i.e.,
 - 1. Assume causal structure G and functional restrictions (e.g., linear relations and independent Gaussian noise)
 - 2. Optimize some score (e.g., likelihood or BIC) given these restrictions
 - 3. Change G and compute new optimal score value
 - 4. Repeat this for many G and return G^{opt} with the best (optimized) score
- ➡ E.g., Greedy-Equivalent-Search (GES) by Chickering (2002)

Hybrid methods

- Combines constraint-based and search-and-score methods, i.e.,
 - 1. Constraint-based search to find skeleton
 - 2. Score-based approach to orient edges
- → E.g., Max-Min Hill-Climbing (MMHC) by Tsamardinos et al. (2006)

Causal Inference
Theory and Applications

Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

References

Literature

- Pearl, J. (2009). <u>Causal inference in statistics: An overview</u>. Statistics Surveys.
- Pearl, J. (2009). <u>Causality: Models, Reasoning, and Inference</u>.
 Cambridge University Press.
- Spirtes et al. (2000). Causation, Prediction, and Search.
 The MIT Press.
- Kalisch et al. (2007). *Estimating high-dimensional directed acyclic graphs with the PC-algorithm*. Journal of Machine Learning Research.
- Colombo et al. (2014). <u>Order-independent constraint-based causal structure</u> <u>learning</u>. The Journal of Machine Learning Research.
- Le et al. (2016). <u>A fast PC algorithm for high dimensional causal discovery with multicore PCs</u>. IEEE/ACM transactions on computational biology and bioinformatics.
- Kalisch et al. (2014). <u>Causal structure learning and inference: a selective review</u>. Quality Technology & Quantitative Management

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

References

Implementations

R

- Kalisch et al. (2017), R Package 'pcalg'.
- Le et al. (2015), R Package 'ParallelPC'.
- Scutari (2007), <u>Learning Bayesian Networks with the bnlearn R Package</u>.

Python

Kobayashi (2015), <u>CPDAG Estimation using PC-Algorithm</u>.
 (Note: Unstable version of the PC Algorithm)

Other

Carneggie Mellon University, <u>The Tetrad Project</u>

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Thank you for your attention!