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Recap: Causal Inference in a Nutshell ﬂHasso
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Causal Graphical Model
» Directed Acyclic Graph (DAG) G = (V,E)
o Vertices V3, ..., V,
o Directed edges E = (V;,V;), i.e., V; = V;

o No cycles Causal Inference

» Directed Edges encode direct causes via Theory and Applications
in Enterprise Computing

0 V] = fj(Pa(Vj),Nj) with independent noise Ny, ..., N, Hagedorn, Huegle,
Perscheid
Causal Sufficiency Slide 5

s All relevant variables are included in the DAG G



Recap: Causal Inference in a Nutshell

Connecting ¢ and P

ata Generating G
Model

Joint Distribution [P

(X LY|Z)e= (XLY|Z)p

» Key Postulate: (Local) Markov Condition

s Essential mathematical concept: d-Separation

o Idea: Blocking of paths

o Implication: Global Markov Condition

XLY|Z); =X LYIZ)p

» Key Postulate: Causal Faithfulness
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1. Preliminaries E Hasso
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Statistical Inference:

Deduce properties of a population’s probability distribution P
on the basis of random sampling 8.

Random samples X, ..., X,
= independent and identically distributed (i.i.d.) random variables X;, ..., X,

Statistic T
= Function g(Xj, ..., X;;) of the observations in a random sample Xy, ..., X,
= Is a random variable with probability distribution (sampling distribution)

. . =~ Causal Inference
Point estimator 0 Theory and Applications

= Statistic to estimate a population parameter @ in Enterprise Computing
Hagedorn, Huegle,

Perscheid

Sample mean X,, = - %, X; with value %, is an estimator of the Siide 10
population mean pu




1. Preliminaries
Normal Distribution

Normal Distribution:

We say a random variable X has a normal distribution with mean
1 and standard deviation ¢ if its density function f is given by

f(x) = \/1_2_ e_%(x?Tﬂ)z

(o) T

x € R.

We write X~N (i, 02)

®,52(x) = Fx(x) = Pr(X < x) is the cumulative distribution function

1
X~N(0,1) with f(x) = %e_Exz is called standard normal distributed

N

If X~N(y,0%), then R
o %NN(OJ) (Standardization) y

G,.(%)

o X=u+oZ with Z~N(0,1)
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1. Preliminaries ﬂ Hasso
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Central Limit Theorem:
For a random sample X3, ..., X,, of size n from a population with

mean u and finite variance o2 then, for n - oo,

X —
7 =7 "T” - N(0,1).

p p Gaussian
samples
of size n
X
—_—
Causal Inference
population sampling distribution Theory and Applications
distribution of the mean in Enterprise Computing

— Hagedorn, Huegle,
= Therefore, X,, is approximately normal distributed with mean u and Perscheid
standard deviation o /v, i.e., X,~N(u, 0% /n) Slide 12

= Hence, for the sum S,, = Y™, X; we have S,~N(ny,no?)



1. Preliminaries ﬂ Hasso
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Confidence Interval:
A confidence interval estimate for the mean u is an interval of the form

[ <u<u,

With endpoints [ and u computed from X4, ..., X,,.

s Supposethat Pr(l<u<u)=1-—a, a € (0,1). Thenforl < pu < u:
o | and u are called lower- and upper-confidence bounds

o 1— «a is called the confidence level

= Recall that X,,~N(u,0?/n). For some positive scalar value z;_,/, we have Causal Inference
Theory and Applications
— o in Enterprise Computing

o Pr (Xn SU+Ziqp \/ﬁ) Pr ( - ~< 7y a/2> = ®,1(Z1-q/2) Hagedorn, Huegle,

Perscheid
o _

o Pr (,u — Z1-q/2 N <X ) =1- q)0,1(21—a/2) Slide 13



1. Preliminaries ﬂHasso
Confidence Intervals (II/1I) anner

s Therefore

o o
Pr (u —Zi-q/2 ﬁ <X,<u+ Z1-a/2 ﬁ) =2 Cbo,1(—Z1—a/2)

s Recall, we want

_ o
Pl‘(# Zi- a/zJ——X #+Z1—a/2ﬁ>=1—0‘

» With @ = 20 1(z1_¢/2) the 100(1 — a)% confidence interval on yu is given by

Xn — <SpU<Xp+z- —a)2 =

o
Z1—-a/2 =

g Vn
» Since a = 2@ 1(—21_q/2), We can choose z;_4/, as follows:

Causal Inference
Theory and Applications

o 99% = a =0.01 = cDO,l(_Zl—a/Z) = 0.005 = Zi—q/2 = 2.57 in Enterprise Computing
o0 95% = a =0.05 = d)o’l(—zl_a/z) = 0.025 = zy_g/, = 2.32 E:rgs‘zﬂzfi‘gr Huegle,

Slide 14



2. Statistical Hypothesis Testing
Introduction

Knowing the sampling distribution is the key of statistical inference:

s Confidence intervals

Framework to derive error bounds on point estimates of the population distribution
based on the sampling distribution

m Hypothesis testing

Methodology for making conclusions about estimates of the population distribution
based on the sampling distribution

8-

Statistical Hypothesis:
Statement about parameters of one or more populations
» Null Hypothesis Hyy is the claim that is initially assumed to be true

» Alternative Hypothesis H; is a claim that contradicts the H,

m A hypothesis test is a decision rule that is a function of the test statistic.
E.g., reject H, if the test statistic is below a threshold, otherwise don't.
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2. Statistical Hypothesis Testing ﬂ Hasso

Hypothesis Types and Errors plattner

For some arbitrary value p,

a one-sided hypothesis test: s two-sided hypothesis test:
Ho:pt = po vs Hytp < plg Ho:pt = po vs Hytpt # plg
Ho:p < po vs Hytpp > o
\— J

» Significance level of the statistical test Causal Inference

a = Pr(type I error) = Pr(reject Hy| H, is true) Theory and Applications
in Enterprise Computing

m Power of the statistical test
B = Pr(type Il error) = Pr(retain Hy| H, is true)

m Hypothesis testing
Desire: a is low and the power (1 — ) as high as can be

Hagedorn, Huegle,
Perscheid

Slide 16



2. Statistical Hypothesis Testing

Critical Value

= Suppose Xj, ...

,X,~N(u,c?) (o is known)

= We would like to test Hy: u = ug vs Hy:u > pg

Y-

Goal:

Decision rule, i.e., reject Hy: u = ugq if x,, >

s Choose test statistic T t

o be Yn

= Under H,, we have T~N(uy,0%/n)

" azPﬂo(Yn>c) :Puo<

=P, (2>

= Therefore, ¢ = o + P51(1 — @) =

\/H(C_MO) ) _ 1 _
—0- =

\/ﬁ(}n_ﬂo) > Vn(c—pop) )

o o

02

04

00

forac€eR

critical value
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2. Statistical Hypothesis Testing

P-Value

The p-value is the probability that under the null hypothesis,

the random test statistic takes a value as extreme as or more

extreme than the one observed.

= Rule of thumb: p-value low = Hy must go

= We would like to test Hy: u = pg vs Hi:pu > g

= Here, the p-value is Py (X, > X,) = -

=PH0(Z>

mp If PHO()_(n > En) < a we reject Hy: u = o

= Absolutely identical to the usage of the critical value

(?n_ﬂo)

o/\n

)= 1o

Yn_I-LO

o/Nn

)

o4

00

\ p-value

T T T
a ; 2 4

Observed T{x)
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2. Statistical Hypothesis Testing
Supplement: Z-Test
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» If the distribution of the test statistic T under H, can be approximated by a normal
distribution the corresponding statistical test is called Z-test

= Overview for Z-tests with known o
Testing Hypotheses on the Mean, Variance Known (Z-Tests)

N 1 ) S :
Model: X; "~ N(p,0?) with g unknown but &2 known.

Null hypothesis:  Hp : pp = po.

S R_J_‘—/lo s _Y—/lo
Test statistic: 2= =T b= Py
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests

: Causal Inference
Hy:p# po P = 2[1 5 ‘I’(|"|)] 2> Z1_qpp OF 2 < ZzZy/2 Theory and Applications
in Enterprise Computing

Hy:p> po P=1-%(2) z> 2l-a Hagedorn, Huegle,

Perscheid
Hy:p< g P=9(z) 2L

N— — Slide 19



2. Statistical Hypothesis Testing Il;llagéo
Summary Institut

= Hypothesis
o Null Hypothesis Hy is the claim that is initially assumed to be true
o Alternative Hypothesis H; is a claim that contradicts H,
» Hypothesis test is a decision rule that is a function of the test statistic T

= How to test a hypothesis?
o Relation test and confidence interval

o Approximate T under H, by a known sampling distribution Py, (T)

o Different distributions yield to different tests, e.g., T-test, y?-test, etc.

o Derive rejection criteria for Hy Causal Inference

o c-value: reject Hy if T(x,) >cforac€R . Theory and Applications
are equivalent

in Enterprise Computing
o p-value: reject Hy if Py, (TX)>Tk) <a Hagedorn, Huegle,

Perscheid

Slide 20
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Concept (I/II) Plattner

Institut

Traditional Statistical

Paradigm of Structural

Inference Paradigm Causal Models

Data Generating @
Model

Aspects of P @(ZP ) Joint Distribution P

Inference Causal Inference

Theory and Applications
in Enterprise Computing

Inference

Hagedorn, Huegle,
Perscheid

m) Use statistical hypothesis tests to obtain information about (X 1L Y| Z)p Slide 21



3. (Conditional) Independence Testing ﬂ Hasso
Concept (II/II) Plattner
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Basic idea:
Find a measure T of (conditional) dependence within the random

samples Xy, ..., Xy and apply statistical hypothesis tests whether
T(Xq,...,Xy) is zero or not, i.e.,
Hy:t =0 vs Hi:t#0

Vi, ..., Vy multivariate normal

Causal Inference

Correlation coefficient Theory and Applications
cov(V;, Vj) in Enterprise Computing

oo Hagedorn, Huegle,
_ ivyoo Perscheid
as measure of linear relationship

pVi,Vj = COT(Vi' V]) =

Slide 22




3. (Conditional) Independence Testing ﬂ Hasso

Multivariate Normal Data (I/II) miﬁ?g{

Theorem:
Two bi-variate normal distributed variables V; and V; are

independent if and only if the correlation coefficient Pviv; is zero.

= Hence, we test whether the correlation coefficient Pvyvir

[ ) ()

Pvv; = )
v O-ViO-Vj

is equal to zero or not, i.e., Hoipvi,vj =0 ws H1=,0Vi,v]- #0

= For i.i.d. normal distributed V;,V;, applying Fisher’s Z-transformation Pvivii Causal Inference

Theory and Applications
7 1 1 1+ pVi,Vj in Ent‘érprise Corlnpulting
(pVi'Vj) ) 08 1—py.v.)’ Hagedorn, Huegle,
vrl Perscheid

. 1 +pyv; 1 Slide 23
yields to Z pVi'Vj ~N 2 In 1-py.v.) Vn=3 )" .
veJ



3. (Conditional) Independence Testing ﬂ Hasso

Multivariate Normal Data (II/II) miﬁ?g{

= Thus, we can apply standard statistical hypothesis tests, i.e.,

o Derive p-value
p(Vi,V;) =2 (1 — P4 (vn -3 |Z (Pvi,vj)D)
o Given significance level a, we reject the null-hypothesis HO:le.,VJ. = (0 against
Hoipvi,vj # 0 if for the corresponding estimated p-value it holds that ﬁ(Vi,Vj) <a

= This can be easily extended for conditional independence:

Theorem:

For multivariate normal distributed variables V = {V, ...,Vy} we have

that two variables V; and V; are conditionally independent given the Causal Inference

separation set § ¢ V/{V;,V;} if and only if the partial correlation in Enterprise Computing

p(V;,V;|S) between V; and V; given § is equal to zero. Hagedorn, Huegle,
=» [.e., we can apply the same procedure to receive information about conditional Slide 24

independencies



3. (Conditional) Independence Testing
Overview
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= Statistical hypothesis testing theory allows to obtain (X IL Y| Z)p from data
= Distribution of V3, ...,Vy = dependence measures T(Vi,Vj,S) = hypothesis test Hy:t = 0

= Multivariate normal data: = Categorical data:

2
1+ Py, ; Ny.ys—Ep: . Ny
1 vivjls (vvs vvs) vivjs
Z(vi,vj|s) =-In{ ———— 2(v;,vils) = ~—L J’ gnd G*(V;,V;|S) =2 Ny.p.sIn | —2
( L Jl ) 2 1+Pvi,17j|s X ( 12 ]|S) Zviv]-s Eviv]-s (Vuvjl ) Zvivjs vivjs Euiv]-s
with sample (partial) correlation . Ny;+sNiy ;s
P (p ) Wlth Evi vjs = ﬁ Where Nvi+ = Zvj Nviij Nvi+ = ZV]' Nvivj.

coef ficient py, s
w N+,,}.= 2, va; and N, , = va va; are calculated for every realization of S

= This defines the basis of constraint-based causal structure learning Causal Inference

Theory and Applications
in Enterprise Computing

o

Hagedorn, Huegle,
Perscheid

Slide 25
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