Data Structures and Algorithms for In-
Memory Databases

Martin Faust, David Schwalb,

Martin Boissier, Carsten Meyer

10,000,000

1,000,000

100,000

10,000

1,000

100

10

0

1970

“The Free Lunch Is Over”

Dual-Core Itanium 2

/[

Intel CPU’

(sources: Intel, Wikipe:

Trends

dia, K.

Olukotun}

® Transistors (000)

@ Clock Speed (MHz)
APower (W)
@ Perf/Clock (ILP)

1975 1980 1985

1990 1995 2000 2005

2010

http://www.gotw.ca/publications/concurrency-ddj.htm

PIMDB| WiSe 2011/12

2

— Number of
transistors per CPU
Increases

— Clock frequency
stalls

Capacity vs. Speed (latency)

* Memory hierarchy:

— Capacity restricted by price/performance
- SRAM VS. DRAM (refreshing needed every 64ms)

— SRAM is very fast but very expensive

Memory is organized in hierarchies
* Fast but small memory on the top
e Slow but lots of memory at the bottom

technology latency
SRAM <1lns
SRAM ~1ns
SRAM <10 ns
DRAM 100 ns
~ 10 000 000 ns

(10 ms)

size
bytes
KB
MB

GB

B

Data Processing

 In DBMS, on disk as well as in memory,
data processing is often:

— Not CPU bound
— But bandwidth bound
— “1/0 Bottleneck”

CPU could process data faster

Memory Access:
m Not truly random (in the sense of constant latency)
m Datais read in blocks/cache lines
m Even if only parts of a block are requested

Potential waste of bandwidth vi

V2

V3

va

V5

V6

V7

V8

V9

V10

Memory Hierarchy

m Cache

Small but fast memory, which keeps data from
main memory for fast access.

Cache performance is crucial

m Similar to disk cache (e.g. buffer pool)

But: Caches are controlled by hardware.

m Cache hit
Data was found in the cache.
Fastest data access since no lower level is involved.
m Cache miss
Data was not found in the cache. CPU has to load
data from main memory into cache (miss penalty).

Locality is King!

* To improve cache behavior
— Increase cache capacity
— Exploit locality
» Spatial: related data is close (nearby references are likely)
 Temporal: Re-use of data (repeat reference is likely)

 Toimprove locality

— Non random access (e.g. scan, index traversal):
* Leverage sequential access patterns
* Clustering data to a cache lines

* Partition to avoid cache line pollution
(e.g. vertical decomposition)

* Squeeze more operations/information into a cache line

— Random access (hash join):
» Partition to fit in cache (cache-sized hash tables)

Motivation

— Hardware has changed
* TB of main memory are available
e Cache sizes increased
* Multi-core CPU’s are present
* Memory bottleneck increased

— Data/Workload
* Tables are wide and sparse
* Lots of set processing

— Traditional databases

e Optimized for write-intensive workloads
* show bad L2 cache behavior

Problem Statement

— DBMS architecture has not changed over decades

— Redesign needed to handle the changes in:

* Hardware trends (CPU/cache/memory)

* Changed workload requirements

e Data characteristics

* Data amount

Query engine

Buffer pool

s B (Y (N — |

M~ P~ M~ ~ A

—] — —]
] i —
[1 [| [I m—

Traditional DBMS Architecture

Row- or Column-oriented Storage

SELECT *
FROM Sales Orders
WHERE Document Number = ‘95779216’

SELECT SUM(Order Value)
FROM Sales Orders
WHERE Document Date > 2009-01-20

Row Store

Column Store

Doc Doc Sold- Value Sales
Num Date To

Status Org

Row

Row

Row

Row

Doc Doc Sold- Value Sales
Num Date To Status Org

1)

Question + Answer

* How to optimize an IMDB?

m Exploit sequential access, leverage locality
-> Column store
m Reduce I/O
m Compression
m Direct value access
-> Fixed-length (compression schemes)
m Late Materialization

m Parallelize
10

Seminar Organization

Objective of the Seminar

 Work on advanced database topics in the context of in-
memory databases (IMDB) with regards to enterprise data
management

Get to know characteristics of IMDBs
Understand the value of IMDBs for enterprise computing

* Learn how to work scientifically

Fully understand your topic and define the objectives of your
work

Propose a contribution in the area of your topic
Quantitatively demonstrate the superiority of your solution
Compare your work to existing related work

Write down your contribution so that others can understand
and reproduce your results

Seminar schedule

Today (8.4): Overview of topics, general introduction
Thursday (10.4.): In-memory DB Basics and Topics Q&A

15.4.: Send your priorities for topics to lecturers
(martin.faust@hpi.uni-potsdam.de)

Planned Schedule
— 20.05.2014: Intro Scientific Writing (tbd)
— 22./27.05.2014: Mid-term presentation (tbd)
— 8./10.07.2014: Final presentation (tbd)
— 26.07.2014: Paper hand-in (tbd)

Throughout the seminar: individual coaching by teaching staff
Meetings (Room V-2.16)

Final Presentation

— Why a final presentation?
* Show your ideas and their relevance to others

e Explain your starting point and how you evolved your
idea /implementation

* Present your implementation, explain your
implementations properties

Final Documentation

* 6-8 pages, |IEEE format [1]

* Suggested Content: Abstract, Introduction into
the topic, Related work, Implementation,
Experiment/Results, Interpretation, Future Work

* Important!

* Related work needs to be cited
e Quantify your ideas / solutions with measurements

» All experiments need to be reproducible (code, input
data) and the raw data to the experiment results must
be provided

[1] http://www.ieee.org/conferences_events/conferences/publishing/templates.html

Grading

* 6 ECTS

* Grading:
e 30% Presentations (Mid-term 10% / Final 20%)
* 30% Results

* 30% written documentation
* 10% general participation in the seminar

Topic Assignment

* Each participant sends list of top 3 topics in
order of preference to lecturers by 15.4.

* Topics are assigned based on preferences and
skills by 24.4.

HYRISE

Open source IMDB
Hosted at github.com/hyrise
C++ 11

Query Interface: Query plan or stored
procedures

Recommended Papers for Intro

e Plattner, SIGMOD 2009: A Common Database
Approach for OLTP and OLAP Using an In-
Memory Column Database

 Grund et al. VLDB 2010: HYRISE—A Main
Memory Hybrid Storage Engine

* Krueger et al. VLDB 2012: Fast Updates on

Read-Optimized Databases Using Multi-Core
CPUs

Topics

Primary Key / Unique Index

* Currently PK/FK/Unique constraints are not
enforced in HYRISE

* Goalis to research, evaluate, implement and
measure different approaches
* Possible implementation tasks:

— Resorting of the table by its key (clustered index)
— Probabilistic data structures

— Additional hash, tree or trie structures

Trie Index / Radix Tree

* Aradix tree is a space efficient index structure

* Build & integrate into Hyrise and compare the
storage space and performance to
alternatives.

* To achieve maximum performance the
student should implement a lock free radix
tree structure, using for example HLE or
transactional memory

Compound Indices

Improve current merge implementation to
support the efficient merge of multi-column
indices.

Determine performance, both theoretically
and through benchmarks

Quantify parameters that impact the merge
Tune index implementation

Leveraging FusionlO Auto Commit Memory as
Persitency of In-Memory Databases

 Auto Commit Memory (ACM) allows to map
storage directly into memory, to modify it on
a byte level and to automatically sync changes
back to storage

* Task: Integrate ACM into Hyrise, measure
performance impact

— Working with newest FusionlO drive
— Building on existing NVM integration in Hyrise

Memory Mapped File Checkpointing

* A checkpoint is a consistent snapshot of the database
to speed up recovery

* In-memory databases with main/delta concept need to
write complete delta to storage for checkpoint

* Task: Implement checkpoint algorithm in Hyrise, by

a
fi
fi

locating delta data structures on Memory Mapped
es on a Fusion ioDrive and perform a msync() of the
e for the checkpoint

— Working with newest FusionlO drive
— Measure performance implications
— Compare with ‘normal’ serialization of delta to storage

Optimized Logging for Flash

Traditional ARIES style logging with group
commits is optimized for shortcomings of disks

Modern flash based storage devices have
completely different characteristics

Task:

— Optimize the logging algorithm in Hyrise for flash
storage drives

— Analyse the performance of different
implementations

Database Cockpit for Hyrise

e Task:

— Develop an HTMLS5 application that visualizes
heartbeats from Hyrise during the execution of a
TPC-C workload

— Showing multiple live charts visualizing query
performance and database statistics

— Control elements to influence workload are
provided by the app, as well as the ability to
simulate a crash in the database and show instant
recovery features

Benchmark Framework

* Currently available Python-based benchmark
framework allows the execution of a TPC-C

workload on Hyrise

* Benchmark tool using the Apache Benchmark
Tool (ab) to send queries to database

e Task:

— Improve benchmark tool to support multiple
workloads and modular experiments

— e.g. CH-Benchmark, TPC-CH, TATP, TPC-C

Multiple Event-Loops for Hyrise

e Current Hyrise server is using libev and libebb as basic
event loop to dispatch incoming queries

* Current implementation runs one event loop, however
dispatching short running queries onto different
NUMA nodes is expensive

e Task:

— Implement multiple event loops for Hyrise listening all on
one private HTTP port with central dispatch mechanism to
redirect incoming connections to the respective ev-loops

— Alternatively, instead of using HTTP, a custom protocol
might be developed

Shared Domain Dictionary for HYRISE

Improved Join and Update Performance

Order-preserving dictionaries (e.g. HYRISE, SAP HANA)
— inefficient mapping structures for cross table operations (e.g. JOIN)
— costly data re-encoding during merge
Findings
— Join operations always between columns of the same domain
— Value-ranges of PK columns are typically incremental (but not FK)

Idea
— A shared dictionary (encoding) for PK and FK of the same domain
— Direct join on (compressed) valuelDs
— No re-encoding during merge for PK/ FK columns.

Task

— Implement a shared domain dictionary (SDD) as well as an adapted
merge and join operation

— Evaluate performance using HYRISE

Tiering-Indices in HYRISE

Analyzing SQL-Traces for Hot and Cold Data Access

HYRISE tables can be partitioned horizontally & vertically in
order to:

— use different memory tiers (Storage Class Memory)

— limit operations to certain data areas

Extract characteristics from DB workloads and build index
structures that:

— classify hot data

— identify hot-only queries

Setting:
— Workloads and data from openHPI and an enterprise system

— Work with current bachelor-project team

— Statistics and data mining (co-entropy, distribution, time-related
patterns, etc.)

Thank you.

