
Build your own Database

Week 5

Agenda

• ILIW

• std::optional

• Lambdas

• Relational Algebra and Operators in Opossum

• Presentation of Sprint 3

2

Sprint 1/2

I Like, I Wish

3

Sprint 2

Reviews: see Piazza

4

Formatting / Linting

5

Clean Commits

6

Conceptual Things

7

std::vector<std::string> StorageManager::table_names() const {
std::vector<std::string> names;
auto get_name = [](const auto& entry) { return entry.first; };
std::transform(m_tables.begin(), m_tables.end(), std::back_inserter(names), get_name);
return names;

}

269 characters, lambdas, std::transform, std::back_inserter

std::vector<std::string> StorageManager::table_names() const {
std::vector<std::string> names;
for (const auto& table_item : _tables) {

names.emplace_back(table_item.first);
}
return names;

}

209 characters

C++ things

8

Let’s play a different game – what did we like about this?

std::vector<std::string> StorageManager::table_names() const {
std::vector<std::string> names;
names.reserve(m_tables.size());
// […]

for (const auto& chunk : _chunks) {
count += chunk.size();

}

Const

9

Optionals
• „Manages an optional contained value, i.e. a value that may

or may not be present.“

• Example use case: A table scan that supports between and,
therefore, needs two search value parameters

• Syntax:

33

#include <optional>
// Templated object of type std::optional<T>
std::optional<AllTypeVariant> opt;
std::optional<AllTypeVariant> opt2 = std::nullopt;
std::optional<AllTypeVariant> opt3 = 17;
if (opt) {

do_something(*opt);
}

Optionals

What is the result of sizeof(std::optional<uint32_t>)?

34

template <typename T>
class optional {
bool _initialized;
T _storage;

};

std::pair<T,bool>

Any ideas how to implement that?

Lambda Expressions
A simplified table scan…

35

for (auto i = 0; i < value_segment.size(); ++i) {
switch (_scan_type) {
case ScanType::OpEquals: {
return value_segment.get(i) == search_value;
break;

}
case ScanType::OpNotEquals: {
return value_segment.get(i) != search_value;
break;

}
case ScanType::OpLessThan: {
return value_segment.get(i) < search_value;
break;

// [...]

Lambda Expressions
With lambda expressions

36

auto comparator = get_comparator(_scan_type);
for (auto i = 0; i < value_segment.size(); ++i) {
return comparator(value_segment.get(i), search_value);

}

auto get_comparator(ScanType type) {
switch (type) {
case ScanType::OpEquals: {
_return = [](auto left, auto right) { return left == right; };
break;

}
case ScanType::OpNotEquals: {
_return = [](auto left, auto right) { return left != right; };
break;

}
// [...]

}
}

+ separation of concerns
+ checks only once
+ reuse

Lambda Expressions
Syntax:

37

auto f = [captures] (params) -> ret { body };

Code goes here

Return value of the lambda
(if you leave it out, the

compiler does it for you)

Parameters that are passed
when the lambda is called

You must use auto here

Can store lambdas in variables
(and even members)

Variables that you take from
the current scope

Lambda Expressions

38

auto f = [captures] (params) -> ret { body };

int main() {
auto f = []() {

std::cout << "Hallo Welt" << std::endl;
};

f();
}

Lambda Expressions

39

auto f = [captures] (params) -> ret { body };

int main() {
auto f = [](const std::string& name) {

std::cout << "Hallo " << name << std::endl;
};

f("Alexander");
}

Lambda Expressions

40

auto f = [captures] (params) -> ret { body };

int main() {
std::string my_name{"Larry"};

auto f = [my_name](const std::string& name) {
std::cout << "Hallo " << name << ", ich bin "

<< my_name << std::endl;
};

f("Alexander");
}

Lambda Expressions

41

auto f = [captures] (params) -> ret { body };

int main() {
std::string my_name{"Larry"};

auto f = [&my_name](const std::string& name) {
std::cout << "Hallo " << name << ", ich bin "

<< my_name << std::endl;
};

f("Alexander");
}

Lambda Expressions

42

auto get_lambda() {
std::string my_name{"Larry"};
return [my_name]() {

std::cout << "Ich bin " << my_name << std::endl;
};

}

int main() {
f = get_lambda();

// my_name is undefined here

f();
}

Lambda Expressions

43

auto get_lambda() {
std::string my_name{"Larry"};

return [&my_name]() {
std::cout << "Ich bin " << my_name << std::endl;

};
}

int main() {
f = get_lambda();

// my_name is undefined here

f();
}

Lambda Expressions

44

From https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
A great resource if you want to learn more about lambdas

https://blog.feabhas.com/2014/03/demystifying-c-lambdas/

Lambda Expressions

45

DYOD - WEEK 5

THE RELATIONAL MODEL
Based on “Database Systems - The Complete Book”
(H. Garcia-Molina, J. D. Ullman, J. Widom)

�2

DYOD - WEEK 5

MOTIVATION FOR THE RELATIONAL MODEL

▸ Previously, databases tightly coupled logical and physical
layers which impeded maintainability

▸ No conceptual idea of which operators are required

▸ Ted Codd proposed the relational model in the 1970s

▸ Abstraction model using simple data structures and
high-level operators

▸ Implementation and physical storage is up to vendor

�3

DYOD - WEEK 5

RELATIONAL DATABASES

▸ Database - organized collection of data

▸ Database Management System (DBMS) - the program that manages the database

▸ Relational database is based on relational data model

1. Structure of the data

‣ Conceptual model

‣ (Physical model)

2. Operations on the data

‣ Modifications - change the database

‣ Queries - retrieve information

3. Constraints on the data

�4

DYOD - WEEK 5

RELATIONAL MODEL - CONCEPTUAL DATA MODEL

▸ Data - two-dimensional table, called relation

▸ Set or bag (multiset)

▸ Attribute - name of a column

▸ Schema - name of relations and set of attributes and constraints

▸ Tuple - row (except header) of a relation

▸ Further concepts: 
 equality, relation instance, domain/data type, NULL

�5

DYOD - WEEK 5

RELATIONAL MODEL - OPERATIONS

▸ Relational algebra is the basis for how the relational model is implemented in practice

▸ Theoretical foundation for relational databases and SQL

▸ Operations

▸ Take one or more relations as input(s) and output new relation

▸ Can be chained to form more complex queries

▸ Classes of traditional operations:

▸ Operations that remove parts of a relation: selection, and projection

▸ Operations that combine tuples of two relations: cartesian product, and join

▸ Renaming: relations and attributes

▸ Set operations: union, intersection, and difference

�6

DYOD - WEEK 5

RELATIONAL MODEL - PROJECTION

▸ Projection of R produces a new relation with a subset of R’s
columns

▸ πA1, ..., An(R)

▸ In the relational algebra of sets, duplicate tuples are
eliminated

�7

DYOD - WEEK 5

RELATIONAL MODEL - PROJECTION

�8

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Relation R

First Name Last Name

Paul Smith

Lena Jones

Hanna Schulze

πFirst Name, Last Name(R)
SELECT DISTINCT
 FirstName, LastName FROM R

DYOD - WEEK 5

RELATIONAL MODEL - SELECTION

▸ Selections of R produces a new relation with a subset of
R’s tuples (those that satisfy a condition)

▸ σAθB (R) or σAθValueConstant (R)

▸ θ = {<, ≤, =, >, ≥}

�9

DYOD - WEEK 5

RELATIONAL MODEL - SELECTION

�10

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Relation R

σCountry=‘USA’(R)
SELECT * FROM R WHERE
 Country = ‘USA’

First Name Last Name Country Year of Birth

Lena Jones USA 1990

Hanna Schulze USA 2000

DYOD - WEEK 5

RELATIONAL MODEL - OPERATIONS THAT COMBINE TUPLES OF TWO RELATIONS

▸ Cartesian product ((cross-)product) of R and S is the set of pairs formed by choosing the first
element to be any element of R and the second any element of S

▸ The schema of the new relation is the union of schemas for R and S (Exception: R and S
have attribute A in common -> use new name R.A and S.A)

▸

�11

DYOD - WEEK 5

RELATIONAL MODEL - CROSS PRODUCT

�12

Relation R R x S
SELECT * FROM R, S

First
Name

Last
Name

R.Country Year of
Birth

S.Country Capital

Paul Smith Australia 1986 Germany Berlin

Paul Smith Australia 1986 USA Washington

Lena Jones USA 1990 Germany Berlin

Lena Jones USA 1990 USA Washington

Hanna Schulze Germany 1942 Germany Berlin

Hanna Schulze Germany 1942 USA Washington

Hanna Schulze USA 2000 Germany Berlin

Hanna Schulze USA 2000 USA Washington

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Country Capital

Germany Berlin

USA Washington

Relation S

DYOD - WEEK 5

RELATIONAL MODEL - OPERATIONS THAT COMBINE TUPLES OF TWO RELATIONS

▸ Cartesian product ((cross-)product) of R and S is the set of pairs formed by choosing the first
element to be any element of R and the second any element of S

▸ The schema of the new relation is the union of schemas for R and S (Exception: R and S
have attribute A in common -> use new name R.A and S.A)

▸ Join of R and S pairs tuples that match in some way

▸ Dangling tuple: tuple with no match

▸ Natural join: match in common attributes of R and S

▸

�13

DYOD - WEEK 5

RELATIONAL MODEL - NATURAL JOIN

�14

Relation R R ⋈ S
SELECT * FROM R NATURAL JOIN SFirst Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Country Capital

Germany Berlin

USA Washington

Relation S

First Name Last Name Country Year of Birth Capital

Lena Jones USA 1990 Washington

Hanna Schulze Germany 1942 Berlin

Hanna Schulze USA 2000 Washington

DYOD - WEEK 5

RELATIONAL MODEL - OPERATIONS THAT COMBINE TUPLES OF TWO RELATIONS

▸ Cartesian product ((cross-)product) of R and S is the set of pairs formed by choosing the first
element to be any element of R and the second any element of S

▸ The schema of the new relation is the union of schemas for R and S (Exception: R and S
have attribute A in common -> use new name R.A and S.A)

▸ Join of R and S pairs tuples that match in some way

▸ Dangling tuple: tuple with no match

▸ Natural join: match in common attributes of R and S

▸ Theta/Equi join: match based on arbitrary condition C

▸ Product of R and S, filtered by condition C

▸ Schema of new relation: see cartesian product

▸

�15

DYOD - WEEK 5

RELATIONAL MODEL - EQUI JOIN

�16

Relation R R ⋈ S

SELECT * FROM R [INNER] JOIN S
 ON R.Country = S.Country

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Country Capital

Germany Berlin

USA Washington

Relation S

First Name Last Name Country Year of Birth Capital

Lena Jones USA 1990 Washington

Hanna Schulze Germany 1942 Berlin

Hanna Schulze USA 2000 Washington

Country = Country

DYOD - WEEK 5

RELATIONAL MODEL - OPERATIONS THAT COMBINE TUPLES OF TWO RELATIONS

▸ Cartesian product ((cross-)product) of R and S is the set of pairs formed by choosing the first
element to be any element of R and the second any element of S

▸ The schema of the new relation is the union of schemas for R and S (Exception: R and S
have attribute A in common -> use new name R.A and S.A)

▸ Join of R and S pairs tuples that match in some way

▸ Dangling tuple: tuple with no match

▸ Natural join: match in common attributes of R and S

▸ Theta/Equi join: match based on arbitrary condition C

▸ Product of R and S, filtered by condition C

▸ Schema of new relation: see cartesian product

▸ Semi join of R and S is the set of tuples in R that match the join condition

�17

DYOD - WEEK 5

RELATIONAL MODEL - SEMI JOIN

�18

Relation R R ⋉ S
SELECT FirstName, LastName,
 Country, YearOfBirth
 FROM R NATURAL JOIN S

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Country Capital

Germany Berlin

USA Washington

Relation S

First Name Last Name Country Year of Birth

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

DYOD - WEEK 5

RELATIONAL MODEL - SET OPERATIONS

▸ Union of R and S is the set of elements that are in R or S or both

▸ Intersection of R and S is the set of elements that are in both R and S

▸ Difference of R and S is the set of that are in R but not in S

▸ R - S is different from S - R

▸ Conditions for R and S:

▸ R and S must have schemas with identical attributes and domains

�19

DYOD - WEEK 5

RELATIONAL MODEL - UNION

�20

Relation R R ∪ S
SELECT * FROM R
UNION
SELECT * FROM S

Country Capital

Germany Berlin

USA Washington

Relation S

Country Capital

Norway Oslo

USA Washington

Poland Warsaw
Country Capital

Norway Oslo

USA Washington

Poland Warsaw

Germany Berlin

DYOD - WEEK 5

RELATIONAL MODEL - UNION

�21

Relation R R ∪ S
SELECT * FROM R
UNION ALL
SELECT * FROM S

Country Capital

Germany Berlin

USA Washington

Relation S

Country Capital

Norway Oslo

USA Washington

Poland Warsaw
Country Capital

Norway Oslo

USA Washington

Poland Warsaw

Germany Berlin

USA Washington

DYOD - WEEK 5

RELATIONAL MODEL - INTERSECT

�22

Relation R R ∩ S
SELECT * FROM R
INTERSECT
SELECT * FROM S

Country Capital

Germany Berlin

USA Washington

Relation S

Country Capital

Norway Oslo

USA Washington

Poland Warsaw
Country Capital

USA Washington

DYOD - WEEK 5

RELATIONAL MODEL - DIFFERENCE

�23

Relation R
R \ S
SELECT * FROM R
EXCEPT
SELECT * FROM S

Country Capital

Germany Berlin

USA Washington

Relation S

Country Capital

Norway Oslo

USA Washington

Poland Warsaw

Country Capital

Norway Oslo

Poland Warsaw

S \ R
SELECT * FROM S
EXCEPT
SELECT * FROM R

Country Capital

Germany Berlin

DYOD - WEEK 5

RELATIONAL MODEL - MINIMAL RELATIONAL ALGEBRA?

▸ Union, intersection, difference, projection, selection,
cartesian product, natural join, theta join, semi join,
renaming

�24

DYOD - WEEK 5

RELATIONAL MODEL - MINIMAL RELATIONAL ALGEBRA

▸ Union, intersection, difference, projection, selection,
cartesian product, natural join, theta join, semi join,
renaming

�25

DYOD - WEEK 5

RELATIONAL MODEL - WHAT IS MISSING

▸ Bag semantic (+ duplicate elimination)

▸ Aggregation (and grouping)

▸ Sort

▸ Extended projection

▸ Outer join

�26

DYOD - WEEK 5

RELATIONAL MODEL - BAG SEMANTIC

▸ Bags are multi sets (allow duplicates)

▸ Redefinition of set operations necessary

▸ Some relational operations are more efficient with the bag
model (without duplicate elimination)

▸ Union

▸ Projection

▸ Duplicate-elimination operator turns bag into set by eliminating
all but one copy of each tuple

�27

DYOD - WEEK 5

RELATIONAL MODEL - AGGREGATION

▸ Aggregations summarize or “aggregate” the values in one
column

▸ Examples: SUM, AVG, MIN, MAX, COUNT

▸ Groupings allow aggregations of tuple groups that
correspond to the value of one or multiple columns

▸ A1, ..., Am, AVG(Au), COUNT(Av), MIN(Aw), MAX(Ax), SUM(Ay) R

�28

γ

DYOD - WEEK 5

RELATIONAL MODEL - AGGREGATION

�29

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Relation R

 Min(Year of Birth) (R)

SELECT MIN(YearOfBirth)
FROM R;

MIN(Year of Birth)

1942

γ

DYOD - WEEK 5

RELATIONAL MODEL - AGGREGATION

�30

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Relation R

 Country Max(Year of Birth) (R)

SELECT Country, MIN(YearOfBirth)
FROM R GROUP BY Country;

γ Country MIN(Year of Birth)

Australia 1986

USA 1990

Germany 1942

DYOD - WEEK 5

RELATIONAL MODEL - SORT

▸ Turns unordered container, e.g., set, bag, into an ordered
one, e.g., list

▸ Only useful as last operator of a relational query (and
its logical query plan), because following operators
turn list into set or bag

▸ Of importance for physical query plans (an operator
implementation may require sorted inputs)

�31

DYOD - WEEK 5

RELATIONAL MODEL - EXTENDED PROJECTION

▸ Besides renamings, extended projections allow arbitrary
expressions

▸ Constants

▸ Arithmetic operators

▸ String operators

�32

DYOD - WEEK 5

RELATIONAL MODEL - OUTER JOIN

▸ Outer join is the union of the natural join and all dangling
tuples from R and S; dangling tuples of R and S must be
padded with NULLs for missing attributes

▸ Full (⟗), left (⟕), and right (⟖) outer join

▸ Theta join versions of outer join operate analogous

▸ Inner join is a synonym of “normal” join

�33

DYOD - WEEK 5

RELATIONAL MODEL - FULL OUTER JOIN

�34

Relation R
R ⟗ S
SELECT R.Country, S.Capital
 FROM R
 FULL OUTER JOIN S ON
 R.Country=S.Country;

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Country Capital

Germany Berlin

USA Washington

Norway Oslo

Relation S

R.Country S.Capital

Australia

USA Washington

Germany Berlin

USA Washington

Oslo

DYOD - WEEK 5

RELATIONAL MODEL - LEFT OUTER JOIN

�35

Relation R
R ⟕ S
SELECT R.Country, S.Capital
 FROM R
 LEFT [OUTER] JOIN S ON
 R.Country=S.Country;

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Country Capital

Germany Berlin

USA Washington

Norway Oslo

Relation S

R.Country S.Capital

Australia

USA Washington

Germany Berlin

USA Washington

DYOD - WEEK 5

RELATIONAL MODEL - RIGHT OUTER JOIN

�36

Relation R
R ⟖ S
SELECT R.Country, S.Capital
 FROM R
 RIGHT [OUTER] JOIN S ON
 R.Country=S.Country;

First Name Last Name Country Year of Birth

Paul Smith Australia 1986

Lena Jones USA 1990

Hanna Schulze Germany 1942

Hanna Schulze USA 2000

Country Capital

Germany Berlin

USA Washington

Norway Oslo

Relation S

R.Country S.Capital

USA Washington

Germany Berlin

USA Washington

Oslo

DYOD - WEEK 5

JOINS

�37 Source: https://stackoverflow.com/questions/24257890/why-on-clause-used-on-full-outer-join

DYOD - WEEK 5

RELATIONAL MODEL - OPERATOR PLAN

�38 Source: http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query_optimization.pdf

DYOD - WEEK 5

SQL - THE DATABASE LANGUAGE

▸ Structured Query Language

▸ Express queries of relational algebra (declaratively)

▸ Statements for modifying the database

▸ Declaring the database schema

▸ Further concepts: constraints, views, indexes, …

�39

DYOD - WEEK 5

OPOSSUM’S OPERATOR CONCEPT

▸ Opossum implements operators that loosely resemble the relational algebra

▸ Queries can be formulated as DAG of multiple operators

▸ Usually, the first operator is the GetTable operator

▸ Operators take none to two other operators as input

▸ The result of an operator is passed as table to the next operator

▸ Efficiency is crucial in database systems

▸ Operators itself need to be implemented in efficient ways

▸ Order of query operators offers large optimization potential

�40

DYOD - WEEK 5

SPRINT 3

�41

Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

1

Operator Concept
In	the	third	sprint,	you	will	implement	the	TableScan	operator	–	one	of	the	most	funda-
mental	operators.	Of	 course,	 the	TableScan	 is	 not	 the	only	operator	 that	we	have	 in	a	
DBMS.	Thus,	it	makes	sense	to	first	talk	about	the	operator	concept	in	general.	
	
For	executing	a	query,	databases	traditionally	use	something	called	a	query	plan	or	op-
erator	tree.	Let	us	look	at	the	operator	tree	for	an	example	query:	

SELECT c.id, c.name, SUM(o.amount) FROM customers c, orders o WHERE c.id = o.cid
AND o.date > '2016-01-01' GROUP BY c.id, c.name;

This	query	gives	us	the	id,	name,	and	total	amount	of	orders	since	20161	for	every	cus-
tomer.	Note	how	it	does	not	say	anything	about	how	the	database	gets	to	that	result.	The	
two	following	query	plans	both	have	the	same	result:	
	

	
	
One	of	them,	however,	is	likely	to	be	significantly	faster.	Selecting	a	fast	query	plan	out	
of	many	potential	query	plans	is	the	job	of	the	query	optimizer.	Because	we	do	not	yet	
have	an	optimizer,	we	will	build	our	query	plans	by	hand.	Later	this	term,	we	will	talk	

																																																								
1	No,	you	should	not	have	an	aggregated	order	amount	stored	in	your	database	but	cal-
culate	in	on	the	fly.	Bear	with	me	just	for	the	sake	of	the	example,	will	you?	

Table
Customers

Table
Orders

id
si

gn
ed

-u
p

na
m

e
ad

dr
es

s
… id ci

d
da

te
am

ou
nt

…

ProjectionScan
{id, name}

Filter
date > 2016-01-01

ProjectionScan
{id, amount}

Join
c.id = o.cid

GroupedAggregate
SUM(o.amount)

Table
Customers

Table
Orders

id
si

gn
ed

-u
p

na
m

e
ad

dr
es

s
… id ci

d
da

te
am

ou
nt

…

Join
c.id = o.cid

GroupedAggregate
SUM(o.amount)

Filter
date > 2016-01-01

ProjectionScan
{id, name, amount}

ReturnResult ReturnResult

DYOD - WEEK 5

MASTER’S PROJECT

�42

Anyone interested?

DYOD - WEEK 5

▸ Sprint 3 Deadline: 27.11.2018 - 23:59:59 CET

▸ Next Week

▸ Sprint 2 Feedback

▸ Group Topic Presentation

▸ NULL Values, Virtual Method Calls, Chunks…

ORGANISATION

�43

TEXT

ORGANISATION

�44

THAT’S IT.

