
Build your own Database

Week 6



Agenda

• Q&A Sprint 3

• Review Sprint 2

• Benchmarking

• Group Projects

• NULL values in SQL

• Query Pipeline



Sprint 3

Questions?



Review Sprint 2

const std::shared_ptr<ValueColumn<T>>& p_column =
std::dynamic_pointer_cast<ValueColumn<T>>(base_column);

_attribute_vector =
std::dynamic_pointer_cast<BaseAttributeVector>(

std::make_shared<FittedAttributeVector<uint8_t>>(
column.size())); 

const auto value_column =
dynamic_cast<ValueColumn<T>*>(base_column.get());



Review Sprint 2

ValueID lower_bound(const AllTypeVariant& value) const {
const T val = dynamic_cast<T>(value); 

if (!val) {
return INVALID_VALUE_ID;

}

return lower_bound(val);
} 



Review Sprint 2 - Casts

• Do not explicitly upcast pointers

• Do not use static/dynamic_cast on smart pointers

• If you already have the type in the same line, do not repeat 

it – instead, use auto

• Use type_cast for AllTypeVariant



Review Sprint 2
ValueID lower_bound(T value) const { 
for (auto it = _dictionary->begin(); it < _dictionary->end(); ++it) {
if (*it >= value) {
return static_cast<ValueID>(it - _dictionary->cbegin()); 

}
}
return INVALID_VALUE_ID;

} 



Review Sprint 2

explicit DictionaryColumn(const 
std::shared_ptr<BaseColumn>& base_column) {
_dictionary = std::make_shared<std::vector<T>>();
_build_dictionary(base_column);
_assign_attribute_vector(base_column->size());
_build_attribute_vector(base_column);

}

const T DictionaryColumn<T>::get(const size_t i) const {
return _dictionary->at(_attribute_vector->get(i));

}



Review Sprint 2

template <typename T>
ValueID FittedAttributeVector<T>::get(const size_t i) const {
if (i >= _entries.size()) {
throw std::runtime_error("Index out of range");

}
return ValueID(_entries.at(i));

}



Review Sprint 2
DebugAssert(set_pos < num_unique_elements,

"The value " + type_cast<std::string>(value) +
" is not in the dictionary :(");



Review Sprint 2
std::for_each(value_segment->values().cbegin(), value_segment->values().cend(),

[&](const auto& value) {
const auto search_iter = std::find(_dictionary_vector->cbegin(),

_dictionary_vector->cend(), value);
_attribute_vector->append(ValueID(std::distance(_dictionary_vector->

cbegin(), search_iter)));
});

for (const auto& value : value_segment->values())
const auto search_iter = std::find(_dictionary_vector->cbegin(),

_dictionary_vector->cend(), value);
_attribute_vector->append(ValueID(std::distance(_dictionary_vector->

cbegin(), search_iter)));
});

Shorter:



Review Sprint 2

template <typename uintX_t>
void FittedAttributeVector<uintX_t>::set(const size_t element, const

ValueID value_id) {
DebugAssert(element < std::pow(2, (8 * width())), "Index out of

bounds exception");
_value_references.insert(_value_references.begin() + element,

value_id);
}



Sorting and Enforcing 
Uniqueness

• How can we derive a sorted and unique vector from a non-

sorted one that possibly contains duplicates?

– std::sort, std::unique, std::erase

– std::sort, std::unique, std::resize

– std::set

– std::unordered_set

– std::map as intermediary structure

• Benchmark operation on vector of 500.000 std::strings



Sorting and Enforcing 
Uniqueness

String length 10 characters



Sorting and Enforcing 
Uniqueness

String length 30 characters



DYOD -  WEEK 6

DATABASE BENCHMARKING

�X
http://www.tpc.org/tpch/

▸ Benchmark 

▸ Executing standardized tests against a system to assess its (relative) performance. 

▸ DBMS Benchmark define 

▸ Data schemas and their content 

▸ Query templates and their instances 

▸ Additional rules 

▸ Motivation 

▸ Comparison of hardware, software, and their interplay 

▸ Who standardizes benchmarks? 

▸ Transaction Processing Performance Council



DYOD -  WEEK 6

TPC-H BENCHMARK

�X
http://www.tpc.org/tpch/

The TPC Benchmark™H (TPC-H) is a decision support 
benchmark. The queries and the data populating the database 
have been chosen to have broad industry-wide relevance. This 
benchmark illustrates decision support systems that examine 
large volumes of data, execute queries with a high degree of 
complexity, and give answers to critical business questions.





DYOD -  WEEK 6

TPC-H BENCHMARK - DATA SCHEMA

�X
https://docs.snowflake.net/manuals/user-guide/sample-data-tpch.html



DYOD -  WEEK 6

TPC-H BENCHMARK - EXAMPLE QUERY

�X

SELECT
   o_orderpriority,
   count(*) as order_count
FROM orders
WHERE
   o_orderdate >= date '[DATE]'
   AND o_orderdate < date '[DATE]' + interval '3' month
   AND exists (
       SELECT *
       FROM lineitem
       WHERE
           l_orderkey = o_orderkey
           AND l_commitdate < l_receiptdate
       )
GROUP BY o_orderpriority
ORDER BY o_orderpriority;

The Order Priority Checking Query counts the number of orders ordered in a given quarter of a given year in which at least 
one lineitem was received by the customer later than its committed date. The query lists the count of such orders for each 
order priority sorted in ascending priority order.

Business Question

SQL Query
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PRIMARY KEYS AND RELATED OPTIMIZATIONS

▸ Primary Keys: minimal set of attributes that uniquely identify a tuple 

▸ DBMSs ensure uniqueness and hold an index on these attributes 

▸ Motivation 

▸ Primary keys are specified in many real-world and benchmark data schemas 

▸ This information can be used for more efficient query processing 

▸ Tasks 

▸ Implementation of a primary key entity 

▸ Use the available information in the query optimizer 

▸ Evaluation 

▸ Investigate applicability and impact for the TPC-H Benchmark

�X



DYOD -  WEEK 6

BETWEEN OPTIMIZATIONS

▸ Motivation 

‣ WHERE l_quantity >= 530 AND l_quantity <= 530 + 10
‣ l_quantity BETWEEN 530 AND 530 + 10

‣ WHERE p_name like ‘RED%’
‣ WHERE p_name >= ‘RED’ AND p_name < ‘REE'

▸ Tasks 

▸ Identify beneficial cases 

▸ Implement optimizer rules to achieve presented rewriting 

▸ Evaluation 

▸ Micro- and TPC-H Benchmark

�X
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MULTI-PREDICATE JOINS
SELECT
   nation,
   o_year,
   sum(amount) as sum_profit
FROM (
   SELECT
       n_name as nation,
       extract(year FROM o_orderdate) as o_year,
       l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity 
                          as amount
   FROM part, supplier, lineitem, partsupp, orders, nation
   WHERE
       s_suppkey = l_suppkey
       AND ps_suppkey = l_suppkey
       AND ps_partkey = l_partkey
       AND p_partkey = l_partkey
       AND o_orderkey = l_orderkey
       AND s_nationkey = n_nationkey
       AND p_name like '%[COLOR]%'
   ) as profit
GROUP BY nation, o_year
ORDER BY nation, o_year DESC;

�X



DYOD -  WEEK 6

MULTI-PREDICATE JOINS

▸ Motivation 

▸ Benchmark and real-world queries contain joins on multiple attributes 

▸ By avoiding the execution of two separate joins, redundant work can be 
minimized 

▸ Tasks 

▸ Detect joins on multiple attributes during optimization 

▸ Implement a specialized join operator for such cases 

▸ Evaluation 

▸ Demonstrate the impact on affected TPC-H Benchmark queries

�X



BYOD - WEEK 6

HEAVY-WEIGHT COMPRESSION

▸ Currently, Hyrise includes 
various encodings to compress 
data 

▸ Dictionary, run-length, frame-
of-refence encoding 

▸ For data rarely accessed, we’d 
like to study the impact of 
heavy-weight compression 

▸ Widely used libraries in 
databases are Snappy or LZ4

�X
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BYOD - WEEK 6

HEAVY-WEIGHT COMPRESSION

▸ Tasks 

▸ Integrate heavy-weight compression into Hyrise’s encoding 
framework 

▸ Evaluate compression levels and further optimizations * 

▸ Evaluation 

▸ Runtime impact on typical DB operators 

▸ Compression ratios for TPC-H and other data sets

�X* Similar to GZIP and Co., most libraries provide different compression levels with varying compression time/ratios. 
Furthermore, Zstd allows to provide a dictionary of often occurring items to further improve compression ratios.
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TRANSFORM SUBSELECTS TO JOINS

SELECT p_brand, p_type, p_size,
       count(distinct ps_suppkey) as supplier_cnt
FROM partsupp, part
WHERE
   p_partkey = ps_partkey
   AND p_brand <> '[BRAND]'
   AND p_type not like '[TYPE]%'
   AND p_size in ([SIZE1], [SIZE2], [SIZE3], [SIZE4],  
                  [SIZE5], [SIZE6], [SIZE7], [SIZE8])
   AND ps_suppkey not in (
       SELECT s_suppkey
       FROM supplier
       WHERE s_comment like '%Customer%Complaints%'
   )
GROUP BY p_brand, p_type, p_size
ORDER BY supplier_cnt DESC, p_brand, p_type, p_size;

�X



BYOD - WEEK 6

TRANSFORM SUBSELECTS TO JOINS

▸ Motivation 

▸ Many real-world queries can be optimized 

▸ Especially for analytical queries, many constructs can be reformulated to more efficient join 
variants 

▸ Tasks 

▸ Implement optimizer rules to recognize potential reformulation candidates (i.e., IN, EXISTS, 
and more) and adapt the query plan accordingly 

▸ Develop simple cost models to estimate whether a reformulation will be beneficial 

▸ Evaluation 

▸ Show runtime impact for analytical TPC-H queries as well as selected transactional queries

�X
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INDEX JOIN OPTIMIZATIONS

▸ Motivation 

▸ For transactional workloads, secondary indexes remain indispensable. 

▸ Besides index scans, indexes can also be exploited in joins (so-called index joins or lookup joins). 

▸ However, Hyrise’s architecture with the freedom to add indexes only to a subset of chunks makes 
the decision when to use index joins less straightforward. 

▸ Tasks 

▸ Create simple cost models to estimate the costs of standard joins (e.g., a hash join) and index joins. 

▸ Extend the optimizer to use index joins whenever beneficial. 

▸ Improve the current fallback and use appropriate joins for non-indexed chunks. 

▸ Evaluation 

▸ Show runtime impact for analytical TPC-H queries as well as selected transactional queries.

�X



Rewrite the Aggregate Operator

SELECT c_custkey, COUNT(*) … GROUP BY c_custkey

• The Aggregate operator was already optimized, but is still quite slow
• It‘s architecture makes it a bad fit for cases where a single column is in the GROUP BY clause

• For some queries, a sort-based implementation of the Aggregate would keep us from having
to manually sort results later

• Selling point: We already have working tests and a performance baseline to compare to



MVCC Physical Delete
• Updating data traditionally requires locking the row for the remainder 

of the transaction

• Like most modern databases, we use Insert-Only and only invalidate 

updated rows

• Each query executes a Validate operator, which behaves similar 

to a table scan and checks if a row is valid

• Without physically deleting rows, we end up with a table that is 

difficult to process

• Goal: Remove definitely unreachable rows without violating the 
ACID criteria



Sorted Segments

• Motivation
l The knowledge of sorted segments can be used to speed up database operators,
l e.g., scan, join, aggregations, ...
l

• Task
l Implement (meta information for) sorted segments
l Use sorting information in: scans, … (joins?)

• Evaluation
l TPC-H, e.g., Q6
l Own queries



More Optimizer Rules

• Motivation
l “Query  optimization  is  absolutly [sic] essential  for  virtually  any  database system that
l has to cope with reasonably complex queries. As such, it always pays off to invest time
l in the optimizer. Often, the impact of the query optimizer is much larger than
l the impact of the runtime system!”

l Thomas Neumann. Engineering High-Performance Database Engines. VLDB 2014.

l

• Task
l Limit operator (+ push down)
l Choose good join algorithm
l Order for scans/joins/aggregates with sorted segments

• Evaluation
l TPC-H (where appropriate)
l Own queries



Next steps
• Please send us a list of all topics that you are interested 

in until Sunday, 25 November, 23:59pm CET.

• All choices have the same priority and you can submit as 

many choices as you want.

• If you have questions send an email to:

• Martin Boissier, Markus Dreseler, Stefan Klauck, Jan 

Kossmann



Query Processing



Lecture Motivation

Modern database machines are increasingly large NUMA 

systems and process complex queries on huge data sets.

How does query processing in modern databases 

work and incorporate hardware developments?

Slide 3

Query Processing



Overview

i. Query Optimization

ii. Query Scheduling

iii. Query Execution

i. Joining

ii. Radix-Partitioned Hash Join

Slide 4

Query Processing



Motivation

Slide 5

Query Processing

How does a database actually
process incoming SQL queries?



How does a database process queries?

Slide 6

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

1. The database receives the SQL queries on the network interface and 
passes it to the SQL parser.

1   SELECT wp.city , wp.first_name, wp.last_name

2   FROM world_population AS wp

3   INNER JOIN locations ON wp.city = locations.city

4   WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5   INNER JOIN actors ON actors.first_name = wp.first_name

6   AND actors.last_name = wp.last_name



How does a database process queries?

Slide 7

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

2. The SQL parser generates a logical query plan. This plan contains the 
relational operators required to execute the query and the order in 
which they have to be called.

1   SELECT wp.city , wp.first_name, wp.last_name

2   FROM world_population AS wp

3   INNER JOIN locations ON wp.city = locations.city

4   WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5   INNER JOIN actors ON actors.first_name = wp.first_name

6   AND actors.last_name = wp.last_name



How does a database process queries?

Slide 8

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

3. Depending on the order of operations in the query plan, runtimes can 
differ by orders of magnitude. Thus, the database employs the query 
optimizer to determine efficient query plans.



How does a database process queries?

Slide 9

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

4. After a logical query plan is decided upon, the relational operators are translated to 
their actual implementations. Further, the database scheduler can determine where 
& when to run the query and how much resources to allocate.

CPU #1

CPU #2 Task #4
Task #4Task #4
MVCC Check

Task #1
Selection

Task #2
Selection

Task #3
Join

(linear scan) (index scan)

(index join)

(hash join)



How does a database process queries?

Slide 10

Query Processing

SQL Parsing Plan 
Building Optimization Scheduling Execution

5. Finally, the database executes all scheduled tasks and returns the result 
set to the user.



Query Optimization



Often, the impact of the query optimizer is much larger than the impact of 
the runtime system [..] Changes to an already tuned runtime system might 
bring another 10% improvement, but changes to the query optimizer can 

often bring a factor 10.

T. Neumann. Engineering high-performance database engines. PVLDB, 2014

Query Optimization
Motivation

Slide 12

Query Processing



q For a given query (remember: SQL is declarative), there is a large array 
of alternative (logically equivalent) query plans

q The query optimizer is a module that enumerates possible query plans 
and estimates the costs of each plan.

q Usually selects the plan with the lowest estimated costs.

Costs to consider

q Algorithmic: e.g., runtime complexity of different SORT operators

q Logical: estimated output size of the operator (e.g., decreasing for 
filter operations, de- or increasing for joins)

q Physical: hardware-dependent cost calculations such as IO 
bandwidth, cache misses, etc.

Query Optimization
Motivation

Query Processing

Slide 13



q Operator costs are often interacting with each other, making accurate cost 
estimations computationally expensive

q As a consequence, most optimizers concentrate on logical costs and thrive 
to reduce operator results as early as possible

q Reducing logical costs further leads to less memory traffic, which indirectly 
improves NUMA performance, cache hit rates, and more

How can we reduce the intermediate result size of a query plan (i.e., 
logical costs) as early as possible?

Execute operators first that exclude large fractions of data (e.g., equi-filters 
on attributes with many distinct values, joins on foreign keys, etc.)

Query Optimization
Creating Query Plans

Slide 14

Query Processing



Query optimization can be seen as a two-step process

1. Semantic query transformations and simple heuristics to 

reformulate queries

2. Cost model-driven approaches that estimate costs in order 

to reorder operators

Query Optimization
Introduction

Slide 15

Query Processing



Query reformulation: exploit semantic query transformations and simple 
heuristics to reformulate a query plan to a (logically equivalent) plan with 
lower expected costs.

SELECT * FROM T 

WHERE A < 10 AND A > 12 

SELECT * FROM T 

WHERE A < 10 AND A < 20 

AND A IS NOT NULL

Query Optimization
Semantic Transformations & Heuristics

Slide 16

Query Processing

» return empty result

» SELECT * FROM T WHERE A < 10



SELECT * FROM T1, 

(SELECT * FROM T WHERE B > 17) AS T2

Query Optimization
Semantic Transformations & Heuristics

Slide 17

Query Processing

SELECT * FROM T1, 

(SELECT * FROM T) AS T2 »
WHERE T2.B > 17

SELECT (A + 2) + 4 FROM T

»   SELECT A + 2 + 4 FROM T

»   SELECT A + 6      FROM T



Query Optimization
Semantic Transformations & Heuristics

Slide 18

■ Optimization heuristics:

□ Execute most restrictive filters first

□ Execute filters before joins

□ Predicate/limit push downs

□ Join reordering based on estimated cardinalities

■ Such optimizations are heuristics as they are usually good estimates of 
operator costs.

■ Nonetheless, possible that joining before filtering can lead to a better query 
runtime for certain constellations.

Query Processing



Query Optimization
Query Plan Reformulation

Slide 19

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using 
equivalence rules (i.e., operators can only be reordered to an extend that 
ensures correct results)

Query Processing



Query Optimization
Query Plan Reformulation

Slide 20

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using 
equivalence rules (i.e., operators can only be reordered to an extend that 
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Scanning ~100 tuples



Query Optimization
Query Plan Reformulation

Slide 21

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using 
equivalence rules (i.e., operators can only be reordered to an extend that 
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Sequentially scanning
8 billion tuples

Sequentially scanning
1 million tuples

Joining 400 tuples
* 600 million tuples

Joining 400 tuples
* 600 million tuplesScanning ~100 tuples



The Physical Query Plan/Evaluation Plan defines which algorithm is used for 
each operation, and how the execution of operations is coordinated.

Query Optimization
Physical Query Plan

Slide 22

Query Processing



q Statistics are, e.g., used to estimate intermediate result size for logical 
cost estimations to compute overall cost of complex expressions.

q Especially for cost model-driven approaches, accurate statistics are 
indispensable.

q Such statistics include:

q Number of distinct values for a table

q Presence or absence of indices

q Value distribution of attributes (e.g., histograms)

q Top-n values with occurrence count

q Min/Max values

Query Optimization
Statistics

Slide 23
http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query_optimization.pdf

Query Processing



Table: world_population

Meta Data

Data

Attributes: {‘first_name’: char(50), ‘last_name’ […]}
Indexed Columns: {‘first_name’, ‘last_name’, […]}
…
Statistics:
    min/max: {‘birth_year’: [’1900’, ‘2017’], […]}
    distinct_counts: {‘birth_year’: 118, […]}
    histograms:
        first_name:

        country:

a-c d-f g-i …

CN US DE …

q Accuracy of estimation depends on quality and 
currency of statistical information DBMS holds

q Keeping statistics up to date can be problematic

q Updating them on the fly increases load on 
latency-critical execution paths

q Updating them periodically (e.g., during chunk 
compression in Hyrise2)  might introduce 
misleading estimations due to outdated 
statistics

Query Optimization
Statistics

Slide 24



Query Optimization 
Join Ordering

Slide 25

Query Processing

The task of join ordering is to find a join order that is estimated to have the 
lowest costs (ordered by input and output cardinality).

To do so, we need to estimate the size of the join result (so-called join 
cardinality estimation):

q Knowledge about foreign key relationships can be used

q Values are rarely uniformly distributed, histograms help estimating

q But histograms do not contain correlation information



For all relations r1, r2, and r3,

(r1    r2)    r3 =r1    (r2   r3) 

à Join Associativity

If r2    r3 is quite large and r1    r2 is small, we choose

(r1    r2)    r3 

so that we compute and store a smaller temporary relation. 

Query Optimization 
Join Ordering 

Slide 26

Query Processing



Estimating join cardinalities is one of the challenging tasks of query 

optimization, but also indispensable to performance.

Query Optimization 
Join Ordering 

Slide 27

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.



Estimating join cardinalities is one of the challenging tasks of query 

optimization, but also indispensable to performance.

Query Optimization 
Join Ordering 

Slide 28

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Runtime impact of inaccurate join
estimates can be desastrous:

“The average fraction between the worst and
the best plan,  […] is 101× […]”



We learned that query optimization becomes increasingly important due to …

q ever growing data sets

q increasingly complex queries.

However, finding efficient plans remains a challenging task as …

q the number of possible plans is enormous, and

q costs rely on estimation using potentially outdated statistics.

Query Optimization 
Summary

Query Processing

Slide 29



Query Scheduling



q Modern mixed workload systems handle tens of thousands of queries 
per second on servers with dozens of CPU cores

q But plain concurrent execution can significantly hurt performance

q The database needs to balance the overall system’s throughput vs. 
latency of single query execution

q The goal is to spawn the right amount of parallel work given the 
particular hardware & workload (hence scheduler can be highly 
hardware dependent)

Query Scheduling
Overview

Slide 31

Query Processing



q A physical query plan contains operators, each execution is an 
operator instance.

q The execution of an operator instance is divided into 1-n tasks.

q Workers execute the tasks. Depending on the database’s architecture 
a worker is …

q a process, or

q a thread.

Further, workers can be grouped into process/thread pools.

Query Scheduling
Scheduling Units

Slide 32

Query Processing



q The extend of parallelism varies from database to database

q One task per query, queries are executed concurrently: so-called 
inter-query parallelism

q One task per operator, where operators that do not depend on each 
other are executed concurrently: so-called intra-query parallelism

q Multiple tasks per operator, where the execution of an operator is split 
into concurrent tasks: so-called intra-operator parallelism

q With the rise of many-core systems and mixed workloads, most systems 
use both intra- and inter-query parallelism.

q Most database systems create fixed-size threads pools to limit threading 
overhead for highly concurrent workloads.

Query Scheduling
Scheduling Units

Slide 33

Query Processing



■ For NUMA systems, workers should primarily execute near the data they 

operate on.

■ Most NUMA-optimized databases spawn a worker thread pool per socket.

■ To feed the socket-bound workers, the database has one or more local 

task queues.

Query Scheduling
Task Placement for NUMA Systems

Slide 34

Query Processing



Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue

Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 35

■ Every node has its local task queue holding tasks that primarily work on 
socket-local data.



Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 36

■ In real-world applications, workloads are often highly skewed…
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Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 37

■ If the task queue is empty, workers can overtake work from other worker 
pools (so-called task/work stealing).

■ The degree of how much work stealing is allowed depends on node 
distance, CPU load, QPI saturation, and more.

Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

 
Q

ue
ue



q For any NUMA-aware system, workers should primarily access data that is 
local to itself (NUMA-aware data placement)

q Thus, the database engine cannot rely on the OS’s data placement 
scheme (e.g., first-touch or interleaved) but has to distribute data across 
the NUMA nodes on her own and place tasks accordingly

q Straightforward approach is round-robin chunk placement

q Advantage: simplicity and automatic handling of workload skew

q Disadvantage: operations may combine outputs from multiple nodes 
when correlated tables are scattered (e.g., foreign key relationships)

q Goal is to distribute data both skew- and workload-aware in the first place 
and dynamically adapt to changing workload patterns

Query Scheduling
Data Placement for NUMA Systems

Slide 38

Query Processing



Query Scheduling
Data Placement for NUMA Systems

Slide 39

Query Processing

■ A scan on table A can executed in parallel with optimal data locality.

■ An aggregation on table A (e.g., min()) can first be executed in parallel 
with optimal data locality, but final result merging accesses remote data.
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■ Joining table A and table B inevitably needs to move data across the 
QPI. Ideally, regularly together joined tables are co-located.
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1 = @uj]ie_ Lh]_aiajp Opn]pacu

Becqna ./6 Ar]hq]pejc pda `uj]ie_ lh]_aiajp opn]pacu kj kqn -2)jk`a i]_deja sepd
-., qpeheva` d]n`s]na pdna]`o*

Becqna .06 Ei^]h]j_a iapne_o ]o na_kn`a` ej pda lnarekqo atlaneiajp kj pda 0)jk`a i])
_deja* Jkpa pd]p pda _dqjg ]__aoo peia iapne_ `apa_po ei^]h]j_ao nahe]^hu(
sdana]o pda kpdan psk iapne_o aepdan b]eh pk `apa_p ei^]h]j_ao kn `k jkp `eo)
pejcqeod ^apsaaj pdai _ha]nhu*

=p pda ^acejjejc ]j` ]p pda |nop sknghk]` _d]jca( pdana ]na hk]` ei^]h]j_ao hega oaaj ej
pda |nop atlaneiajpo* Sa k^oanra pd]p kjhu pda _dqjg ]__aoo peia iapne_ `eopejcqeodao
_ha]nhu ^apsaaj ^]h]j_a` ]j` ei^]h]j_a` oepq]pekjo* Pda skng opa]hejc ]j` s]epo iapne_
oaaio pk na}a_p pda hk]` ei^]h]j_ao ^qp `kao jkp oal]n]pa pda psk oepq]pekjo ]o _ha]nhu
]o pda _dqjg ]__aoo peia iapne_ `kao* @qa pk pda h]_g kb _ha]n oal]n]pekj( ep eo d]n`an pk
]llhu ] pdnaodkh` pk pda ei^]h]j_a iapne_ ]o sa `k ej kqn `uj]ie_ lh]_aiajp ]hcknepdi*
Pda ]ooecja` p]ogo iapne_ b]eho pk `apa_p ei^]h]j_ao pd]p k__qn ]bpan pda ^acejjejc* Pdeo
eo qj]__alp]^ha bkn ] `uj]ie_ `]p] lh]_aiajp opn]pacu* @qa pk pdaoa naoqhpo( sa `a_e`a`
pk kjhu qoa pda _dqjg ]__aoo peia iapne_ ej bqnpdan atlaneiajpo*

3.

Figure from Norman Rzepka’s Master Thesis “Adaptive NUMA-Aware Load-Balancing for In-Memory Databases”, 2017

In case of changing workloads, data placement has to be adapted:



We learned that scheduling becomes increasingly important due to …

q balancing between throughput and query latencies

q diverse memory hierarchies (DRAM, NVRAM, NUMA hops)

q mixed workloads with both short queries & long-running complex queries
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Overall Summary

Modern systems execute complex analytical queries  

q Optimization remains challenging for complex queries

q Join estimation is an open research problem with huge
performance impact

Modern database servers are large NUMA systems

q Expensive and long-running operators need to be parallelized properly

q Effective data placement is crucial

q Scheduling of queries needs to balance throughput and latency

Modern database servers have dozens of CPU cores

q Choice of join is not just dependent on runtime complexity, but also on 
the join’s fit to the database engine, server hardware, and workload
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