
Build your own Database

Week 6

Agenda

• Q&A Sprint 3

• Review Sprint 2

• Benchmarking

• Group Projects

• NULL values in SQL

• Query Pipeline

Sprint 3

Questions?

Review Sprint 2

const std::shared_ptr<ValueColumn<T>>& p_column =
std::dynamic_pointer_cast<ValueColumn<T>>(base_column);

_attribute_vector =
std::dynamic_pointer_cast<BaseAttributeVector>(

std::make_shared<FittedAttributeVector<uint8_t>>(
column.size()));

const auto value_column =
dynamic_cast<ValueColumn<T>*>(base_column.get());

Review Sprint 2

ValueID lower_bound(const AllTypeVariant& value) const {
const T val = dynamic_cast<T>(value);

if (!val) {
return INVALID_VALUE_ID;

}

return lower_bound(val);
}

Review Sprint 2 - Casts

• Do not explicitly upcast pointers

• Do not use static/dynamic_cast on smart pointers

• If you already have the type in the same line, do not repeat

it – instead, use auto

• Use type_cast for AllTypeVariant

Review Sprint 2
ValueID lower_bound(T value) const {
for (auto it = _dictionary->begin(); it < _dictionary->end(); ++it) {
if (*it >= value) {
return static_cast<ValueID>(it - _dictionary->cbegin());

}
}
return INVALID_VALUE_ID;

}

Review Sprint 2

explicit DictionaryColumn(const
std::shared_ptr<BaseColumn>& base_column) {
_dictionary = std::make_shared<std::vector<T>>();
_build_dictionary(base_column);
_assign_attribute_vector(base_column->size());
_build_attribute_vector(base_column);

}

const T DictionaryColumn<T>::get(const size_t i) const {
return _dictionary->at(_attribute_vector->get(i));

}

Review Sprint 2

template <typename T>
ValueID FittedAttributeVector<T>::get(const size_t i) const {
if (i >= _entries.size()) {
throw std::runtime_error("Index out of range");

}
return ValueID(_entries.at(i));

}

Review Sprint 2
DebugAssert(set_pos < num_unique_elements,

"The value " + type_cast<std::string>(value) +
" is not in the dictionary :(");

Review Sprint 2
std::for_each(value_segment->values().cbegin(), value_segment->values().cend(),

[&](const auto& value) {
const auto search_iter = std::find(_dictionary_vector->cbegin(),

_dictionary_vector->cend(), value);
_attribute_vector->append(ValueID(std::distance(_dictionary_vector->

cbegin(), search_iter)));
});

for (const auto& value : value_segment->values())
const auto search_iter = std::find(_dictionary_vector->cbegin(),

_dictionary_vector->cend(), value);
_attribute_vector->append(ValueID(std::distance(_dictionary_vector->

cbegin(), search_iter)));
});

Shorter:

Review Sprint 2

template <typename uintX_t>
void FittedAttributeVector<uintX_t>::set(const size_t element, const

ValueID value_id) {
DebugAssert(element < std::pow(2, (8 * width())), "Index out of

bounds exception");
_value_references.insert(_value_references.begin() + element,

value_id);
}

Sorting and Enforcing
Uniqueness

• How can we derive a sorted and unique vector from a non-

sorted one that possibly contains duplicates?

– std::sort, std::unique, std::erase

– std::sort, std::unique, std::resize

– std::set

– std::unordered_set

– std::map as intermediary structure

• Benchmark operation on vector of 500.000 std::strings

Sorting and Enforcing
Uniqueness

String length 10 characters

Sorting and Enforcing
Uniqueness

String length 30 characters

DYOD - WEEK 6

DATABASE BENCHMARKING

�X
http://www.tpc.org/tpch/

▸ Benchmark

▸ Executing standardized tests against a system to assess its (relative) performance.

▸ DBMS Benchmark define

▸ Data schemas and their content

▸ Query templates and their instances

▸ Additional rules

▸ Motivation

▸ Comparison of hardware, software, and their interplay

▸ Who standardizes benchmarks?

▸ Transaction Processing Performance Council

DYOD - WEEK 6

TPC-H BENCHMARK

�X
http://www.tpc.org/tpch/

The TPC Benchmark™H (TPC-H) is a decision support
benchmark. The queries and the data populating the database
have been chosen to have broad industry-wide relevance. This
benchmark illustrates decision support systems that examine
large volumes of data, execute queries with a high degree of
complexity, and give answers to critical business questions.

DYOD - WEEK 6

TPC-H BENCHMARK - DATA SCHEMA

�X
https://docs.snowflake.net/manuals/user-guide/sample-data-tpch.html

DYOD - WEEK 6

TPC-H BENCHMARK - EXAMPLE QUERY

�X

SELECT
 o_orderpriority,
 count(*) as order_count
FROM orders
WHERE
 o_orderdate >= date '[DATE]'
 AND o_orderdate < date '[DATE]' + interval '3' month
 AND exists (
 SELECT *
 FROM lineitem
 WHERE
 l_orderkey = o_orderkey
 AND l_commitdate < l_receiptdate
)
GROUP BY o_orderpriority
ORDER BY o_orderpriority;

The Order Priority Checking Query counts the number of orders ordered in a given quarter of a given year in which at least
one lineitem was received by the customer later than its committed date. The query lists the count of such orders for each
order priority sorted in ascending priority order.

Business Question

SQL Query

DYOD - WEEK 6

PRIMARY KEYS AND RELATED OPTIMIZATIONS

▸ Primary Keys: minimal set of attributes that uniquely identify a tuple

▸ DBMSs ensure uniqueness and hold an index on these attributes

▸ Motivation

▸ Primary keys are specified in many real-world and benchmark data schemas

▸ This information can be used for more efficient query processing

▸ Tasks

▸ Implementation of a primary key entity

▸ Use the available information in the query optimizer

▸ Evaluation

▸ Investigate applicability and impact for the TPC-H Benchmark

�X

DYOD - WEEK 6

BETWEEN OPTIMIZATIONS

▸ Motivation

‣ WHERE l_quantity >= 530 AND l_quantity <= 530 + 10
‣ l_quantity BETWEEN 530 AND 530 + 10

‣ WHERE p_name like ‘RED%’
‣ WHERE p_name >= ‘RED’ AND p_name < ‘REE'

▸ Tasks

▸ Identify beneficial cases

▸ Implement optimizer rules to achieve presented rewriting

▸ Evaluation

▸ Micro- and TPC-H Benchmark

�X

DYOD - WEEK 6

MULTI-PREDICATE JOINS
SELECT
 nation,
 o_year,
 sum(amount) as sum_profit
FROM (
 SELECT
 n_name as nation,
 extract(year FROM o_orderdate) as o_year,
 l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity
 as amount
 FROM part, supplier, lineitem, partsupp, orders, nation
 WHERE
 s_suppkey = l_suppkey
 AND ps_suppkey = l_suppkey
 AND ps_partkey = l_partkey
 AND p_partkey = l_partkey
 AND o_orderkey = l_orderkey
 AND s_nationkey = n_nationkey
 AND p_name like '%[COLOR]%'
) as profit
GROUP BY nation, o_year
ORDER BY nation, o_year DESC;

�X

DYOD - WEEK 6

MULTI-PREDICATE JOINS

▸ Motivation

▸ Benchmark and real-world queries contain joins on multiple attributes

▸ By avoiding the execution of two separate joins, redundant work can be
minimized

▸ Tasks

▸ Detect joins on multiple attributes during optimization

▸ Implement a specialized join operator for such cases

▸ Evaluation

▸ Demonstrate the impact on affected TPC-H Benchmark queries

�X

BYOD - WEEK 6

HEAVY-WEIGHT COMPRESSION

▸ Currently, Hyrise includes
various encodings to compress
data

▸ Dictionary, run-length, frame-
of-refence encoding

▸ For data rarely accessed, we’d
like to study the impact of
heavy-weight compression

▸ Widely used libraries in
databases are Snappy or LZ4

�X

Th
ro

ug
hp

ut
 in

M

B/
s

0

3,75

7,5

11,25

15

memcpy Snappy LZ4 HC-9

4 MB/s
2 MB/s

13 MB/s

0 MB/s1 MB/s

13 MB/s

Compression Decompression

0,0

0,8

1,5

2,3

3,0

memcpy Snappy LZ4 HC-9

2,721

2,091

1

Compression Ratio

BYOD - WEEK 6

HEAVY-WEIGHT COMPRESSION

▸ Tasks

▸ Integrate heavy-weight compression into Hyrise’s encoding
framework

▸ Evaluate compression levels and further optimizations *

▸ Evaluation

▸ Runtime impact on typical DB operators

▸ Compression ratios for TPC-H and other data sets

�X* Similar to GZIP and Co., most libraries provide different compression levels with varying compression time/ratios.
Furthermore, Zstd allows to provide a dictionary of often occurring items to further improve compression ratios.

BYOD - WEEK 6

TRANSFORM SUBSELECTS TO JOINS

SELECT p_brand, p_type, p_size,
 count(distinct ps_suppkey) as supplier_cnt
FROM partsupp, part
WHERE
 p_partkey = ps_partkey
 AND p_brand <> '[BRAND]'
 AND p_type not like '[TYPE]%'
 AND p_size in ([SIZE1], [SIZE2], [SIZE3], [SIZE4],  
 [SIZE5], [SIZE6], [SIZE7], [SIZE8])
 AND ps_suppkey not in (
 SELECT s_suppkey
 FROM supplier
 WHERE s_comment like '%Customer%Complaints%'
)
GROUP BY p_brand, p_type, p_size
ORDER BY supplier_cnt DESC, p_brand, p_type, p_size;

�X

BYOD - WEEK 6

TRANSFORM SUBSELECTS TO JOINS

▸ Motivation

▸ Many real-world queries can be optimized

▸ Especially for analytical queries, many constructs can be reformulated to more efficient join
variants

▸ Tasks

▸ Implement optimizer rules to recognize potential reformulation candidates (i.e., IN, EXISTS,
and more) and adapt the query plan accordingly

▸ Develop simple cost models to estimate whether a reformulation will be beneficial

▸ Evaluation

▸ Show runtime impact for analytical TPC-H queries as well as selected transactional queries

�X

BYOD - WEEK 6

INDEX JOIN OPTIMIZATIONS

▸ Motivation

▸ For transactional workloads, secondary indexes remain indispensable.

▸ Besides index scans, indexes can also be exploited in joins (so-called index joins or lookup joins).

▸ However, Hyrise’s architecture with the freedom to add indexes only to a subset of chunks makes
the decision when to use index joins less straightforward.

▸ Tasks

▸ Create simple cost models to estimate the costs of standard joins (e.g., a hash join) and index joins.

▸ Extend the optimizer to use index joins whenever beneficial.

▸ Improve the current fallback and use appropriate joins for non-indexed chunks.

▸ Evaluation

▸ Show runtime impact for analytical TPC-H queries as well as selected transactional queries.

�X

Rewrite the Aggregate Operator

SELECT c_custkey, COUNT(*) … GROUP BY c_custkey

• The Aggregate operator was already optimized, but is still quite slow
• It‘s architecture makes it a bad fit for cases where a single column is in the GROUP BY clause

• For some queries, a sort-based implementation of the Aggregate would keep us from having
to manually sort results later

• Selling point: We already have working tests and a performance baseline to compare to

MVCC Physical Delete
• Updating data traditionally requires locking the row for the remainder

of the transaction

• Like most modern databases, we use Insert-Only and only invalidate

updated rows

• Each query executes a Validate operator, which behaves similar

to a table scan and checks if a row is valid

• Without physically deleting rows, we end up with a table that is

difficult to process

• Goal: Remove definitely unreachable rows without violating the
ACID criteria

Sorted Segments

• Motivation
l The knowledge of sorted segments can be used to speed up database operators,
l e.g., scan, join, aggregations, ...
l

• Task
l Implement (meta information for) sorted segments
l Use sorting information in: scans, … (joins?)

• Evaluation
l TPC-H, e.g., Q6
l Own queries

More Optimizer Rules

• Motivation
l “Query optimization is absolutly [sic] essential for virtually any database system that
l has to cope with reasonably complex queries. As such, it always pays off to invest time
l in the optimizer. Often, the impact of the query optimizer is much larger than
l the impact of the runtime system!”

l Thomas Neumann. Engineering High-Performance Database Engines. VLDB 2014.

l

• Task
l Limit operator (+ push down)
l Choose good join algorithm
l Order for scans/joins/aggregates with sorted segments

• Evaluation
l TPC-H (where appropriate)
l Own queries

Next steps
• Please send us a list of all topics that you are interested

in until Sunday, 25 November, 23:59pm CET.

• All choices have the same priority and you can submit as

many choices as you want.

• If you have questions send an email to:

• Martin Boissier, Markus Dreseler, Stefan Klauck, Jan

Kossmann

Query Processing

Lecture Motivation

Modern database machines are increasingly large NUMA

systems and process complex queries on huge data sets.

How does query processing in modern databases

work and incorporate hardware developments?

Slide 3

Query Processing

Overview

i. Query Optimization

ii. Query Scheduling

iii. Query Execution

i. Joining

ii. Radix-Partitioned Hash Join

Slide 4

Query Processing

Motivation

Slide 5

Query Processing

How does a database actually
process incoming SQL queries?

How does a database process queries?

Slide 6

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

1. The database receives the SQL queries on the network interface and
passes it to the SQL parser.

1 SELECT wp.city , wp.first_name, wp.last_name

2 FROM world_population AS wp

3 INNER JOIN locations ON wp.city = locations.city

4 WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5 INNER JOIN actors ON actors.first_name = wp.first_name

6 AND actors.last_name = wp.last_name

How does a database process queries?

Slide 7

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

2. The SQL parser generates a logical query plan. This plan contains the
relational operators required to execute the query and the order in
which they have to be called.

1 SELECT wp.city , wp.first_name, wp.last_name

2 FROM world_population AS wp

3 INNER JOIN locations ON wp.city = locations.city

4 WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5 INNER JOIN actors ON actors.first_name = wp.first_name

6 AND actors.last_name = wp.last_name

How does a database process queries?

Slide 8

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

3. Depending on the order of operations in the query plan, runtimes can
differ by orders of magnitude. Thus, the database employs the query
optimizer to determine efficient query plans.

How does a database process queries?

Slide 9

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

4. After a logical query plan is decided upon, the relational operators are translated to
their actual implementations. Further, the database scheduler can determine where
& when to run the query and how much resources to allocate.

CPU #1

CPU #2 Task #4
Task #4Task #4
MVCC Check

Task #1
Selection

Task #2
Selection

Task #3
Join

(linear scan) (index scan)

(index join)

(hash join)

How does a database process queries?

Slide 10

Query Processing

SQL Parsing Plan
Building Optimization Scheduling Execution

5. Finally, the database executes all scheduled tasks and returns the result
set to the user.

Query Optimization

Often, the impact of the query optimizer is much larger than the impact of
the runtime system [..] Changes to an already tuned runtime system might
bring another 10% improvement, but changes to the query optimizer can

often bring a factor 10.

T. Neumann. Engineering high-performance database engines. PVLDB, 2014

Query Optimization
Motivation

Slide 12

Query Processing

q For a given query (remember: SQL is declarative), there is a large array
of alternative (logically equivalent) query plans

q The query optimizer is a module that enumerates possible query plans
and estimates the costs of each plan.

q Usually selects the plan with the lowest estimated costs.

Costs to consider

q Algorithmic: e.g., runtime complexity of different SORT operators

q Logical: estimated output size of the operator (e.g., decreasing for
filter operations, de- or increasing for joins)

q Physical: hardware-dependent cost calculations such as IO
bandwidth, cache misses, etc.

Query Optimization
Motivation

Query Processing

Slide 13

q Operator costs are often interacting with each other, making accurate cost
estimations computationally expensive

q As a consequence, most optimizers concentrate on logical costs and thrive
to reduce operator results as early as possible

q Reducing logical costs further leads to less memory traffic, which indirectly
improves NUMA performance, cache hit rates, and more

How can we reduce the intermediate result size of a query plan (i.e.,
logical costs) as early as possible?

Execute operators first that exclude large fractions of data (e.g., equi-filters
on attributes with many distinct values, joins on foreign keys, etc.)

Query Optimization
Creating Query Plans

Slide 14

Query Processing

Query optimization can be seen as a two-step process

1. Semantic query transformations and simple heuristics to

reformulate queries

2. Cost model-driven approaches that estimate costs in order

to reorder operators

Query Optimization
Introduction

Slide 15

Query Processing

Query reformulation: exploit semantic query transformations and simple
heuristics to reformulate a query plan to a (logically equivalent) plan with
lower expected costs.

SELECT * FROM T

WHERE A < 10 AND A > 12

SELECT * FROM T

WHERE A < 10 AND A < 20

AND A IS NOT NULL

Query Optimization
Semantic Transformations & Heuristics

Slide 16

Query Processing

» return empty result

» SELECT * FROM T WHERE A < 10

SELECT * FROM T1,

(SELECT * FROM T WHERE B > 17) AS T2

Query Optimization
Semantic Transformations & Heuristics

Slide 17

Query Processing

SELECT * FROM T1,

(SELECT * FROM T) AS T2 »
WHERE T2.B > 17

SELECT (A + 2) + 4 FROM T

» SELECT A + 2 + 4 FROM T

» SELECT A + 6 FROM T

Query Optimization
Semantic Transformations & Heuristics

Slide 18

■ Optimization heuristics:

□ Execute most restrictive filters first

□ Execute filters before joins

□ Predicate/limit push downs

□ Join reordering based on estimated cardinalities

■ Such optimizations are heuristics as they are usually good estimates of
operator costs.

■ Nonetheless, possible that joining before filtering can lead to a better query
runtime for certain constellations.

Query Processing

Query Optimization
Query Plan Reformulation

Slide 19

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Query Optimization
Query Plan Reformulation

Slide 20

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Scanning ~100 tuples

Query Optimization
Query Plan Reformulation

Slide 21

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Sequentially scanning
8 billion tuples

Sequentially scanning
1 million tuples

Joining 400 tuples
* 600 million tuples

Joining 400 tuples
* 600 million tuplesScanning ~100 tuples

The Physical Query Plan/Evaluation Plan defines which algorithm is used for
each operation, and how the execution of operations is coordinated.

Query Optimization
Physical Query Plan

Slide 22

Query Processing

q Statistics are, e.g., used to estimate intermediate result size for logical
cost estimations to compute overall cost of complex expressions.

q Especially for cost model-driven approaches, accurate statistics are
indispensable.

q Such statistics include:

q Number of distinct values for a table

q Presence or absence of indices

q Value distribution of attributes (e.g., histograms)

q Top-n values with occurrence count

q Min/Max values

Query Optimization
Statistics

Slide 23
http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query_optimization.pdf

Query Processing

Table: world_population

Meta Data

Data

Attributes: {‘first_name’: char(50), ‘last_name’ […]}
Indexed Columns: {‘first_name’, ‘last_name’, […]}
…
Statistics:
 min/max: {‘birth_year’: [’1900’, ‘2017’], […]}
 distinct_counts: {‘birth_year’: 118, […]}
 histograms:
 first_name:

 country:

a-c d-f g-i …

CN US DE …

q Accuracy of estimation depends on quality and
currency of statistical information DBMS holds

q Keeping statistics up to date can be problematic

q Updating them on the fly increases load on
latency-critical execution paths

q Updating them periodically (e.g., during chunk
compression in Hyrise2) might introduce
misleading estimations due to outdated
statistics

Query Optimization
Statistics

Slide 24

Query Optimization
Join Ordering

Slide 25

Query Processing

The task of join ordering is to find a join order that is estimated to have the
lowest costs (ordered by input and output cardinality).

To do so, we need to estimate the size of the join result (so-called join
cardinality estimation):

q Knowledge about foreign key relationships can be used

q Values are rarely uniformly distributed, histograms help estimating

q But histograms do not contain correlation information

For all relations r1, r2, and r3,

(r1 r2) r3 =r1 (r2 r3)

à Join Associativity

If r2 r3 is quite large and r1 r2 is small, we choose

(r1 r2) r3

so that we compute and store a smaller temporary relation.

Query Optimization
Join Ordering

Slide 26

Query Processing

Estimating join cardinalities is one of the challenging tasks of query

optimization, but also indispensable to performance.

Query Optimization
Join Ordering

Slide 27

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Estimating join cardinalities is one of the challenging tasks of query

optimization, but also indispensable to performance.

Query Optimization
Join Ordering

Slide 28

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Runtime impact of inaccurate join
estimates can be desastrous:

“The average fraction between the worst and
the best plan, […] is 101× […]”

We learned that query optimization becomes increasingly important due to …

q ever growing data sets

q increasingly complex queries.

However, finding efficient plans remains a challenging task as …

q the number of possible plans is enormous, and

q costs rely on estimation using potentially outdated statistics.

Query Optimization
Summary

Query Processing

Slide 29

Query Scheduling

q Modern mixed workload systems handle tens of thousands of queries
per second on servers with dozens of CPU cores

q But plain concurrent execution can significantly hurt performance

q The database needs to balance the overall system’s throughput vs.
latency of single query execution

q The goal is to spawn the right amount of parallel work given the
particular hardware & workload (hence scheduler can be highly
hardware dependent)

Query Scheduling
Overview

Slide 31

Query Processing

q A physical query plan contains operators, each execution is an
operator instance.

q The execution of an operator instance is divided into 1-n tasks.

q Workers execute the tasks. Depending on the database’s architecture
a worker is …

q a process, or

q a thread.

Further, workers can be grouped into process/thread pools.

Query Scheduling
Scheduling Units

Slide 32

Query Processing

q The extend of parallelism varies from database to database

q One task per query, queries are executed concurrently: so-called
inter-query parallelism

q One task per operator, where operators that do not depend on each
other are executed concurrently: so-called intra-query parallelism

q Multiple tasks per operator, where the execution of an operator is split
into concurrent tasks: so-called intra-operator parallelism

q With the rise of many-core systems and mixed workloads, most systems
use both intra- and inter-query parallelism.

q Most database systems create fixed-size threads pools to limit threading
overhead for highly concurrent workloads.

Query Scheduling
Scheduling Units

Slide 33

Query Processing

■ For NUMA systems, workers should primarily execute near the data they

operate on.

■ Most NUMA-optimized databases spawn a worker thread pool per socket.

■ To feed the socket-bound workers, the database has one or more local

task queues.

Query Scheduling
Task Placement for NUMA Systems

Slide 34

Query Processing

Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 35

■ Every node has its local task queue holding tasks that primarily work on
socket-local data.

Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 36

■ In real-world applications, workloads are often highly skewed…

Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 37

■ If the task queue is empty, workers can overtake work from other worker
pools (so-called task/work stealing).

■ The degree of how much work stealing is allowed depends on node
distance, CPU load, QPI saturation, and more.

Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

q For any NUMA-aware system, workers should primarily access data that is
local to itself (NUMA-aware data placement)

q Thus, the database engine cannot rely on the OS’s data placement
scheme (e.g., first-touch or interleaved) but has to distribute data across
the NUMA nodes on her own and place tasks accordingly

q Straightforward approach is round-robin chunk placement

q Advantage: simplicity and automatic handling of workload skew

q Disadvantage: operations may combine outputs from multiple nodes
when correlated tables are scattered (e.g., foreign key relationships)

q Goal is to distribute data both skew- and workload-aware in the first place
and dynamically adapt to changing workload patterns

Query Scheduling
Data Placement for NUMA Systems

Slide 38

Query Processing

Query Scheduling
Data Placement for NUMA Systems

Slide 39

Query Processing

■ A scan on table A can executed in parallel with optimal data locality.

■ An aggregation on table A (e.g., min()) can first be executed in parallel
with optimal data locality, but final result merging accesses remote data.

Socket #2

Socket #4

Socket #1

Socket #3

Table A
Fragment #3

Table A
Fragment #1

Table A
Fragment #2

Query Scheduling
Data Placement for NUMA Systems

Slide 40

Query Processing

■ Joining table A and table B inevitably needs to move data across the
QPI. Ideally, regularly together joined tables are co-located.

Socket #2

Socket #4

Socket #1

Socket #3

Table A
Fragment #3

Table A
Fragment #1

Table A
Fragment #2

Table B
Fragment #2

Table B
Fragment #3

Table B
Fragment #1

Table A
Fragment #1

Table A
Fragment #3

Table A
Fragment #2

Table B
Fragment #1

Table B
Fragment #2

Table B
Fragment #3

Table B
Fragment #4

Table B
Fragment #4

Query Scheduling
Data Placement in Hyrise2

Slide 41

Query Processing

1 = @uj]ie_ Lh]_aiajp Opn]pacu

Becqna ./6 Ar]hq]pejc pda `uj]ie_ lh]_aiajp opn]pacu kj kqn -2)jk`a i]_deja sepd
-., qpeheva` d]n`s]na pdna]`o*

Becqna .06 Ei^]h]j_a iapne_o]o na_kn`a` ej pda lnarekqo atlaneiajp kj pda 0)jk`a i])
_deja* Jkpa pd]p pda _dqjg]__aoo peia iapne_ `apa_po ei^]h]j_ao nahe]^hu(
sdana]o pda kpdan psk iapne_o aepdan b]eh pk `apa_p ei^]h]j_ao kn `k jkp `eo)
pejcqeod ^apsaaj pdai _ha]nhu*

=p pda ^acejjejc]j`]p pda |nop sknghk]` _d]jca(pdana]na hk]` ei^]h]j_ao hega oaaj ej
pda |nop atlaneiajpo* Sa k^oanra pd]p kjhu pda _dqjg]__aoo peia iapne_ `eopejcqeodao
_ha]nhu ^apsaaj ^]h]j_a`]j` ei^]h]j_a` oepq]pekjo* Pda skng opa]hejc]j` s]epo iapne_
oaaio pk na}a_p pda hk]` ei^]h]j_ao ^qp `kao jkp oal]n]pa pda psk oepq]pekjo]o _ha]nhu
]o pda _dqjg]__aoo peia iapne_ `kao* @qa pk pda h]_g kb _ha]n oal]n]pekj(ep eo d]n`an pk
]llhu] pdnaodkh` pk pda ei^]h]j_a iapne_]o sa `k ej kqn `uj]ie_ lh]_aiajp]hcknepdi*
Pda]ooecja` p]ogo iapne_ b]eho pk `apa_p ei^]h]j_ao pd]p k__qn]bpan pda ^acejjejc* Pdeo
eo qj]__alp]^ha bkn] `uj]ie_ `]p] lh]_aiajp opn]pacu* @qa pk pdaoa naoqhpo(sa `a_e`a`
pk kjhu qoa pda _dqjg]__aoo peia iapne_ ej bqnpdan atlaneiajpo*

3.

Figure from Norman Rzepka’s Master Thesis “Adaptive NUMA-Aware Load-Balancing for In-Memory Databases”, 2017

In case of changing workloads, data placement has to be adapted:

We learned that scheduling becomes increasingly important due to …

q balancing between throughput and query latencies

q diverse memory hierarchies (DRAM, NVRAM, NUMA hops)

q mixed workloads with both short queries & long-running complex queries

Query Scheduling
Summary

Slide 42

Query Processing

Overall Summary

Overall Summary

Modern systems execute complex analytical queries

q Optimization remains challenging for complex queries

q Join estimation is an open research problem with huge
performance impact

Modern database servers are large NUMA systems

q Expensive and long-running operators need to be parallelized properly

q Effective data placement is crucial

q Scheduling of queries needs to balance throughput and latency

Modern database servers have dozens of CPU cores

q Choice of join is not just dependent on runtime complexity, but also on
the join’s fit to the database engine, server hardware, and workload

Slide 70

Query Processing

