Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Build your own Database

Week 7

Agenda

« How was Sprint 3?

* Null Values

» Logistics

« How to work with the Code Base
» Topic Assignments

« First Meeting for Group Project

Hasso
Plattner
Institut

NULL values in SQL

 NULL is used to represent absent values
« It is a state/marker not a value
- DBMS dependent behavior in many cases

— Arithmetic operations involving NULL, usually result in
NULL: NULL * 17 = NULL, but what about NULL / ©°?

— String concatenations involving NULL, result in NULL

Hasso
Plattner
Institut

NULL values in SQL

e SELECT 17 = NULL > ?

« SQL offers three logical results: True, False, Unknown -
Three-valued Logic (3VL)

I T YT T AT

True True True True True
True False False True False
True Unknown Unknown True Unknown
False True False True False
False False False False True
False Unknown False Unknown Unknown
Unknown True Unknown True Unknown
Unknown False False Unknown Unknown

Unknown Unknown Unknown Unknown Unknown

3 Hasso
Plattner
Institut

NULL values in SQL

Customer

0
1
2

NULL Zayer
Alex Geier
Frank Meier

SELECT * FROM customer WHERE firstname = NULL; - ?
SELECT * FROM customer WHERE firstname <> Alex; > ?

Rows for which predicates evaluate to Unknown are treated like rows that
evaluate to False

All standard comparison operators return Unknown when comparing NULL

Thus, SQL offers IS NULL and IS NOT NULL

Hasso
Plattner
Institut

NULL values in Hyrise

We need a representation for NULL for Value, Reference and Dictionary

columns:

// Value Segments

static const auto NULL_VALUE = AllTypeVariant{};

// Reference Segments

constexpr ChunkOffset INVALID_CHUNK_OFFSET{std::numeric_limits<ChunkOffset>::max()};
const RowID NULL_ROW_ID = RowID{ChunkID{6u}, INVALID CHUNK_ OFFSET};

// NULL ValueIDs for Dictionary Segments

constexpr ValueID NULL_VALUE_ID{std::numeric_limits<ValuelID::base_type>::max()};

segment.unique_values_count()

3 Hasso
Plattner
Institut

Logistics

€090

Improved
Code due
I
I

*—— ¢0'LC

~---- Review due

...................... —1— ¢0°0¢

Final Presentation

Code due

*——'CO€El

L T -1 .NO.@O

*—— 'T00¢€

*—1— 'T0°€C

*—1—"10°9T

*——"10'60

e ——'T10°C0

................................ —1— ¢1°9¢

cT'6l

« ——ZT'CT

---- Review Sprint 3
*
I
I

Hasso
Plattner
Institut

SSSSESSSESEISSESSSSEESSSSSSE SN ——"21°S0

---- Start of Group Projects

....................................... —— 11°8¢

Date of Final Presentation

Final day of instruction is on 06.02.

We would like to have the final presentation on that day,

but ~11 minutes per group is not enough
Three options

— Super Wednesday (06.02., 09:15 - 12:30)
— Find a second slot in that week

— Take the Wednesday before (our least favorite)

Hasso
Plattner
Institut

Setting up Hyrise

1. Fork the Hyrise Repo
2. Run ./install.sh
3. Setup a build folder
— mkdir build; cd build; cmake ..; make -jX
— Important cmake flags:
. -DCMAKE_CXX_ COMPILER_LAUNCHER=ccache
. -DCMAKE_BUILD TYPE=Release (Or RelWithDebInfo)

. -DENABLE_JIT_SUPPORT=0OFF

Hasso
Plattner
Institut

Hyrise Code Base

® @ GitHub, Inc. (US) | https://github.com/hyrise/hyrise e @ ¢ | @ search

Pull requests

Issues Marketplace Explore

L hyrise / hyrise

@ unwatchv | 3

<> Code Issues 74 Pull requests 7 Wiki Insights Settings
Hyrise is a research in-memory database. https://hpi.de/plattner/projects/hyri... Edit
database in-memory-database cpp sgql Manage topics

D 1,163 commits

i 75 branches © 0 releases 42 33 contributors sfs MIT

Branch: master v New pull request Create new file = Upload files = Find file Clone or download ¥

mrks Assert pos list size (#1327)

B cmake
| scripts
i} src

m third_party

Hasso
Plattner
Institut

Clone with HTTPS ® Use SSH

. Use Git heckout with SVN using th b URL.
-Walmost-everything (#1148) se LIt or checkout wi using the we

https://github.com/hyrise/hyrise.git B
Fix lint.sh (#1248) ps://79 y y g B

Assert pos list size (#1327)
Open in Desktop Download ZIP

Update cxxopts, remove hack (#1315) —

10

Demo

Run Console
e cd ..; ./build/hyriseConsole
 generate_tpch 0.1

e SELECT * FROM customer JOIN orders ON c_custkey = o_custkey WHERE
o_orderpriority = '5-LOW' LIMIT 1

* visualize

Run TPCH Benchmark

e ./build-release/hyriseBenchmarkTPCH -s 0.1 -v --visualize
Compare results

e ./scripts/compare _benchmarks.py old.json new.json

Hasso
Plattner 11
Institut

Continuous Integration

https://hyrise-ci.epic-hpi.de/

Once you open your first PR, we will o
.

assign Hyrise team membership o

Only then will the CI start to build P

your code —o—

Once your code is stable and reviewed, you can add the

FullCI tag, which enables additional CI verification

Hasso
Plattner 12
Institut

https://hyrise-ci.epic-hpi.de/

Pull Requests

Please open PRs from early on
— Early Feedback

— Fewer Conflicts

— Less Blocks

The initial review will be done by the other group

Hasso
Plattner
Institut

13

Fortnightly

Every other Wednesday (starting next week), the Hyrise

developers meet to discuss current issues and architecture

changes
— 13:30, Konfi

This is a good chance of seeing what is happening in the

other groups and what is happening with Hyrise in general

Hasso
Plattner
Institut

14

Support

« If you have any questions, please don't wait for a week
« You can use Piazza for questions or email us

« If anything looks odd or is hard to understand, please let us

know

Hasso
Plattner 15
Institut

Hyrise Paper

Our EDBT paper discusses
some of the design decisions

and the overall architecture

Some parts have been
covered in the lecture, others

(e.g., JIT) should be new

We will upload it to Piazza

Hasso
Plattner
Institut

Hyrise Re-engineered: An Extensible Database System for
Research in Relational In-Memory Data Management

Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck,
Matthias Uflacker, Hasso Plattner
Hasso Plattner Institute
Potsdam, Germany
firstname.lastname @hpi.de

ABSTRACT

Research in data management profits when the performance
evaluation is based not only on single components in isolation,
but uses an actual DBMS end-to-end. Facilitating the integration
and benchmarking of new concepts within a DBMS requires a
simple setup process, well-documented code, and the possibility
to execute both standard and custom benchmarks without tedious
preparation. Fulfilling these requirements also makes it easy to
reproduce the results later on.

The relational open-source database Hyrise (VLDB, 2010) was
presented to make the case for hybrid row- and column-format
data storage. Since then, it has evolved from a single-purpose
research DBMS towards a platform for various projects, includi

® The lack of SQL support required query plans to be written
by hand and made executing standard benchmarks tedious.

o Accumulated technical debt made it difficult to understand
the code base and to integrate new features.

For these reasons, we have rewritten Hyrise from scratch and
incorporated the lessons learned. We redesigned the architecture
to provide a stable and easy to use basis for holistic evaluations of
new data management concepts. Hyrise now allows researchers
to embed new concepts in a proper DBMS and evaluate perfor-
mance end to end, instead of implementing and benchmarking
them in isolation. At the same time, we allow most components to
be selectively enabled or disabled. This way, researchers can ex-

research in the areas of indexing, data partitioning, and non-
volatile memory. With a growing diversity of topics, we have
found that the original code base grew to a point where new

peri ion was made ily difficult. Over the last
two years, we have rewritten Hyrise from scratch, focusing on
building an extensible multi-purpose research DBMS that can
serve as an easy-to-extend platform for a variety of experiments
and prototyping in database research.

In this paper, we discuss how our learnings from the previous
version of Hyrise have influenced our rewrite. We describe the
new architecture of Hyrise and highlight the main components.
We then show how our plugin archi facili
research on diverse DBMS-related aspects without compromising
the architectural tidiness of the code. In a first performance eval-
uation, we show that the execution time of most TPC-H queries
is competitive to that of other research databases.

1 INTRODUCTION

Hyrise was first presented in 2010 [19] to introduce the concept
of hybrid row- and column-based data layouts for in-memory
databases. Since then, several other research efforts have used
Hyrise as a basis for orthogonal research topics. This includes
work on data tiering [7], secondary indexes [16], multi

clude lated and perform isolated measurements.
For example, when developing a new join impl ion, they
can bypass the network layer or to disable concurrency control.
In this paper, we describe the new architecture of Hyrise and
how our prior | ings have led to a ble and com-
hensible database for r hi lational

ts in in-

g P
memory data management (Section 2). Furthermore, we present
a plugin concept that allows to test-drive different optimizations
without having to modify the core DBMS (Section 3). We com-
pare Hyrise to other database engines, show which approaches
are similar, and highlight key differences (Section 4). Finally,
we evaluate the new version and show that its performance is
competitive (Section 5).

1.1 Motivation and Lessons Learned

The redesign of Hyrise reflects our past experiences in develop-
ing, maintaining, and using a DBMS for research purposes. We
motivate three important design decisions.

Decoupling of Operators and Storage Layouts. The previous
version of Hyrise was designed with a high level of flexibility
in the storage layout model: each table could consist of an ar-
bitrary number of containers, which could either hold data (in
uncompressed or compressed, mutable or immutable forms) or
other i with varying horizontal and vertical spans. In

concurrency control [42], different replication schemes [43], and
non-volatile memories for instant database recovery [44]. Over
the years, the uncontrolled growth of code and functionality be-
came an impediment for future experiments. We have identified
four major factors leading to this situation:
* Data layout abstractions were resolved at runtime and in-
curred costs that i head.
o Prototypical comp
isolation, but did not interact well with other components.

had a disproportional
1

have been i d to work in

consequence, each operator had to be implemented in a way
where it could deal with all possible combinations of storage
containers. This made the process of adding new operators cum-
bersome and led to a system where some operators made undocu-
mented assumptions about the data layout (e.g., that all partitions
used the same encoding type). Instead of relying on operators to
properly process data structures with varying memory layouts,
Hyrise now follows an iterator-based approach. By accessing
data through iterators, the implementation of new operators is

led from the i ion of new data storage concepts

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN XXX-X-XXXXX-XXX-X on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-ne-nd 4.0.

without compromising the flexibility. Operators can implement
custom specializations for specific iterators, but execution falls
back to the default iterator if no implementation exists. The iter-
ator abstraction is explained in Section 2.3.

16

Topic Assignments

Gruppe 1 (EK, AL, AR):
Gruppe 2 (CF, HR, 1S):
Gruppe 3 (MK, TL, SS):
Gruppe 4 (PF, 1], DS):
Gruppe 5 (MF, KO, MW):
Gruppe 6 (PB, MH, NT):
Gruppe 7 (FE, D], JM):
Gruppe 8 (JE, LI, LL):

Hasso
Plattner
Institut

Aggregate (JK)

Sorted Segments (SK)
Between (JK)
Subselect-to-Join (MB)
Multi-Predicate Joins (SK)
Primary Keys (MD)
Physical MVCC Delete (MD)

Heavy Compression (MB)

here

Glaskasten

here

Konfi

Glaskasten

V-1.16

V-1.16

Konfi

17

