
Develop you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 2	 	
	 	

1

Overview
In	the	second	sprint,	you	will	implement	dictionary-encoded	chunks	for	OpossumDB.	In	
contrast	to	Hyrise	v1,	HANA,	and	SanssouciDB,	we	are	not	going	to	have	a	 large	single	
(always	dictionary-encoded)	partition.	Each	chunk	in	OpossumDB	starts	uncompressed	
and	will	eventually	be	dictionary-compressed	at	a	later	point	in	time.	When	the	chunk	is	
full	and	thus	immutable	(we’ll	discuss	ways	to	invalidate	tuples	later),	its	segments	get	
compressed.	

Dictionary-Encoded Segments
	
A	dictionary-encoded	segment	in	OpossumDB	consists	of	two	main	data	structures:	

• The	attribute	vector:	an	std::vector<uint*_t>	storing	references	into	the	
dictionary.	Its	length	must	always	be	the	same	as	the	chunk’s	length;	each	entry	is	
an	index	into	the	dictionary	where	the	actual	value	is	stored.	As	a	first	step,	you	
can	implement	it	for	64-bit	integers.	Later	in	this	sprint,	you	should	support	mul-
tiple	lengths.	

• The	dictionary:	 an	std::vector<T>	 storing	 the	actual	distinct	values	of	 the	
segment	in	sorted	order.	

	
For	now,	the	actual	compression	is	initiated	by	the	Table::compress_chunk method.	
That	method	takes	a	chunk	id	and	compresses	all	value	segments	in	that	chunk	so	that	
they	are	dictionary	segments.	As	a	result,	it	is	not	possible	for	chunks	to	contain	both	value	
and	dictionary-encoded	segments.	You	should	create	a	new	empty	chunk	before	starting	
the	compression,	add	the	new	dictionary-encoded	segments	to	the	chunk	and	in	the	end	
put	the	new	segments	into	place	by	exchanging	the	complete	chunk.	Keep	in	mind	that	
database	systems	are	usually	accessed	by	multiple	users	simultaneously.	Others	might	
access	a	chunk	while	you	are	compressing	it.	Therefore,	exchanging	uncompressed	and	
compressed	chunks	should	consider	concurrent	accesses.			
	
Additionally,	the	dictionary	segment	has	a	number	of	methods	that	we	will	use	in	the	next	
sprint	(e.g.,	 lower	bound).	These	behave	similar	 to	 the	methods	that	 the	C++	standard	
library	implements	(if	you	don’t	know	about	lower	bound,	consult	the	reference1).	If	the	
search	 value	 is	 not	 found	 in	 the	 dictionary,	 they	 return	 the	 special	 value	 id	 INVA-
LID_VALUE_ID.		
	
Once	you	have	implemented	this,	you	can	enable	the	tests	in	dictionary_segment_test.cpp.	
Note	that	these	do	not	cover	all	methods	and	should	be	extended.	

Variable-Width Attribute Vector
	
If	everything	works	with	fixed-size	(i.e.,	64-bit)	entries	in	the	attribute	vector,	the	next	
step	is	to	introduce	different	types	of	attribute	vectors.	The	attribute	vector	should	have	
a	 varying	 width	 depending	 on	 the	 number	 of	 distinct	 values	 in	 the	 dictionary.	 If	 the	

																																																								
1	https://en.cppreference.com	

Develop you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 2	 	
	 	

2

dictionary	only	holds	three	values,	using	64	bit	for	every	value	id	would	be	a	huge	waste	
and	8	bit	is	more	than	enough.	
	
This	is	what	is	meant	with	uint*_t	above.	Since	uint*_t	is	not	an	actual	class,	we	will	
need	to	implement	a	wrapper	for	this	vector.	For	this,	implement	the	new	class	Fitte-
dAttributeVector<uintX_t>.	This	class	inherits	from	BaseAttributeVector	and	im-
plements	the	following	interface:	
	

BaseAttributeVector() = default;
virtual ~BaseAttributeVector() = default;

// returns the value at a given positon
virtual ValueID get(const ChunkOffset i) const = 0;

// sets the value_id at a given position
virtual void set(const ChunkOffset i, const ValueID
 value_id) = 0;

// returns the number of values
virtual size_t size() const = 0;

// returns the width of the values in bytes
virtual AttributeVectorWidth width() const = 0;

	
During	the	creation	of	the	dictionary,	you	should	check	what	width	you	need	and	initialize	
_attribute_vector	in	the	DictionarySegment	accordingly.	
	
We	will	not	implement	Bitpacking	(Zero	suppression)2	during	this	sprint.	Instead,	we	will	
rely	 on	 the	 native	 integer	 types:	 uint8_t,	 uint16_t, or uint32_t (see	
http://en.cppreference.com/w/c/types/integer).	

	
In	the	template,	there	are	no	tests	that	check	if	the	correct	width	is	selected.	

Submission instructions
For	your	final	submission,	please	file	a	pull	request	from	your	forked	repository	to	our	
repository.	Also,	please	email	us	(Markus.Dreseler	and	Jan.Kossmann)	the	commit	ID	(i.e.,	
the	SHA-1	hash)	so	that	we	know	which	version	you	consider	final	until	13	Nov	2018	
11:59	PM	CET.	Do	not	open	a	pull	request!	

																																																								
2	https://en.wikipedia.org/wiki/Zero_suppression	

