
Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

1

Operator Concept
In	the	third	sprint,	you	will	implement	the	TableScan	operator	–	one	of	the	most	funda-
mental	operators.	Of	 course,	 the	TableScan	 is	 not	 the	only	operator	 that	we	have	 in	a	
DBMS.	Thus,	it	makes	sense	to	first	talk	about	the	operator	concept	in	general.	
	
For	executing	a	query,	databases	traditionally	use	something	called	a	query	plan	or	op-
erator	tree.	Let	us	look	at	the	operator	tree	for	an	example	query:	

SELECT c.id, c.name, SUM(o.amount) FROM customers c, orders o WHERE c.id = o.cid
AND o.date > '2016-01-01' GROUP BY c.id, c.name;

This	query	gives	us	the	id,	name,	and	total	amount	of	orders	since	20161	for	every	cus-
tomer.	Note	how	it	does	not	say	anything	about	how	the	database	gets	to	that	result.	The	
two	following	query	plans	both	have	the	same	result:	
	

	
	
One	of	them,	however,	is	likely	to	be	significantly	faster.	Selecting	a	fast	query	plan	out	
of	many	potential	query	plans	is	the	job	of	the	query	optimizer.	Because	we	do	not	yet	
have	an	optimizer,	we	will	build	our	query	plans	by	hand.	Later	this	term,	we	will	talk	

																																																								
1	No,	you	should	not	have	an	aggregated	order	amount	stored	in	your	database	but	cal-
culate	in	on	the	fly.	Bear	with	me	just	for	the	sake	of	the	example,	will	you?	

Table
Customers

Table
Orders

id
si

gn
ed

-u
p

na
m

e
ad

dr
es

s
… id ci

d
da

te
am

ou
nt

…

ProjectionScan
{id, name}

Filter
date > 2016-01-01

ProjectionScan
{id, amount}

Join
c.id = o.cid

GroupedAggregate
SUM(o.amount)

Table
Customers

Table
Orders

id
si

gn
ed

-u
p

na
m

e
ad

dr
es

s
… id ci

d
da

te
am

ou
nt

…

Join
c.id = o.cid

GroupedAggregate
SUM(o.amount)

Filter
date > 2016-01-01

ProjectionScan
{id, name, amount}

ReturnResult ReturnResult

Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

2

about	how	the	Hyrise	optimizer	deals	with	this.	Helping	the	optimizer	with	generating	
more	efficient	query	plans	will	also	be	part	of	some	group	projects.	

AbstractOperator
As	you	can	see,	each	operator	has	up	to	two	inputs,	can	have	an	output,	and	usually	also	
parameters.	We	model	this	using	the	AbstractOperator	interface:	
	
class AbstractOperator : private Noncopyable {
 public:
 AbstractOperator(const std::shared_ptr<const AbstractOperator> left = nullptr,
 const std::shared_ptr<const AbstractOperator> right = nullptr);

 // we need to explicitly set the move constructor to default when
 // we overwrite the copy constructor
 AbstractOperator(AbstractOperator&&) = default;
 AbstractOperator& operator=(AbstractOperator&&) = default;

 void execute();

 // returns the result of the operator
 std::shared_ptr<const Table> get_output() const;

 // Get the input operators.
 std::shared_ptr<const AbstractOperator> input_left() const;
 std::shared_ptr<const AbstractOperator> input_right() const;

protected:
 // abstract method to actually execute the operator
 // execute and get_output are split into two methods to allow for easier
 // asynchronous execution
 virtual std::shared_ptr<const Table> _on_execute() = 0;

 std::shared_ptr<const Table> _input_table_left() const;
 std::shared_ptr<const Table> _input_table_right() const;

 // Shared pointers to input operators, can be nullptr.
 std::shared_ptr<const AbstractOperator> _input_left;
 std::shared_ptr<const AbstractOperator> _input_right;

 // Is nullptr until the operator is executed
 std::shared_ptr<const Table> _output;
};

	
This	way,	we	can	easily	chain	multiple	operators	by	passing	the	 first	operator	as	a	pa-
rameter	to	the	second	one:	

auto scan = std::make_shared<Scan>(...);
auto sort = std::make_shared<Sort>(scan, ColumnID{3});

The	first	operator	usually	is	the	GetTable	operator,	which	takes	no	input	operators	and	
outputs	a	table	stored	in	the	StorageManager,	identified	by	its	name.	
	
As	an	example,	we	have	provided	you	with	the	Print	operator.	It	takes	one	table	as	input,	
prints	the	table	to	an	output	stream	(by	default,	std::cout),	and	forwards	it	as	an	output.	
This	way,	it	can	be	placed	anywhere	in	the	query	plan.	
	
The	columns	that	the	operators	should	work	on	are	given	as	ColumnIDs,	which	denote	
the	position	of	the	referenced	column	in	the	input	table.	We	prefer	this	over	using	col-
umn	names	because	it	makes	name	resolution	in	case	of	aliases	much	easier.	
	

Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

3

An	operator	only	has	an	output	table	if	it	has	already	been	executed.	This	is	so	that	you	
can	 first	 create	 the	 operators	 and	 then	 execute	 them	 (or	 have	 the	 scheduler	 execute	
them).	
	
Furthermore,	 we	 decided	 that	 operators	 must	 not	 return	 empty	 chunks	 (except,	 of	
course,	if	there	is	no	result	at	all).	This	is	because	these	empty	chunks	will	not	be	rele-
vant	for	future	operators.	As	a	consequence,	we	do	not	assume	that	a	table	scan	returns	
the	same	number	of	output	chunks	as	it	has	as	input	chunks.	

ReferenceSegment
Now	that	we	know	how	to	pass	input	to	our	operators,	the	question	is	what	the	output	
looks	like.	For	performance	reasons,	we	do	not	want	to	materialize	(i.e.,	copy)	each	seg-
ment,	especially	 if	 it	 is	unaffected.	 Instead,	we	want	to	use	 indirection.	By	using	refer-
ences	to	an	existing	table,	we	can	get	around	copying	the	actual	values.	
	
We	do	this	by	adding	a	 third	segment	type,	which	we	call	ReferenceSegment.	A	Refer-
enceSegment	allows	us	to	reference	certain	positions	in	a	different	segment	within	a	
different	table.	
	
// ReferenceSegment is a specific column type that stores all its values as
position list of a referenced column
class ReferenceSegment : public BaseSegment {
 public:
 // creates a reference column
 // the parameters specify the positions and the referenced column
 ReferenceSegment(const std::shared_ptr<const Table> referenced_table, const
 ColumnID referenced_column_id,
 const std::shared_ptr<const PosList> pos);

 const AllTypeVariant operator[](const size_t i) const override;

 void append(const AllTypeVariant&) override { throw std::logic_error(
 "ReferenceSegment is immutable");};

 size_t size() const override;

 const std::shared_ptr<const PosList> pos_list() const;
 const std::shared_ptr<const Table> referenced_table() const;

 ColumnID referenced_column_id() const;
};

	
	
Internally,	the	ReferenceSegment	has	three	pieces	of	information:	

1. A	 shared	 pointer	 to	 the	 table	 that	 is	 referenced.	 Using	 a	 shared	 pointer	 here	
makes	sure	that	the	table	that	holds	the	actual	values	does	not	disappear	while	it	
is	still	being	referenced.	

2. The	column_id	of	the	column	that	is	referenced.	
3. A	shared	pointer	 to	a	PosList	(which,	 internally,	 is	 just	an	std::vector<RowID>).	

We	will	talk	about	why	it	has	to	be	a	shared	pointer	in	a	second.	
	
To	reiterate,	a	ReferenceSegment	does	not	refer	to	a	single	chunk	within	that	table	but	
to	the	entire	table.	The	necessity	of	this	should	become	more	clear	when	we	think	about	
the	result	of	a	sort	operation:	
	

Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

4

	
Referencing	the	positions	in	alternate	order	would	not	be	possible	here	if	a	Reference-
Segment	could	only	point	to	a	single	chunk.	There	is	one	shortcoming	of	this	approach:	
Because	a	ReferenceSegment	cannot	point	to	values	in	different	tables	(e.g.,	because	two	
tables	were	 concatenated	using	a	union),	we	could	not	use	 the	 same	approach	 for	 the	
sort	operator	if	the	first	chunk	was	part	of	a	different	table.	In	this	case,	we	will	resort	to	
materializing	the	inputs.	Since	this	problem	only	happens	with	the	sort	operator,	which	
is	usually	 the	last	operator	 in	a	query	plan,	 this	materialization	 is	not	harmful	 for	per-
formance,	as	it	would	have	to	occur	anyway.	
	
Another	 thing	 that	 you	 can	 see	 in	 the	 visualization	 above	 is	 that	 the	 three	Reference-
Segments	 created	 by	 the	 sort	operator	 point	 to	 the	 same	PosList.	 It	 allows	 us	 to	 save	
both	 the	 time	 to	 generate	multiple	 PosLists	 and	 reduce	 the	memory	 footprint.	This	 is	
possible	because	 the	RowIDs	 that	 the	 three	 columns	point	 to	are	 the	 same.	There	are	
other	cases	where	sharing	a	PosList	is	not	possible	–	for	example	if	the	columns	point	to	
different	tables.	
	
Remember	how	we	mentioned	 that	you	cannot	assume	 that	 the	 size	of	 a	 table	 can	be	
calculated	by	the	number	of	chunks	times	the	maximum	chunk	size?	This	becomes	clear	
here,	 as	 the	 size	 of	 a	 ReferenceSegment	 that	 comes	 from	 a	 scan	 can	 be	 anywhere	 be-
tween	zero	and	the	size	of	the	entire	table.	Because	we	will	not	use	dictionary	compres-
sion	on	a	ReferenceSegment,	there	is	no	need	to	split	large	columns	into	chunks.	As	such,	
the	ReferenceSegment	does	not	obey	the	maximum_chunk_size	setting	of	a	table.	
	
While	 indirection	 is	 helpful,	 we	want	 to	 avoid	 excessive	 indirection.	 If	 we	 had	 Refer-
enceSegments	pointing	to	ReferenceSegments	pointing	to	ReferenceSegments,	each	ac-
cess	would	 have	 to	 go	 through	 three	 levels	 of	 indirection	 (plus	 virtual	method	 calls).	
This	degrades	our	performance.	Thus,	we	define	that	ReferenceSegments	can	only	refer	
to	positions	in	a	ValueSegment	or	a	DictionarySegment:	
	
		

table

chunk 0 (actual values)

VS<int>

1
3
5
7
9

11
13

VS<float>

3.1
5.6
2.1

77.8
4.22
1.0
4.1

VS<str>

…

VS: ValueSegment
DC: DictionarySegment
RS: ReferenceSegment

va
lu

es

0
1
2
3
4
5
6po

si
tio

n
(v

irt
ua

l)

colA colB colC

chunk 1 (actual values)

VS<int>

2
4
6
8

10
12
14

VS<float>

41.6
6.2
1.3
0.6

0.71
1.2
1.1

VS<str>

…

va
lu

es

7
8
9

10
11
12
13

table

chunk 0 (referenced values)

RS ->
tableA(0)

RS ->
tableA(1)

RS ->
tableA(2)

colA colB colC

sort(colA)

PosList
0
7
1
8
2
9
3

10
4
11
5

12
6

13

Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

5

tableA

chunk 0 (actual values)

VS<int>

1
3
5
7
9

11
13

VS<float>

3.1
5.6
2.1

77.8
4.22
1.0
4.1

va
lu

es

0
1
2
3
4
5
6po

si
tio

n
(v

irt
ua

l)

colA colB

chunk 1 (actual values)

VS<int>

2
4
6
8

10
12
14

VS<float>

3.1
5.6
2.1

77.8
4.22
1.0
4.1

va
lu

es

7
8
9
10
11
12
13

tableB

chunk 0 (referenced values)

RS ->
tableA(0)

RS ->
tableA(1)

colA colB

PosList
1
3
4
6

Scan colB > 4 Scan colA < 10

chunk 1 (referenced values)

RS ->
tableA(0)

RS ->
tableA(1)PosList

8
10
11
13

tableC

chunk 0 (referenced values)

RS ->
tableA(0)

RS ->
tableA(1)

colA colB

PosList
1
3
4

chunk 1 (referenced values)

RS ->
tableA(0)

RS ->
tableA(1)PosList

8
10

referencing
tableA, not

tableB

GetTable
Let’s	start	implementing	things.	We	begin	with	the	GetTable	operator	that	takes	a	table	
name,	looks	up	the	associated	table	in	the	StorageManager	and	returns	it.	

 explicit GetTable(const std::string &name);

TableScan
Now	it	becomes	interesting.	A	TableScan	takes	an	input	table,	and	filters	a	given	column	
by	comparing	all	values	to	a	given	operator:	
	
TableScan(const std::shared_ptr<const AbstractOperator> in, ColumnID column_id,
 const ScanType scan_type, const AllTypeVariant search_value);

	
	
Most	of	the	actual	implementation	is	left	to	you.	Below,	we	want	to	give	you	some	tips	on	
what	we	found	helpful.	Keep	in	mind	that	the	interface	is	the	only	contract	that	your	op-
erator	has	to	fulfill.	Internal	implementations	can	vary.	Also,	we	do	not	define	the	struc-
ture	of	 the	output.	You	could	either	have	a	 single	 chunk	with	ReferenceSegments	 that	
point	to	the	found	values	or	one	output	chunk	per	input	chunk.	Keep	in	mind	that	we	do	
not	produce	empty	chunks,	unless	the	result	is	empty,	in	which	case	we	produce	a	single	
empty	chunk.		

TableScanImpl
Remember	 that	we	 do	 not	want	 to	 use	operator[]	 on	 columns.	 It	 is	 solely	 there	 for	
debugging	 and	 testing	 purposes,	 but	 its	 performance	 (due	 to	 the	 virtual	method	 calls	
involved	and	the	use	of	AllTypeVariant)	prohibits	 its	use	 in	operators.	As	a	result,	you	
will	 have	 to	get	 the	ValueSegments’	 value	 vector	or	 the	DictionarySegments’	 attribute	
vector	and	the	corresponding	dictionary	when	you	want	to	scan	the	values.	These	are	
templated	to	match	the	type	stored	in	the	column.	The	TableScan	operator,	however,	is	
not	templated.	

Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

6

	
In	our	implementation,	we	solved	this	problem	by	writing	a	class	internal	to	TableScan:	

class TableScan : public AbstractOperator {
 protected:
 template <typename T>
 class TableScanImpl;
};

This	 internal	 class	 contains	 the	 actual	 implementation.	 TableScan	 is	 just	 a	 wrapper	
around	 it	 that	 creates	 the	 Impl	 class	 by	 using	 make_unique_by_column_type and	
forwards execute() and get_output().	 In	 TableScanImpl,	 we	 can	 then	 get	 the	
search	value	as	a	T	by	using	the	type_cast<T>	method.	

Checking for a column’s type
At	various	points	in	your	operator	implementation,	you	will	need	to	check	the	type	of	a	
BaseSegment.	 You	 can	 rely	 on	 Run-Time	 Type	 Information	 and	 use,	 e.g.,		
std::dynamic_pointer_cast<DictionarySegment>(b).	If	b	can	be	casted	to	a	Dic-
tionarySegment,	the	pointer	cast	returns	such	a	pointer.	If	b	cannot	be	casted,	it	returns	
nullptr.	
	

Doing the actual comparison
In	this	sprint,	we	will	not	deal	with	varying	data	types.	You	do	not	have	to	support	com-
paring	ints	with	floats.	However,	if	the	types	do	not	match,	your	implementation	should	
notice	this	and	throw	an	exception.	
	
Comparing	 values	 stored	 in	 a	 ValueSegment	 is	 trivial	 once	 you	 have	 a	 T val-
ue_to_be_compared_to	and	the	value	vector	const std::vector<T>&.	For	diction-
ary	columns,	this	is	more	complicated	–	at	least	if	you	care	about	performance.	The	trivi-
al	 solution	would	 be	 to	decompress	 every	 value	 id	 and	 then	 compare	 it	 to	 the	 search	
value.	 In	 fact,	 you	 should	 try	 implementing	 this	 first	 before	 you	 do	 the	more	 efficient	
approach	outlined	below.	
	
When	scanning	a	DictionarySegment,	we	can	make	use	of	the	fact	that	a	total	order	on	
the	values	also	reflects	a	total	order	on	the	dictionary.	Also,	there	is	an	entry	for	a	given	
value	in	the	dictionary	if	(if	and	only	if)	the	value	is	included	in	the	uncompressed	repre-
sentation	of	the	column.	In	other	words:	
	

Let	𝑥	be	a	value	in	the	column	and	𝑥2	its	representation	as	a	ValueID.	
(Lemma	1)	𝑥 ≤ 𝑦 ↔ 𝑥2 ≤ 𝑦′	

	
Let	𝑉	be	the	list	of	uncompressed	values	in	the	column	and	𝐷	the	column's	dictionary	

(Lemma	2)	∀H: 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ 𝐷	
	
For	our	table	 scan,	 this	means	 that	we	can	perform	each	of	 the	 comparison	operators	
listed	above	by	comparing	value	ids,	not	values.	We	do	this	by	first	retrieving	the	value	
id	from	the	dictionary	using	lower_	or	upper_bound	(whatever	is	appropriate)	and	then	

Build you own Database
The Opossum Blueprint

WS 18/19 :: Sprint 3	 	
	 	

7

comparing	the	ValueIDs	in	the	attribute	vector	with	the	ValueID	from	the	dictionary.	As	
an	example2	in	pseudo	code:	

scan(AttributeVector av, Dictionary d, Operator op, T value) {
 op = "<";
 ValueId search_vid = d.lower_bound(value);
 for(col_vid : av) {
 if(col_vid < search_vid) emit(row_id);
 }
}

Performance Challenge
We	will	measure	the	performance	of	your	TableScan	to	find	the	most	efficient	solution.	
This	will	be	executed	on	various	types	of	input	columns	with	varying	length.	You	can	use	
optimizations	such	as	SIMD,	but	no	multithreading.	If	you	believe	that	you	can	achieve	a	
better	performance	by	modifying	the	 interface,	please	 let	us	know	and	we	can	discuss	
this.	The	focus,	however,	is	on	writing	readable	and	maintainable	code.	

Submission Instructions
Because	you	will	write	more	lines	of	code	in	this	sprint	than	before	and	because	the	ac-
tual	implementation	of	your	TableScan	is	mostly	left	to	you,	it	becomes	more	important	
to	 write	 good	 comments.	 Our	 implementation	 has	 more	 than	 50	 lines	 of	 comments.	
When	writing	comments,	think	about	readers	who	have	not	implemented	the	TableScan	
themselves.	Also,	remember	to	make	sure	that	you	have	adequate	test	coverage.		
	
Your	 submission	 is	 due	 Tuesday,	 November	 27,	 11:59	 PM	 CET.	 Please	 send	 an	 email	
with	the	SHA	hash	of	your	commit	(as	shown	in	the	diagram	in	the	slides	of	week	two	
and	four)	to	Markus	and	Jan.		

																																																								
2	In	this	example,	we	use	short	variable	names	so	that	we	can	fit	everything	on	one	page.	
For	your	code,	please	use	speaking	names.	

