
Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

1

Overview
In	 this	 first	 sprint,	 you	will	 implement	Opossum’s	 basic	 storage	 classes,	 i.e.,	 columns,	
chunks,	and	tables.	We	provide	some	code	that	will	help	you	with	this	and	test	cases	that	
you	can	use	to	verify	your	implementation.	

Preliminary Information
This	 first	project	serves	two	purposes:	First,	 it	allows	you	to	get	a	better	 idea	of	what	
this	class	will	be	about.	Second,	it	should	give	you	an	idea	of	the	level	of	C++	program-
ming	that	we	will	be	expecting	in	this	class.	The	discussed	concepts	will	be	challenging	
for	some	students	who	have	not	worked	with	C++	for	a	while,	but	if	you	manage	to	get	
through	this	sprint,	you	will	be	able	to	follow	the	concepts	that	we	discuss	in	the	future.	
Once	we	have	 built	 the	 foundation	 for	our	database,	we	will	 focus	more	and	more	on	
database	architectures	and	concepts.	
	
We	would	like	you	to	work	on	the	projects	in	groups.	We	will	discuss	group	formation	
during	the	first	class.	You	can	start	working	on	the	project	alone,	but	we	would	like	eve-
ry	group	to	submit	only	one	implementation.	Remember	that	this	project	is	a	part	of	the	
Leistungserfassungsprozess.	Discussing	abstract	concepts	with	other	students	is	ok,	shar-
ing	(parts	of)	an	 implementation	 is	not.	Please	use	a	github	repository	 for	your	devel-
opment.	
	
In	 the	 first	 three	 sprints,	we	will	work	on	a	 code	base	where	we	have	provided	 some	
boilerplate	code.	Once	we	are	in	the	group	phase,	we	will	work	on	the	publicly	available	
code	base.	This	way,	we	can	make	use	of	the	work	that	has	been	done	in	the	seminar	and	
the	master’s	project,	such	as	the	SQL	interface	and	a	good	selection	of	operators.	For	the	
first	 three	 steps,	however,	please	 refrain	 from	referring	 to	 the	Hyrise	 implementation.	
While	it	might	make	your	life	easier	now,	you	are	cheating	yourself	out	of	an	opportuni-
ty	to	learn	the	concepts	needed	to	succeed	in	the	group	phase.	

Coding Guidelines
We	wrote	down	some	of	the	principles	we	follow	with	Opossum	in	CONTRIBUTING.md.	
Please	read	that	 file	 and	try	to	 follow	the	guidelines.	This	 is	especially	 important	with	
regards	to	the	new	C++11-style	memory	management.	We	do	not	use	new / malloc	
anymore,	because	these	are	prone	to	create	leaks.	More	about	this	later.	
	
In	cases	where	we	have	provided	a	full	interface	to	a	class,	it	should	not	be	necessary	to	
add	any	public	methods	or	change	signatures	unless	this	is	explicitly	stated	in	the	task.	
Of	course,	you	may	add	private	methods	at	will	if	this	helps	keeping	your	code	concise.	
In	 some	 places,	 however,	 we	 might	 have	 missed	 specifications	 such	 as	 removing	 the	
copy	constructor	or	using	const.	If	you	believe	that	this	is	the	case,	please	let	us	know.	
	
Remember	to	comment	your	code	in	places	where	you	consider	it	helpful	for	an	outside	
reader.	This	does	not	mean	that	every	line	has	to	have	its	comment.	Additionally,	make	
sure	that	you	reach	acceptable	test	coverage.	While	we	provide	some	tests,	these	do	not	
yet	cover	all	edge	cases.	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

2

The Opossum Table Model
In	Opossum,	every	table	is	horizontally	partitioned	into	a	number	of	chunks.	This	parti-
tioning	will	become	helpful	later	this	term	when	we	look	into	dictionary	compression.	
	
Within	each	chunk,	 the	actual	values	are	 stored	column	by	 column.	The	 column	 is	 re-
sponsible	 for	 the	 actual	 representation	 of	 the	 values.	 Here,	 we	 use	 a	ValueColumn,	
which	stores	its	entries	directly	in	an	std::vector.		Later,	we	will	also	encounter	oth-
er	column	types,	such	as	ReferenceColumn	and	DictionaryCompressedColumn.	
	

	
	
The	StorageManager	maintains	a	mapping	from	table	names	to	table	objects.	

Step 0: Remember to sign up to Piazza
Please	sign	up	to	our	Piazza	class	at:	https://piazza.com/class/j8vgbo26s8g689	
We	will	use	Piazza	to	make	 important	announcement	and	as	a	discussion	platform	for	
questions	outside	of	our	regular	meetings.	

Step 1: Set up your build environment
Prerequisites:	We	have	tested	the	project	on	OS	X	10.12	and	Ubuntu	17.04.	If	possible,	
please	 use	 one	 of	 these	 environments	 for	 your	work.	Others	might	work,	 but	 are	 not	
supported.	
	

Table

Chunk 1
VC<int>

1
2
5
62
1
5
2

VC<float>

3.1
5.6
2.1

77.8
4.22
1.0
4.1

VC<str>

…

Va
lu

es

0
1
2
3
4
5
6Po

si
tio

n
(v

irt
ua

l)

Chunk 2

5
4
12

14.2
3.1
6.0

…

Va
lu

es7
8
9

Product Code
int

Size
float

Product Name
string

VC: ValueColumn

Name
Type

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

3

We	already	have	some	code	prepared	for	you.	Check	out	the	git	repository	at	

git@github.com:hyrise/DYOD_WS1718_Sprint1.git

and	read	the	README.md	the	script.	This	will	automatically	install	a	tool	for	generating	
Makefiles	 (cmake),	 a	 current	 version	 of	 gcc/clang	 (needed	 because	 we	 use	 the	 latest	
C++17	features,	fresh	from	the	oven),	and	boost::hana	(unrelated	to	the	database	with	a	
similar	name).	
	
To	make	sure	that	everything	is	set	up	correctly,	compile	Opossum	using	

./install.sh
mkdir cmake-build-debug
cd cmake-build-debug
cmake ..
make hyriseTest –j4
cd ..
./cmake-build-debug/hyriseTest

This	should	show	two	passing	tests.	All	other	tests	are	currently	disabled,	because	you	
have	not	yet	written	the	code	that	they	require.	
	
We	 have	 a	 number	 of	 other	 make	 targets.	 make hyrisePlayground	 builds	 the	
playground.cpp	 found	 in	 the	bin/	 folder.	 You	 can	 use	 this	 playground	 to	 experi-
ment	with	new	features	without	having	to	use	the	test	framework.	
	
After	 adding	 new	 files,	 add	 them	 to	 src/(lib|test)/CMakeLists.txt so	 that	
they	become	part	of	the	build	process.	
	
To	 keep	 the	 code	 base	 maintainable	 and	 ensure	 code	 style	 guidelines,	 we	 offer	 easy	
ways	to	lint	and	format	the	source	code.		The	folder	scripts	contains	files	that	simplify	
linting	and	formatting.	 In	addition,	 	make hyriseSanitizers	 creates	a	binary	that	
utilizes	 llvm’s	 AddressSanitizer1and	 UndefinedBehaviorSanitizer2.	 Make	 sure	 to	 use	
these	tools.	
	
Before	you	commit,	it	is	a	good	idea	to	do	the	following:	

./scripts/format.sh

./scripts/lint.sh

Make	sure	that	there	are	no	linting	errors	in	your	code.	

																																																								
1	https://clang.llvm.org/docs/AddressSanitizer.html	
2	https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

4

Step 2: ValueColumn
Covered	C++	concepts:	Templates,	deleted	copy	constructors,	const	
	
As	 mentioned	 above,	 the	 ValueColumn	 simply	 stores	 all	 its	 values	 in	 an	
std::vector3.		If	you	lookup	the	reference	for	the	vector,	you	will	find	that	it	requires	
you	 to	 define	 the	 stored	 data	 type,	 for	 example	std::vector<int>.	 Make	 yourself	
familiar	with	this	usage	of	C++	templates.	We	will	need	templates	 for	 the	ValueCol-
umn,	which	will	have	to	hold	different	Opossum	data	types.	
	
To	simplify	handling	different	data	types,	we	have	given	you	a	class	AllTypeVariant	
that	can	store	any	of	Opossum’s	data	types.	You	can	use	it	like	this:	

AllTypeVariant foo = 4; // now storing an int

AllTypeVariant giveFloat() { return 4.3f; }
AllTypeVariant giveInt() { return 5; }

foo = giveFloat();
std::cout << foo << ", " << giveInt() << std::endl;
float bar = type_cast<float>(giveInt());

Its	implementation	is	in	all_type_variant.hpp.	You	do	not	have	to	understand	the	
definition	of	the	class	for	now.	
	
A	caveat	of	this	is	that	an	AllTypeVariant	always	uses	the	maximum	size	of	all	data	
types	–	meaning	that	a	char	has	the	same	size	as	a	long.	Obviously,	we	want	to	save	
space	in	our	database.		As	a	result,	we	must	not	store	AllTypeVariants	in	our	vector.	
Instead,	we	will	use	the	actual	data	type	as	a	template	parameter	for	our	ValueColumn	
class.	
	
Now,	start	 implementing	the	ValueColumn<T>	 in	value_column.hpp	by	adding	a	
(non-public)	vector	and	by	writing	the	following	(public)	methods:	

																																																								
3	http://en.cppreference.com/w/cpp/container/vector	
	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

5

	

// default constructor
ValueColumn();

// return the value at a certain position
const AllTypeVariant operator[](const size_t i) const;

// add a value to the end
void append(const AllTypeVariant& val);

// return the number of entries
size_t size() const;

Once	you	are	done	with	this,	you	can	enable	the	tests	 in	value_column_test.cpp.	
Check	that	all	tests	pass	before	you	continue.	

Step 3: Chunks
Covered	C++	concepts:	Managed	pointers,	inheritance	
	
Let’s	move	on	to	implement	the	Chunk	class.	The	only	job	of	a	chunk	is	to	hold	pointers	
to	 all	 its	 columns.	 Since	 C++11,	 we	 can	 use	 smart	 pointers	 (i.e.,	
std::shared_ptr<int>	 and	 std::unique_ptr<int>)	 instead	 of	 raw	 pointers	
(int*).	Lookup	the	advantages	and	the	usage	of	these	smart	pointers	if	you	are	unfamil-
iar	with	them.	Remember	that	we	do	not	use	any	old-style	allocations	(malloc	or	new)	in	
Opossum.	
	
An	easy	way	to	store	all	columns	within	a	chunk	would	be	to	have	an	

std::vector<std::shared_ptr<ValueColumn>>

Unfortunately,	ValueColumn	is	not	a	complete	type,	because	we	have	templated	it	above.	
A	correct	way	to	use	the	vector	would	be	

std::vector<std::shared_ptr<ValueColumn<int>>>

but	that	would	mean	that	all	columns	are	of	the	int	type.	
	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

6

To	 avoid	 this	 problem,	 create	 a	 non-templated	 super	 class	BaseColumn	 from	which	
ValueColumn	 inherits.	 This	 way,	 you	 can	 add	 different	 types	 of	 ValueColumn	 to	 a	
chunk:	

chunk.add_column(std::make_shared<ValueColumn<int>>());
chunk.add_column(std::make_shared<ValueColumn<float>>());

Next,	create	the	chunk	class.	 In	addition	to	the	non-public	vector	holding	the	columns,	
you	will	need	the	following	public	methods:	

// creates an empty chunk
Chunk();

// adds a column to the "right" of the chunk
void add_column(std::shared_ptr<BaseColumn> column);

// returns the number of columns
uint16_t col_count() const;

// returns the size (i.e., the number of rows)
uint32_t size() const;

// adds a new row, given as a list of values, to the chunk
// implemented in step 4
void append(std::vector<AllTypeVariant> values);

To	make	 types	more	 strict	 and	achieve	better	data	 type	 semantics,	we	decided	 to	use	
Boost’s	strong	typedefs4.			

// from types.hpp
STRONG_TYPEDEF(uint32_t, ChunkID);
STRONG_TYPEDEF(uint16_t, ColumnID);

// returns the column at a given position
std::shared_ptr<BaseColumn> get_column(ColumnID column_id)
const;

// usage example
chunk.get_column(ColumnID{1});

	
You	can	now	enable	the	AddColumnToChunk	test	in	chunk_test.cpp.	

																																																								
4	http://www.boost.org/doc/libs/1_63_0/libs/serialization/doc/strong_typedef.html	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

7

Step 4: Appending to a chunk
Covered	C++	concepts:	debug	checks	and	release	builds	
	
Now	that	we	have	a	 chunk	that	can	store	our	data,	we	need	a	method	to	 insert	 it.	Be-
cause	of	our	AllTypeVariant,	we	could	do	something	like	this:	

void appendToColumn(int column, const AllTypeVariant
value);

However,	inserting	into	a	long	table	becomes	tedious	and	error-prone:	

chunk.appendToColumn(0, 2);
chunk.appendToColumn(1, 5.3f);
chunk.appendToColumn(1, “Hallo Welt”);
// d’oh – copy paste error

This	would	be	much	nicer:	

chunk.append({2, 5.3f, “Hallo Welt”});

For	this,	we	implement	the	method	

// adds a new row, given as a list of values, to the chunk
void append(const std::vector <const AllTypeVariant>
values);

	
Your	goal	is	to	implement	the	method	so	that	the	first	value	is	inserted	into	the	first	col-
umn,	the	second	value	into	the	second	column,	and	so	on.	
	
To	make	sure	that	the	method	is	used	correctly,	add	a	check	if	the	number	of	passed	ar-
guments	matches	the	number	of	columns.	For	performance	reasons,	we	only	want	this	
check	 executed	 during	 development,	 not	when	we	measure	 the	 performance.	We	 de-
fined	a	macro	DebugAssert(check, msg) that	 tests	 if	 the	constant	IS_DEBUG is	
set	and	only	then	performs	the	check,	printing	a	message	if	it	fails.	Because	the	value	of	
IS_DEBUG	is	known	at	compile	time,	the	debug	blocks	will	be	removed	by	the	compiler	
for	the	release	build.	Make	sure	that	the	check	is	not	executed	if	you	build	with	

cmake -DCMAKE_BUILD_TYPE=Release ..

You	can	now	enable	the	remaining	tests	in	chunk_test.cpp.	
	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

8

Step 5: Table
Covered	C++	concepts:	Type	dispatch	
	
While	we	now	have	chunks	that	hold	columns	of	different	types,	we	do	not	yet	have	any	
notion	of	column	names	or	a	way	to	group	multiple	chunks	to	a	table.	For	this,	we	now	
implement	the	table.	
	
When	a	table	is	created,	an	optional	parameter	defines	the	maximum	size	of	a	chunk.	A	
chunk	size	of	0,	which	is	the	default	value,	specifies	an	unlimited	chunk	size.	The	maxi-
mum	chunk	size	 is	stored	 in	the	table	and	cannot	be	changed.	 Inserts	are	always	done	
into	the	last	chunk,	checking	if	this	chunk	has	already	reached	its	maximum	size.	If	this	
is	the	case,	a	new	chunk	is	created.	To	make	things	easier,	creating	a	table	also	creates	
the	first	chunk.	
	
In	addition	to	the	list	of	chunks,	the	table	also	holds	the	column	names	and	types,	both	
as	strings.	

// creates a table
// the parameter specifies the maximum chunk size, i.e.,
// partition size
// default (0) is an unlimited size
explicit Table(const size_t chunk_size = 0);

// copying a table is not allowed
Table(Table const &) = delete;

// we need to explicitly set the move constructor to
// default when we overwrite the copy constructor
Table(Table &&) = default;

// returns the number of columns
uint16_t col_count() const;

// returns the number of rows
uint64_t row_count() const;

// returns the number of chunks
ChunkID chunk_count() const;

// returns the chunk with the given id
Chunk &get_chunk(ChunkID chunk_id);
const Chunk& get_chunk(ChunkID chunk_id) const;

// returns the column name of the nth column
const std::string &column_name(size_t column_id) const;

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

9

// returns the column type of the nth column
const std::string &column_type(size_t column_id) const;

// returns the column with the given name
ColumnID column_id_by_name(const std::string &column_name)
const;

// return the maximum chunk size
uint32_t chunk_size() const;

// adds a column to the end, i.e., right, of the table
void add_column(const std::string &name, const std::string
&type;

// inserts a row at the end of the table
void append(std::initializer_list<AllTypeVariant> values);

Adding a column
	
When	adding	a	new	column	to	a	 table,	 the	name	and	the	type	have	to	be	stored	 in	the	
appropriate	places	so	that	the	access	methods	(e.g.,	column_name)	work	properly.	We	
also	want	to	add	a	ValueColumn	in	which	values	can	be	stored.	
	
You	will	notice	that	chunk.add_column	expects	a	pointer	to	a	BaseColumn,	for	example	a	
ValueColumn<int>.	 So	how	can	we	create	a	ValueColumn<int>	 if	we	only	have	 the	de-
sired	column	type	as	a	string?	
	
The	straight	forward	way	would	be	to	use	a	list	of	if-statements	(remember	–	C++	does	
not	allow	for	a	switch	on	a	string):	
	

std::shared_ptr<BaseColumn> column;
if(type == "int") {

column = std::make_shared<ValueColumn<int>>();
} else if(type == "float") {

return std::make_shared<ValueColumn<float>>();
} ...

	
This	comes	with	two	issues:	First,	it	requires	us	to	list	all	possible	data	types,	making	it	
difficult	to	add	new	ones.	Second,	this	code	will	likely	be	required	in	other	places	as	well,	
leading	to	code	duplication.	
	
Instead,	we	provide	you	with	a	method	in	resolve_type.hpp	called	
make_shared_by_column_type.	It	works	as	follows:	
	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 1	 	
	 	

10

auto column = make_shared_by_column_type<BaseColumn,
ValueColumn>(type);

	
For	now,	you	may	treat	the	implementation	of	that	method	as	a	black	box	of	dark	tem-
plate	magic.		

Appending values
The	next	method,	append,	should	be	easy	to	implement.	You	will	have	to	pass	the	list	of	
values	to	the	last	chunk	in	the	table.	Remember	to	first	create	a	new	chunk	if	the	maxi-
mum	chunk	size	of	the	table	is	set	and	the	last	chunk	already	has	that	size.	
	
Once	you	are	done,	you	can	enable	the	tests	in	table_test.cpp.	

Step 6: StorageManager
Of	course,	we	do	not	want	to	hand	out	pointers	 to	a	Table	object.	 Instead,	we	want	to	
refer	to	tables	by	name.	Maintaining	a	mapping	from	table	names	to	tables	is	the	job	of	
the	StorageManager.	For	now,	it	does	nothing	else.	
	
Because	the	StorageManager	is	a	single	point	of	entry,	we	want	to	implement	it	as	a	sin-
gleton.	 Look	 up	 singleton	 patterns	 in	 C++.	 For	 implementing	 the	 get	method,	 you	will	
only	need	two	lines	and	no	additional	members	in	the	class.	

public:
 static StorageManager &get();

 void add_table(const std::string &name,
std::shared_ptr<Table> tp);
 void drop_table(const std::string &name);
 std::shared_ptr<Table> get_table(const std::string
&name) const;
 bool has_table(const std::string& name) const;
 std::vector<std::string> table_names() const;
 void print(std::ostream& out = std::cout) const;
 static void reset();

After	implementing	all	methods,	you	can	enable	the	remaining	tests.	

Submission instructions
For	your	final	submission,	please	file	a	pull	request	from	your	forked	repository	to	our	
repository.	 Also,	 please	 email	 us	 (Markus.Dreseler	 and	 Jan.Kossmann)	 the	 commit	 ID	
(i.e.,	 the	SHA-1	hash)	so	that	we	know	which	version	you	consider	 final.	Deadline:	 31	
October	23:59h	MEZ.	

