
Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 2	 	
	 	

1

Overview
Before	you	 start:	Remember	 to	work	on	a	new	branch	 for	 this	 so	 that	 the	pull	 re-
quests	that	you	submitted	for	the	first	sprint	do	not	get	changed.	
	
In	the	second	sprint,	you	will	implement	dictionary-encoded	chunks	for	OpossumDB.	In	
contrast	to	Hyrise	v1,	HANA,	and	SanssouciDB,	we	are	not	going	to	have	a	 large	single	
(always	dictionary-encoded)	partition.	Each	chunk	in	OpossumDB	starts	uncompressed	
and	will	eventually	be	dictionary-compressed	at	a	later	point	in	time.	When	the	chunk	is	
full	and	 thus	 immutable	(we’ll	discuss	ways	 to	 invalidate	 tuples	 later),	 its	columns	get	
compressed.	

Dictionary-Encoded Columns
	
A	dictionary-encoded	column	in	OpossumDB	consists	of	two	main	data	structures:	

• The	attribute	vector:	an	std::vector<uint*_t>	storing	references	into	the	
dictionary.	Its	length	must	always	be	the	same	as	the	chunk’s	length;	each	entry	is	
an	index	into	the	dictionary	where	the	actual	value	is	stored.	As	a	first	step,	you	
can	implement	it	for	64-bit	integers.	Later	in	this	sprint,	you	should	support	mul-
tiple	lengths.	

• The	dictionary:	 an	std::vector<T>	 storing	 the	actual	distinct	values	of	 the	
column	in	sorted	order.	

	
For	now,	the	actual	compression	is	initiated	by	the	Table::compress_chunk meth-
od.	That	method	takes	a	chunk	id	and	compresses	all	value	columns	in	that	chunk	so	that	
they	are	dictionary	columns.	As	a	result,	it	is	not	possible	for	chunks	to	contain	both	val-
ue	and	dictionary-encoded	columns.	You	should	create	a	new	empty	chunk	before	start-
ing	the	compression,	add	the	new	dictionary-encoded	columns	to	the	chunk	and	in	the	
end	put	the	new	columns	into	place	by	exchanging	the	complete	chunk.	
	
Additionally,	the	dictionary	column	has	a	number	of	methods	that	we	will	use	in	the	next	
sprint	 (e.g.,	 lower	bound).	These	behave	similar	 to	 the	methods	 that	 the	C++	standard	
library	 implements.	 If	 the	 search	 value	 is	 not	 found	 in	 the	 dictionary,	 they	 return	 the	
special	value	id	INVALID_VALUE_ID.		
	
Once	you	have	implemented	this,	you	can	enable	the	tests	in	dictionary_column_test.cpp.	
Note	that	these	do	not	cover	all	methods	and	should	be	extended.	

Variable-Width Attribute Vector
	
If	everything	works	with	fixed-size	(i.e.,	64-bit)	entries	in	the	attribute	vector,	the	next	
step	is	to	introduce	different	types	of	attribute	vectors.	The	attribute	vector	should	have	
a	varying	width	depending	on	the	number	of	distinct	values	in	the	dictionary.	If	the	dic-
tionary	only	holds	three	values,	using	64	bit	 for	every	value	 id	would	be	a	huge	waste	
and	8	bit	is	more	than	enough.	

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 2	 	
	 	

2

	
This	 is	what	 is	meant	with	uint*_t	 above.	Since	uint*_t	 is	not	an	actual	 class,	we	
will	 need	 to	 implement	 a	 wrapper	 for	 this	 vector.	 For	 this,	 implement	 the	 new	 class	
FittedAttributeVector<uintX_t>.	This	class	inherits	from	BaseAttributeVector	
and	implements	the	following	interface:	
	

BaseAttributeVector() = default;
virtual ~BaseAttributeVector() = default;

// returns the value at a given positon
virtual ValueID get(const ChunkOffset i) const = 0;

// inserts the value_id at a given position
virtual void set(const ChunkOffset i, const ValueID
 value_id) = 0;

// returns the number of values
virtual size_t size() const = 0;

// returns the width of the values in bytes
virtual AttributeVectorWidth width() const = 0;

	
During	the	creation	of	the	dictionary,	you	should	check	what	width	you	need	and	initial-
ize	_attribute_vector	in	the	DictionaryColumn	accordingly.	
	
As	 explained	 during	 the	 lecture,	we	will	 not	 implement	 Bitpacking	 during	 this	 sprint.	
Instead,	we	will	rely	on	the	native	integer	types:	uint8_t,	uint16_t, or uint32_t
(see	http://en.cppreference.com/w/c/types/integer).	
	
In	the	template,	there	are	no	tests	that	check	if	the	correct	width	is	selected.	

Submission instructions
For	your	final	submission,	please	file	a	pull	request	from	your	forked	repository	to	our	
repository.	 Also,	 please	 email	 us	 (Markus.Dreseler	 and	 Jan.Kossmann)	 the	 commit	 ID	
(i.e.,	 the	SHA-1	hash)	 so	 that	we	know	which	version	you	consider	 final	until	14	Nov	
2017	11:59	PM	CET.	

