
Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 3

1

Operator Concept
In the third sprint, you will implement the TableScan operator – one of the most
fundamental operators. Of course, the TableScan is not the only operator that we will
have in Opossum. Thus, it makes sense to first talk about the operator concept in
general.

For executing a query, databases traditionally use something called a query plan or
operator tree. Let us look at the operator tree for an example query:

SELECT c.id, c.name, SUM(o.amount) FROM customers c, orders o WHERE c.id = o.cid
AND o.date > '2016-01-01' GROUP BY c.id, c.name;

This query gives us the id, name, and total amount of orders since 20161 for every
customer. Note how it does not say anything about how the database gets to that result.
The two following query plans both have the same result:

One of them, however, is likely to be significantly faster. Selecting a fast query plan out
of many potential query plans is the job of the query optimizer. Because we do not yet

1 No, you should not have an aggregated order amount stored in your database but
calculate in on the fly. Bear with me just for the sake of the example, will you?

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 3

2

have an optimizer, we will build our query plans by hand. Later this term, we will talk
about how the Hyrise optimizer deals with this. It will also be part of a group project.

AbstractOperator
As you can see, an operator has up to two inputs, can have an output, and usually also
parameters. We model this using the AbstractOperator interface:

class AbstractOperator : private Noncopyable {
 public:
 AbstractOperator(const std::shared_ptr<const AbstractOperator> left = nullptr,
 const std::shared_ptr<const AbstractOperator> right = nullptr)
 ;

 // we need to explicitly set the move constructor to default when
 // we overwrite the copy constructor
 AbstractOperator(AbstractOperator&&) = default;
 AbstractOperator& operator=(AbstractOperator&&) = default;

 void execute();

 // returns the result of the operator
 std::shared_ptr<const Table> get_output() const;

 // Get the input operators.
 std::shared_ptr<const AbstractOperator> input_left() const;
 std::shared_ptr<const AbstractOperator> input_right() const;

protected:
 // abstract method to actually execute the operator
 // execute and get_output are split into two methods to allow for easier
 // asynchronous execution
 virtual std::shared_ptr<const Table> _on_execute() = 0;

 std::shared_ptr<const Table> _input_table_left() const;
 std::shared_ptr<const Table> _input_table_right() const;

 // Shared pointers to input operators, can be nullptr.
 std::shared_ptr<const AbstractOperator> _input_left;
 std::shared_ptr<const AbstractOperator> _input_right;

 // Is nullptr until the operator is executed
 std::shared_ptr<const Table> _output;
};

This way, we can easily chain multiple operators by passing the first operator as a
parameter to the second one:

auto scan = std::make_shared<Scan>(...);
auto sort = std::make_shared<Sort>(scan, ColumnID{3});

The first operator usually is the GetTable operator, which takes no input operators and
outputs a table stored in the StorageManager.

As an example, we have provided you with the Print operator. It takes one table as input,
forwards it as an output and prints the table to an output stream (by default, std::cout).

The columns that the operators should work on are given as column ids, which denote
the position of the referenced column in the input table. We prefer this over using
column names because it makes name resolution in case of aliases much easier.

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 3

3

An operator only has an output table if it has already been executed. This is so that you
can first create the operators and then execute them (or have the scheduler execute
them).

Also, we decided that operators must not return empty chunks (except, of course, if
there is no result at all). This is because these empty chunks will not be relevant for
future operators. As a consequence, we do not assume that a table scan returns the same
number of output chunks as it has as input chunks.

ReferenceColumn
Now that we know how to pass input to our operators, the question is what the output
looks like. For performance reasons, we do not want to materialize (i.e., copy) each
column, especially if it is unaffected. Instead, we want to use indirection. By using
references to an existing table, we can get around copying the actual values.

We do this by adding a third column type, which we call ReferenceColumn. A
ReferenceColumn allows us to reference certain positions in a different column
within a different table.

// ReferenceColumn is a specific column type that stores all its values as
position list of a referenced column
class ReferenceColumn : public BaseColumn {
 public:
 // creates a reference column
 // the parameters specify the positions and the referenced column
 ReferenceColumn(const std::shared_ptr<const Table> referenced_table, const
 ColumnID referenced_column_id,
 const std::shared_ptr<const PosList> pos);

 const AllTypeVariant operator[](const size_t i) const override;

 void append(const AllTypeVariant&) override { throw std::logic_error(
 "ReferenceColumn is immutable");};

 size_t size() const override;

 const std::shared_ptr<const PosList> pos_list() const;
 const std::shared_ptr<const Table> referenced_table() const;

 ColumnID referenced_column_id() const;
};

Internally, the ReferenceColumn has three pieces of information:

1. A shared pointer to the table that is referenced. Using a shared pointer here
makes sure that the table that holds the actual values does not disappear while it
is still being referenced.

2. The column_id of the column that is referenced.
3. A shared pointer to a PosList (which, internally, is just an std::vector<RowID>).

We will talk about why it has to be a shared pointer in a second.

To reiterate, a ReferenceColumn does not refer to a single chunk within that table but to
the entire table. The necessity of this should become more clear when we think about
the result of a sort operation:

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 3

4

Referencing the positions in alternate order would not be possible here if a
ReferenceColumn could only point to a single chunk. There is one shortcoming of this
approach: Because a ReferenceColumn cannot point to values in different tables (e.g.,
because two tables were concatenated using a union), we could not use the same
approach for the sort operator if the first chunk was part of a different table. In this case,
we will resort to materializing the inputs. Since this problem only happens with the sort
operator, which is usually the last operator in a query plan, this materialization is not
harmful for performance, as it would have to occur anyway.

Another thing that you can see in the visualization above is that the three
ReferenceColumns created by the sort operator point to the same PosList. It allows us to
save both the time to generate multiple PosLists and reduce the memory footprint. This
is possible because the RowIDs that the three columns point to are the same. There are
other cases where sharing a PosList is not possible – for example if the columns point to
different tables.

Because we will not use dictionary compression on a ReferenceColumn, there is no need
to split large columns into chunks. As such, the ReferenceColumn does not obey the
maximum_chunk_size setting of a table.

While indirection is helpful, we want to avoid excessive indirection. If we had
ReferenceColumns pointing to ReferenceColumns pointing to ReferenceColumns, each
access would have to go through three levels of indirection (plus virtual method calls).
This degrades our performance. Thus, we define that ReferenceColumns can only refer
to positions in a ValueColumn or a DictionaryColumn:

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 3

5

GetTable
Let’s start implementing things. We begin with the GetTable operator that takes a table
name, looks up the associated table in the StorageManager and returns it.

 explicit GetTable(const std::string &name);

TableScan
Now it becomes interesting. A TableScan takes an input table, and filters a given column
by comparing all values to a given operator:

TableScan(const std::shared_ptr<const AbstractOperator> in, ColumnID column_id,
 const ScanType scan_type, const AllTypeVariant search_value);

Most of the actual implementation is left to you. Below, we want to give you some tips on
what we found helpful. Keep in mind that the interface is the only contract that your
operator has to fulfill. Internal implementations can vary. Also, we do not define the
structure of the output. You could either have a single chunk with ReferenceColumns
that point to the found values or multiple chunks.

TableScanImpl
Remember that we do not want to use operator[] on columns. It is solely there for
debugging and testing purposes, but its performance (due to the virtual method calls
involved and the use of AllTypeVariant) prohibits its use in operators. As a result, you
will have to get the ValueColumns’ value vector or the DictionaryColumns’ attribute
vector and the corresponding dictionary when you want to scan the values. These are
templated to match the type stored in the column. The TableScan operator, however, is
not templated.

In our implementation, we solved this problem by writing a class internal to TableScan:

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 3

6

class TableScan : public AbstractOperator {
 protected:
 template <typename T>
 class TableScanImpl;
};

This internal class contains the actual implementation. TableScan is just a wrapper
around it that creates the Impl class by using make_unique_by_column_type and
forwards execute() and get_output(). In TableScanImpl, we can then get the
search value as a T by using the type_cast<T> method.

Checking for a column’s type
At various points in your implementation, you will need to check the type of a
BaseColumn. There are two ways to do it. First, you can rely on RTTI information and
use std::dynamic_pointer_cast<DictionaryColumn>(b). If b can be casted to a
DictionaryColumn, the pointer cast returns such a pointer. If b cannot be casted, it
returns nullptr.

The second option is to use the visitor pattern. In this case, the TableScan calls a visit
method on the BaseColumn. It then uses dynamic polymorphism (i.e., a virtual method
call) to call the visit method on the appropriate class.

Doing the actual comparison
In this sprint, we will not deal with varying data types. You do not have to support
comparing ints with floats. However, if the types do not match, your implementation
should notice this and throw an exception. Comparing values stored in a ValueColumn is
trivial once you have a T value_to_be_compared_to and the value vector const
std::vector<T>&. For dictionary columns, this is more complicated – at least if you
care about performance. The trivial solution would be to decompress every value id and
then compare it to the search value. In fact, you should try implementing this first before
you do the more efficient approach outlined below.

When scanning a DictionaryColumn, we can make use of the fact that a total order on the
values also reflects a total order on the dictionary. Also, there is an entry for a given
value in the dictionary if (if and only if) the value is included in the uncompressed
representation of the column. In other words:

Let 𝑥 be a value in the column and 𝑥′ its representation as a ValueID.
(Lemma 1) 𝑥 ≤ 𝑦 ↔ 𝑥′ ≤ 𝑦′

Let 𝑉 be the list of uncompressed values in the column and 𝐷 the column's dictionary

(Lemma 2) ∀𝑥: 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ 𝐷

For our table scan, this means that we can perform each of the comparison operators
listed above by comparing value ids, not values. We do this by first retrieving the value
id from the dictionary using lower_ or upper_bound (whatever is appropriate) and then

Build you own Database
The Opossum Blueprint

WS 17/18 :: Sprint 3

7

comparing the ValueIDs in the attribute vector with the ValueID from the dictionary. As
an example2 in pseudo code:

scan(AttributeVector av, Dictionary d, Operator op, T value) {
 op = "<";
 ValueId search_vid = d.lower_bound(value);
 for(col_vid : av) {
 if(col_vid < search_vid) emit(row_id);
 }
}

Performance Challenge
We will measure the performance of your TableScan to find the most efficient solution.
This will be executed on various types of input columns with varying length. You can use
optimizations such as SSE, but no multithreading. If you believe that you can achieve a
better performance by modifying the interface, please let us know and we can discuss
this. The focus, however, is on writing readable and maintainable code.

Submission Instructions
Because you will write more lines of code in this sprint than before and because the
actual implementation of your TableScan is mostly left to you, it becomes more
important to write good comments. Our implementation has more than 50 lines of
comments. When writing comments, think about readers who have not implemented the
TableScan themselves.

Also, remember to make sure that you have adequate test coverage. Not all
combinations of Value-, Dictionary-, and ReferenceColumn are covered in the tests.

Your submission is due Sunday, December 3, 11:59PM CET.

2 In this example, we use short variable names so that we can fit everything on one page.
For your code, please use speaking names.

	Operator Concept
	AbstractOperator
	ReferenceColumn

	GetTable
	TableScan
	TableScanImpl
	Checking for a column’s type
	Doing the actual comparison

	Performance Challenge
	Submission Instructions

