
Build your own Database

Week 6

Agenda

• Q&A Sprint 3

• Review Sprint 2

• NULL values in SQL

• Joins

• Virtual Methods

2

Sprint 3

Questions?

3

Review Sprint 2

4

const std::shared_ptr<ValueColumn<T>>& p_column =
std::dynamic_pointer_cast<ValueColumn<T>>(base_column);

_attribute_vector =
std::dynamic_pointer_cast<BaseAttributeVector>(

std::make_shared<FittedAttributeVector<uint8_t>>(
column.size()));

const auto value_column =
dynamic_cast<ValueColumn<T>*>(base_column.get());

Review Sprint 2

5

ValueID lower_bound(const AllTypeVariant& value) const {
const T val = dynamic_cast<T>(value);

if (!val) {
return INVALID_VALUE_ID;

}

return lower_bound(val);
}

Review Sprint 2 - Casts

• Do not explicitly upcast pointers

• Do not use static/dynamic_cast on smart pointers

• If you already have the type in the same line, do not repeat

it – instead, use auto

• Use type_cast for AllTypeVariant

6

Review Sprint 2

7

ValueID lower_bound(T value) const {
for (auto it = _dictionary->begin(); it < _dictionary->end(); ++it) {
if (*it >= value) {
return static_cast<ValueID>(it - _dictionary->cbegin());

}
}
return INVALID_VALUE_ID;

}

Review Sprint 2

8

explicit DictionaryColumn(const
std::shared_ptr<BaseColumn>& base_column) {
_dictionary = std::make_shared<std::vector<T>>();
_build_dictionary(base_column);
_assign_attribute_vector(base_column->size());
_build_attribute_vector(base_column);

}

const T DictionaryColumn<T>::get(const size_t i) const {
return _dictionary->at(_attribute_vector->get(i));

}

Review Sprint 2

9

template <typename T>
ValueID FittedAttributeVector<T>::get(const size_t i) const {

if (i >= _entries.size()) {
throw std::runtime_error("Index out of range");

}
return ValueID(_entries.at(i));

}

Sorting and Enforcing
Uniqueness

10

BYOD - WEEK 6

SORTING AND ENFORCING UNIQUENESS

�X

NULL values in SQL

11

• NULL is used to represent absent values

• It is a state/marker not a value

• DBMS dependent behavior in many cases

– Arithmetic operations involving NULL, usually result in

NULL: NULL * 17 à NULL, but what about NULL / 0?

– String concatenations involving NULL, result in NULL

NULL values in SQL

12

• SELECT 17 = NULL à ?

• SQL offers three logical results: True, False, Unknown à

Three-valued Logic (3VL)

a b a AND	b a OR	b a =	b
True True True True True
True False False True False
True Unknown Unknown True Unknown
False True False True False

False False False False True
False Unknown False Unknown Unknown
Unknown True Unknown True Unknown
Unknown False False Unknown Unknown

Unknown Unknown Unknown Unknown Unknown

NULL values in SQL

13

• SELECT * FROM customer WHERE firstname = NULL; à ?

• SELECT * FROM customer WHERE firstname <> Alex; à ?

• Rows for which predicates evaluate to Unknown are treated like rows that
evaluate to False

• All standard comparison operators return Unknown when comparing NULL

• Thus, SQL offers IS NULL and IS NOT NULL

c_id firstname lastname
0 NULL Zayer
1 Alex Geier
2 Frank Meier

Customer

NULL values in Opossum

14

We need a representation for NULL for Value, Reference and Dictionary

columns:

//Value Columns

static const auto NULL_VALUE = AllTypeVariant{};

// Used to represent NULL in...

constexpr ChunkOffset INVALID_CHUNK_OFFSET{std::numeric_limits<ChunkOffset>::max()};

// Reference Columns

const RowID NULL_ROW_ID = RowID{ChunkID{0u}, INVALID_CHUNK_OFFSET};

// NULL ValueIDs for Dictionary Columns

constexpr ValueID NULL_VALUE_ID{std::numeric_limits<ValueID::base_type>::max()};

BYOD - WEEK 6

VIRTUAL METHODS - INTRODUCTION

▸ Definition

▸ Overridable method, resolved by dynamic dispatch

▸ Motivation

▸ Determine exact implementation at runtime (polymorphism)

▸ Implementation in C++

▸ Standard does not give a definition

▸ Major compilers use virtual method tables

1

BYOD - WEEK 6

VIRTUAL METHODS - IMPLEMENTATION IN C++

▸ Compiler adds hidden member variable vptr at offset 0

▸ vptr points to a virtual method table

▸ Virtual method table is an array of function pointers

▸ Correct function is dispatched at runtime

2

BYOD - WEEK 6

VIRTUAL METHODS - EXAMPLE

 1 class Vehicle {
 2 std::string _model;
 3 public:
 4 virtual int16_t wheels() = 0;
 5 virtual std::string get_model() { return _model; }
 6 };
 7
 8 class Car : public Vehicle {
 9 public:
 10 virtual int16_t wheels() { return 4; }
 11 };
 12
 13 class Motorcycle : public Vehicle {
 14 public:
 15 virtual int16_t wheels() { return 2; }
 16 };

3

BYOD - WEEK 6

VIRTUAL METHODS - EXAMPLE (II)

 1 Vtable for Vehicle
 2 Vehicle::_ZTV7Vehicle: 4u entries
 3 0 (int (*)(...))0
 4 8 (int (*)(...))(& _ZTI7Vehicle)
 5 16 (int (*)(...))__cxa_pure_virtual
 6 24 (int (*)(...))Vehicle::get_model

 1 Vtable for Car
 2 Car::_ZTV3Car: 4u entries
 3 0 (int (*)(...))0
 4 8 (int (*)(...))(& _ZTI3Car)
 5 16 (int (*)(...))Car::wheels
 6 24 (int (*)(...))Vehicle::get_model

 1 Vtable for Motorcycle
 2 Motorcycle::_ZTV10Motorcycle: 4u entries
 3 0 (int (*)(...))0
 4 8 (int (*)(...))(& _ZTI10Motorcycle)
 5 16 (int (*)(...))Motorcycle::wheels
 6 24 (int (*)(...))Vehicle::get_model

g++ -fdump-class-hierarchy foo.cpp

4

BYOD - WEEK 6

VIRTUAL METHODS - OVERHEAD

▸ Overhead

▸ Increased memory consumption

▸ Cache pollution

▸ Compiler optimization is hard (impossible) because of
polymorphism

▸ Additional indirection

5

BYOD - WEEK 6

VIRTUAL METHODS - OVERHEAD IN OPOSSUM

 1 constexpr int64_t rows = 10'000'000;
 2 auto t = Table(0);
 3 t.add_column("col_1", "long");
 4 for (int64_t i = 0; i < rows; ++i) {
 5 t.append({i * 14});
 6 }
 7
 8 auto& chunk = t.get_chunk(0);
 9 std::shared_ptr<BaseColumn> base_column = chunk.get_column(0);
 10 auto value_column =
std::dynamic_pointer_cast<ValueColumn<int64_t>>(base_column);
 11
 12 int64_t sum1 = 0;
 13 for (size_t offset = 0; offset < rows; ++offset) {
 14 sum1 += different_access_methods;
 15 }

} Benchmark

6

BYOD - WEEK 6

VIRTUAL METHODS - OVERHEAD IN OPOSSUM (II)

▸ Example: Operator accesses a ValueColumn

▸ AllTypeVariant operator[](const size_t i)

▸ const std::vector<T>& values()

▸ T operator[](const size_t i)

▸ On Base- and ValueColumn

7

BYOD - WEEK 6

VIRTUAL METHODS - OVERHEAD IN OPOSSUM (III)

8

BYOD - WEEK 6

VIRTUAL METHODS - OVERHEAD IN OPOSSUM (IV)

const std::vector<T>& values()

T operator[](const size_t i)

9

BYOD - WEEK 6

VIRTUAL METHODS - FINAL AND OVERRIDE

▸ Used in function declarations or definitions

▸ Ensures function to be virtual

▸ Final functions may not be overridden by derived classes

▸ Functions declared override need to override a virtual
function

AllTypeVariant operator[](const size_t i) const final

10

BYOD - WEEK 6

VIRTUAL METHODS - OVERHEAD IN OPOSSUM (V)

Apparently only with clang

11

Query Processing

Query Processing

Query Processing

Slide 2

Current (Master)

Distributed Log

Historical - 1

Query Execution Metadata Sessions Transactions

Financials Logistics Manufacturing …

History

…
Historical - 2 Dictionary-

compressed
Chunk

Stored Procedures
SQL Interface

Full Replica (active)

- full copy of master
- for HA / instant fail-over
- for OLAP queries

Partial Replica (active)

- partial copy of master
- for frequent OLAP
queries

Self-Adaption

NVRAM

SSDPersistency

Data
Structures

Management
Layer

OLTP & OLAP
Applications

Dictionary-compressed Chunk
Attribute Vectors Dictionaries Index

Aggregate
Cache

Uncompressed, modifiable Chunk
Value Vectors Index

Pruning Filters

NVRAM HBM/HMCDRAM

Logical

Physical CPU GPU

Dictionary-
compressed

Chunk

Lecture Motivation

Modern database machines are increasingly large NUMA

systems and process complex queries on huge data sets.

How does query processing in modern databases

work and incorporate hardware developments?

Slide 3

Query Processing

Overview

i. Query Optimization

ii. Query Scheduling

iii. Query Execution

i. Joining

ii. Radix-Partitioned Hash Join

Slide 4

Query Processing

Motivation

Slide 5

Query Processing

How does a database actually
process incoming SQL queries?

How does a database process queries?

Slide 6

Query Processing

SQL Parsing Plan
Building Optimization Scheduling Execution

1. The database receives the SQL queries on the network interface and
passes it to the SQL parser.

1 SELECT wp.city , wp.first_name, wp.last_name

2 FROM world_population AS wp

3 INNER JOIN locations ON wp.city = locations.city

4 WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5 INNER JOIN actors ON actors.first_name = wp.first_name

6 AND actors.last_name = wp.last_name

How does a database process queries?

Slide 7

Query Processing

SQL Parsing Plan
Building Optimization Scheduling Execution

2. The SQL parser generates a logical query plan. This plan contains the
relational operators required to execute the query and the order in
which they have to be called.

1 SELECT wp.city , wp.first_name, wp.last_name

2 FROM world_population AS wp

3 INNER JOIN locations ON wp.city = locations.city

4 WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5 INNER JOIN actors ON actors.first_name = wp.first_name

6 AND actors.last_name = wp.last_name

How does a database process queries?

Slide 8

Query Processing

SQL Parsing Plan
Building Optimization Scheduling Execution

3. Depending on the order of operations in the query plan, runtimes can
differ by orders of magnitude. Thus, the database employs the query
optimizer to determine efficient query plans.

How does a database process queries?

Slide 9

Query Processing

SQL Parsing Plan
Building Optimization Scheduling Execution

4. After a query plan is decided upon, the database scheduler
determines where & when to run the query and how much resources to
allocate.

CPU #1

CPU #2 Task #4Task #4Task #4
MVCC Check

Task #1
Selection

Task #2
Selection

Task #3
Join

How does a database process queries?

Slide 10

Query Processing

SQL Parsing Plan
Building Optimization Scheduling Execution

5. Finally, the database executes all scheduled tasks and returns the result
set to the user.

Query Optimization

Often, the impact of the query optimizer is much larger than the impact of
the runtime system [..] Changes to an already tuned runtime system might
bring another 10% improvement, but changes to the query optimizer can

often bring a factor 10.

T. Neumann. Engineering high-performance database engines. PVLDB, 2014

Query Optimization
Motivation

Slide 12

Query Processing

q For a given query (remember: SQL is declarative), there is a large array
of alternative (logically equivalent) query plans

q The query optimizer is a module that enumerates possible query plans
and estimates the costs of each plan.

q Usually selects the plan with the lowest estimated costs.

Costs to consider

q Algorithmic: e.g., runtime complexity of different SORT operators

q Logical: estimated output size of the operator (e.g., decreasing for
filter operations, de- or increasing for joins)

q Physical: hardware-dependent cost calculations such as IO
bandwidth, cache misses, etc.

Query Optimization
Motivation

Query Processing

Slide 13

q Operator costs are often interacting with each other, making accurate cost
estimations computationally expensive

q As a consequence, most optimizers concentrate on logical costs and thrive
to reduce operator results as early as possible

q Reducing logical costs further leads to less memory traffic, which indirectly
improves NUMA performance, cache hit rates, and more

How can we reduce the intermediate result size of a query plan (i.e.,
logical costs) as early as possible?

Execute operators first that exclude large fractions of data (e.g., equi-filters
on attributes with many distinct values, joins on foreign keys, etc.)

Query Optimization
Creating Query Plans

Slide 14

Query Processing

Query optimization can be seen as a two-step process

1. Semantic query transformations and simple heuristics to

reformulate queries

2. Cost model-driven approaches that estimate costs in order

to reorder operators

Query Optimization
Introduction

Slide 15

Query Processing

Query reformulation: exploit semantic query transformations and simple
heuristics to reformulate a query plan to a (logically equivalent) plan with
lower expected costs.

SELECT * FROM T

WHERE A < 10 AND A > 12

SELECT * FROM T

WHERE A < 10 AND A < 20

AND A IS NOT NULL

Query Optimization
Semantic Transformations & Heuristics

Slide 16

Query Processing

» return empty result

» SELECT * FROM T WHERE A < 10

SELECT * FROM T1,

(SELECT * FROM T WHERE B > 17) AS T2

Query Optimization
Semantic Transformations & Heuristics

Slide 17

Query Processing

SELECT * FROM T1,

(SELECT * FROM T) AS T2 »
WHERE T2.B > 17

SELECT (A + 2) + 4 FROM T

» SELECT A + 2 + 4 FROM T

» SELECT A + 6 FROM T

Query Optimization
Semantic Transformations & Heuristics

Slide 18

■ Optimization heuristics:

□ Execute most restrictive filters first

□ Execute filters before joins

□ Predicate/limit push downs

□ Join reordering based on estimated cardinalities

■ Such optimizations are heuristics as they are usually good estimates of
operator costs.

■ Nonetheless, possible that joining before filtering can lead to a better query
runtime for certain constellations. Query Processing

Query Optimization
Query Plan Reformulation

Slide 19

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Query Optimization
Query Plan Reformulation

Slide 20

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Scanning ~100 tuples

Query Optimization
Query Plan Reformulation

Slide 21

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Sequentially scanning
8 billion tuples

Sequentially scanning
1 million tuples

Joining 400 tuples
* 600 million tuples

Joining 400 tuples
* 600 million tuplesScanning ~100 tuples

The Physical Query Plan/Evaluation Plan defines which algorithm is used for
each operation, and how the execution of operations is coordinated.

Query Optimization
Physical Query Plan

Slide 22

Query Processing

q Statistics are, e.g., used to estimate intermediate result size for logical
cost estimations to compute overall cost of complex expressions.

q Especially for cost model-driven approaches, accurate statistics are
indispensable.

q Such statistics include:

q Number of distinct values for a table

q Presence or absence of indices

q Value distribution of attributes (e.g., histograms)

q Top-n values with occurrence count

q Min/Max values

Query Optimization
Statistics

Slide 23
http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query_optimization.pdf

Query Processing

Table: world_population

Meta Data

Data

Attributes: {‘first_name’: char(50), ‘last_name’ […]}
Indexed Columns: {‘first_name’, ‘last_name’, […]}
…
Statistics:
 min/max: {‘birth_year’: [’1900’, ‘2017’], […]}
 distinct_counts: {‘birth_year’: 118, […]}
 histograms:
 first_name:

 country:

a-c d-f g-i …

CN US DE …

q Accuracy of estimation depends on quality and
currency of statistical information DBMS holds

q Keeping statistics up to date can be problematic

q Updating them on the fly increases load on
latency-critical execution paths

q Updating them periodically (e.g., during chunk
compression in Hyrise2) might introduce
misleading estimations due to outdated
statistics

Query Optimization
Statistics

Slide 24

Query Optimization
Join Ordering

Slide 25

Query Processing

The task of join ordering is to find a join order that is estimated to have the
lowest costs (ordered by input and output cardinality).

To do so, we need to estimate the size of the join result (so-called join
cardinality estimation):

q Knowledge about foreign key relationships can be used

q Values are rarely uniformly distributed, histograms help estimating

q But histograms do not contain correlation information

For all relations r1, r2, and r3,

(r1 r2) r3 =r1 (r2 r3)

à Join Associativity

If r2 r3 is quite large and r1 r2 is small, we choose

(r1 r2) r3

so that we compute and store a smaller temporary relation.

Query Optimization
Join Ordering

Slide 26

Query Processing

Estimating join cardinalities is one of the challenging tasks of query

optimization, but also indispensable to performance.

Query Optimization
Join Ordering

Slide 27

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Estimating join cardinalities is one of the challenging tasks of query

optimization, but also indispensable to performance.

Query Optimization
Join Ordering

Slide 28

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Runtime impact of inaccurate join
estimates can be desastrous:

“The average fraction between the worst and
the best plan, […] is 101× […]”

We learned that query optimization becomes increasingly important due to …

q ever growing data sets

q increasingly complex queries.

However, finding efficient plans remains a challenging task as …

q the number of possible plans is enormous, and

q costs rely on estimation using potentially outdated statistics.

Query Optimization
Summary

Query Processing

Slide 29

Query Scheduling

q Modern mixed workload systems handle tens of thousands of queries
per second on servers with dozens of CPU cores

q But plain concurrent execution can significantly hurt performance

q The database needs to balance the overall system’s throughput vs.
latency of single query execution

q The goal is to spawn the right amount of parallel work given the
particular hardware & workload (hence scheduler can be highly
hardware dependent)

Query Scheduling
Overview

Slide 31

Query Processing

q A physical query plan contains operators, each execution is an
operator instance.

q The execution of an operator instance is divided into 1-n tasks.

q Workers execute the tasks. Depending on the database’s architecture
a worker is …

q a process, or

q a thread.

Further, workers can be grouped into process/thread pools.

Query Scheduling
Scheduling Units

Slide 32

Query Processing

q The extend of parallelism varies from database to database

q One task per query, queries are executed concurrently: so-called
inter-query parallelism

q One task per operator, where operators that do not depend on each
other are executed concurrently: so-called intra-query parallelism

q Multiple tasks per operator, where the execution of an operator is split
into concurrent tasks: so-called intra-operator parallelism

q With the rise of many-core systems and mixed workloads, most systems
use both intra- and inter-query parallelism.

q Most database systems create fixed-size threads pools to limit threading
overhead for highly concurrent workloads.

Query Scheduling
Scheduling Units

Slide 33

Query Processing

■ For NUMA systems, workers should primarily execute near the data they

operate on.

■ Most NUMA-optimized databases spawn a worker thread pool per socket.

■ To feed the socket-bound workers, the database has one or more local

task queues.

Query Scheduling
Task Placement for NUMA Systems

Slide 34

Query Processing

Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 35

■ Every node has its local task queue holding tasks that primarily work on
socket-local data.

Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 36

■ In real-world applications, workloads are often highly skewed…

Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Query Scheduling
Task Placement for NUMA Systems

Query Processing

Slide 37

■ If the task queue is empty, workers can overtake work from other worker
pools (so-called task/work stealing).

■ The degree of how much work stealing is allowed depends on node
distance, CPU load, QPI saturation, and more.

Socket #2

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #4

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #1

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

Socket #3

Core #1

Core #3

Core #2

Core #4

DRAM

Ta
sk

Q

ue
ue

q For any NUMA-aware system, workers should primarily access data that is
local to itself (NUMA-aware data placement)

q Thus, the database engine cannot rely on the OS’s data placement
scheme (e.g., first-touch or interleaved) but has to distribute data across
the NUMA nodes on her own and place tasks accordingly

q Straightforward approach is round-robin chunk placement

q Advantage: simplicity and automatic handling of workload skew

q Disadvantage: operations may combine outputs from multiple nodes
when correlated tables are scattered (e.g., foreign key relationships)

q Goal is to distribute data both skew- and workload-aware in the first place
and dynamically adapt to changing workload patterns

Query Scheduling
Data Placement for NUMA Systems

Slide 38

Query Processing

Query Scheduling
Data Placement for NUMA Systems

Slide 39

Query Processing

■ A scan on table A can executed in parallel with optimal data locality.

■ An aggregation on table A (e.g., min()) can first be executed in parallel
with optimal data locality, but final result merging accesses remote data.

Socket #2

Socket #4

Socket #1

Socket #3

Table A
Fragment #3

Table A
Fragment #1

Table A
Fragment #2

Query Scheduling
Data Placement for NUMA Systems

Slide 40

Query Processing

■ Joining table A and table B inevitably needs to move data across the
QPI. Ideally, regularly together joined tables are co-located.

Socket #2

Socket #4

Socket #1

Socket #3

Table A
Fragment #3

Table A
Fragment #1

Table A
Fragment #2

Table B
Fragment #2

Table B
Fragment #3

Table B
Fragment #1

Table A
Fragment #1

Table A
Fragment #3

Table A
Fragment #2

Table B
Fragment #1

Table B
Fragment #2

Table B
Fragment #3

Table B
Fragment #4

Table B
Fragment #4

Query Scheduling
Data Placement in Hyrise2

Slide 41

Query Processing

Figure from Norman Rzepka’s Master Thesis “Adaptive NUMA-Aware Load-Balancing for In-Memory Databases”, 2017

In case of changing workloads, data placement has to be adapted:

We learned that scheduling becomes increasingly important due to …

q balancing between throughput and query latencies

q diverse memory hierarchies (DRAM, NVRAM, NUMA hops)

q mixed workloads with both short queries & long-running complex queries

Query Scheduling
Summary

Slide 42

Query Processing

Query Execution:
Joins

Combination of tuples from different tables

General categories

q Inner Join – Combine the tuples of two tables by combining each tuple
of the first input table with each tuple of the second table to apply a
join-predicate, which joins two tuples only if they match

q Outer Join – If the join predicate matches, tuples from both join
relations are used, if not, the non-matching tuple is filled with NULL
values

Further Specializations

q Equi-Join – most often used join-type, e.g., tbl_a.attr_1=tbl_b.attr_1

q Inequality-Join – often used in time-series analyses, e.g., joining over
range predicates

Query Processing – Joins
What is a Join?

Slide 44

Query Processing

Who are the actors in the state of Hessen born after 2010?

Query Processing – Joins
Join Example

1 SELECT wp.city , wp.first_name, wp.last_name

2 FROM world_population AS wp

3 INNER JOIN locations ON wp.city = locations.city

4 WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5 INNER JOIN actors ON actors.first_name = wp.first_name

6 AND actors.last_name = wp.last_name

Simplifying assumption for this example: city names are unique, last_name identifies unique people

Slide 45

Query Processing

The three basic Join Algorithms

1 Nested-Loop Join

2 Sort-Merge Join

□ Principle of merging sorted lists

3 Hash-Based Join

□ Build hash map for smaller join relation

□ Sequential scan over larger join relation and probe into hash map

Query Processing – Joins
Join Execution in Main Memory

Slide 46

Query Processing

Despite its runtime complexity of O(m*n) one of the most used joins

Reasons

q Low memory consumption

q Runtime complexity often neglectable for small inputs (e.g., small
input sizes due to restriction upfront filtering)

q Often the default join operator when an join attributes is indexed (e.g.,
joining foreign key partners)

Query Processing – Joins
Nested-Loop Join

Slide 47

Query Processing

Algorithm

q Sort both join keys

q Merge both sorted lists to join

q Fully sequential operation

q With modern CPU-optimized sorting
techniques (e.g., bitonic sort) sort-
merge joins can outperform hash joins

q Fast for already sorted tables

Query Processing – Joins
Sort-Merge Join

Query Processing

Slide 48

w
or
ld
_p

op
ul
at
io
n

lo
ca

tio
ns

last_name
Boissier

Klauck

Kraus

Matthies

Kossmann

zip_code
10365

39264

39261

14482

10365

zip_code
10365

14482

14770

39261

39264

state
Berlin

Brandenburg

Brandenburg

Sachsen-Anhalt

Sachsen-Anhalt

Existing Tables

w
or
ld
_p

op
ul
at
io
n zip_code

10365

39264

39261

14482

10365 w

or
ld
_p

op
ul
at
io
n zip_code

10365

10365

14482

39264

39261

sorted

lo
ca

tio
ns

zip_code
10365

14482

14770

39261

39264

lo
ca

tio
ns

zip_code
10365

14482

14770

39261

39264

sorted

last_name
Boissier

Kossmann

Matthies

Kraus

Klauck

state
Berlin

Berlin

Brandenburg

Sachsen-Anhalt

Sachsen-Anhalt

zip_code
10365

10365

14482

39261

39264

merged

Sort-Merge-Join

q Hashing introduces additional complexity because we cannot guarantee
the absence of collisions and cannot handle inequality joins

q Hash Join algorithm

1. Hash phase: join attribute of first join table is scanned and a
hash map is produced where each value maps to the position of
this value in the first table

2. Probe phase: second join table is scanned on the other join
attribute and for each tuple the hash map is probed to determine
if the value is contained or not; if the value is contained the result
is written

Query Processing – Joins
Hash-Based Join

Query Processing

Slide 49

When to choose which algorithm?
q Nested-Loop Join – very small data set; both other algorithms would require too

much time for additional data structures and sorting; indexed join column
q Sort-Merge Join – join column(s) already sorted, inequality joins, default fallback
q Hash Join – one relation significantly smaller; equi-join

Complexity comparison
q Nested-Loop Join – O(N*M)

q Sort-Merge Join – O(N*log(N) + M*log(M))
q Hash Join – O(N+M)

But
q Sort-merge Join on already sorted input has a complexity of O(N+M) since the data

does not need to be sorted
q Hash Join performs best if the hash map is expected to be very small (thus probably

cache-resident)

Query Processing – Joins
Which Join Algorithms to choose?

Query Processing

Slide 50

Join Execution on Hyrise2

Radix-Partitioned Hash Join

Hyrise2 is optimized for mixed workloads including complex analytical joins

over large data sets. Joining is the most expensive operation in mixed

workloads.

Text book implementations do not scale well on large multi-core systems:

1. Hash Join: random accesses to large non-cache-resident hash maps

are not prefetchable and exhibit bad caching utilization.

2. Sort-based Join: overly expensive sorting costs in the sort-phase for

very large data sets.

Query Processing – Radix-Partitioned Hash Join
Joining Large Data Sets

Slide 52

Query Processing

Query Processing – Radix-Partitioned Hash Join

Query Processing

Slide 53

L3

CPU Core

L1

La
rg

er

Re
la

tio
n

CPU Core

L1

CPU Core

L1

CPU Core

L1

H
as

h
Ta

bl
e

L2

L2

L2

L2

q Larger relation is sequentially
scanned in parallel

But …

q Hash table of smaller relation is
larger than cache sizes

q CPU cores are randomly
accessing the hash table which
potentially leads to an L3 cache
miss for every access

Query Processing – Radix-Partitioned Hash Join

Query Processing

Slide 54

q Key idea: partition both
relation in smaller
partitions

q We aim to chose a
partition size such that the
hash tables can be cache-
resident

CPU Core

L1
L2

CPU Core

L1
L2

CPU Core

L1
L2

CPU Core

L1
L2

Hash
Table #1

Hash
Table #2

Hash
Table #3

Hash
Table #4

L3

Query Processing – Radix-Partitioned Hash Join

Query Processing

Slide 55

q CPU cores still process larger
relation sequentially

q Random accesses during probing
phase are now fully cache-
resident in L2 or L3 cache

q Usually, the added work to
partition the data is offset by
faster joining phase

CPU Core

L1
L2

CPU Core

L1
L2

CPU Core

L1
L2

CPU Core

L1
L2

Hash
Table #1

Hash
Table #2

Hash
Table #3

Hash
Table #4

L3

q Parallelization should be used when load permits it

q Idea: add additional work to partition input relations into smaller
partitions that can be joined locally

Radix Partitioning

q Partitions a data set by their n least significant bits

q Introduces (potentially multiple) additional scans of the data to join

q Apparently expensive, but surprisingly efficient on columnar IMDBs

Query Processing – Radix-Partitioned Hash Join
Joining Large Data Sets

Slide 56

Query Processing

Query Processing – Radix-Partitioned Hash Join
Radix Partitioning

Query Processing

Slide 57

230
17
52
128
174
385

11100110
10001
110100

10000000
10101110
110000001

Partition with n=2 radix bits

110100
10000000

10001
110000001

11100110
10101110

Process

q Determine number of radix bits n, prepare 2n (atomic) counters

q First pass: scan entire join columns, determine radix bits for each
value and increase the counter accordingly

q Allocate a pre-sized output vector using the calculated prefix sums of
the counters

q Second pass: using the prefix sums, directly write values in the
corresponding slot of the output vector (sequential writes)

q Usually straightforward to parallelize (in Hyrise2 parallelized on chunk
level)

Query Processing – Radix-Partitioned Hash Join
Radix Partitioning

Slide 58

Query Processing

Query Processing – Radix-Partitioned Hash Join
Radix Partitioning

Query Processing

Slide 59

230
17
52
128
174
385

11100110
10001
110100

10000000
10101110
110000001

Partition with n=2 radix bits

110100
10000000

10001
110000001

11100110
10101110

00 2
01 2
10 2
11 0

Prefix sums Parallel sequential write
to partitions.

q Radix partitioning is the fastest way to range
partition data without expensive comparisons

q Using least significant bits avoids most data skews

q For equi-join, only radix clusters with the same radix
bit pattern have to be joined

q For a large enough number of radix bits, the hash
tables will thus probably be cache-resident

q Thus, random lookups but fully cached hash table

Query Processing – Radix-Partitioned Hash Join
Radix Partitioning – Why?

Slide 60

Query Processing

Query Processing – Radix-Partitioned Hash Join
Hash-Join

Slide 61

Radix-partitioned hash join
for Hyrise2.

(Partitioning)

Build

Probe

Materialization

Query Processing

Query Processing – Radix-Partitioned Hash Join
Hash-Join

Slide 62

Query Processing

Query Processing – Radix Partitioned Hash Join
Parallel Radix Hash-Join

Slide 63

“A Partitioning Phase
to the hash joins is
introduced to reduce
cache misses”

Query Processing

Query Processing – Radix-Partitioned Hash Join
Partition Phase – Radix (One Pass)

Slide 64

1 1 0

1 0 0

0 1

1 0 0
1 1 0

1
1 0 1

0
1

2

1 0 0

1 0 0

0 1
1 1 0

1
1 0 1

1 1 0

C
h
u
n
k

0
C
h
u
n
k

1 0
1

2

Histograms Partitions

Query Processing – Radix-Partitioned Hash Join
Build Phase

Hash function

100#1

Hash tableLeft Table

01

101

1101

#1

#2

#3

110#1

P
0

P
1

P
2

Slide 65

1 0 0

1 0 0

0 1
1 1 0

1
1 0 1

1 1 0

Query Processing – Radix-Partitioned Hash Join
Probe Phase

101

101

1101

111

11

1011

Hash table 0

Hash table 1

Join
Matches

Pa
rt

it
io

n
 0

Pa
rt

it
io

n
 1

Right Table

Join
Matches

Join
Matches

Slide 66

Query Processing – Radix-Partitioned Hash Join
Parallelization

Partition-wise

Chunk-wise

Slide 67

Query Processing

We learned that the join is one of the most expensive database operations

q As such, joins are one of the most tuned pieces of code in databases

We discussed the radix-partitioned hash join

q Radix-partitioning allows for improved cache locality of hash maps and

q Allows for improved parallelization

We learned that the optimal join-type choice depends on many aspects

Query Processing – Radix-Partitioned Hash Join
Summary

Slide 68

Query Processing

BYOD - WEEK 6

ORGANISATION

▸ Deadline Sprint 3

▸ 3 December 2017

▸ Next Week

▸ Presentation of group projects

▸ Scheduling

▸ MVCC

12

