
Build your own Database

Week 7

Agenda

• Q&A Sprint 3

• Group Projects

• Logistics

• Scheduling

• MVCC

2

Sprint 3

Questions?

3

NUMA-Optimized Join
• As of now, Hyrise supports three join types (Hash, Sort-

Merge, and Nested Loop)

• Most of them are optimized for parallel execution (cf. radix

partitioning from last week)

• However, large modern NUMA systems move the major

bottleneck from CPU caches to the NUMA bus

– Over the past months, Hyrise gained NUMA support …

let’s leverage it!

4

NUMA-Optimized Join
Tasks:

• Warm-Up: IndexJoin

• Implement the massively

parallel sort-merge-join [1]

• Thoroughly benchmark,

optimize, and compare

against other joins

• Introduce join to optimizer

5
[1]	Albutiu,	Massively	Parallel	Sort-Merge	Joins	in	Main	Memory	Multi-Core	Database	Systems,	VLDB	2012

Pruning Filters
• Column scans are efficient and fast in main memory column

stores, but still every avoided scan is beneficial

• This gets increasingly important for data that is not local

(e.g., NUMA-distant data, data on secondary storage)

• Goal: we’d like to recognize unnecessary chunk accesses

through small data structures (<1 MB in size; chunk-local)

to improve the overall system performance

6

Pruning Filters
Tasks:

• Implement pruning filters in Hyrise2

with a focus on efficient creation and

validation

• Introduce chunk pruning to the

optimizer (+ improving estimates)

• Allow operators (e.g., joins) to prune

chunks dynamically during execution

7

Table X

Chunk #1 (compressed)

Chunk #2 (compressed)

Chunk #3 (open,
uncompressed)

PF

PF

SELECT * FROM X
WHERE a=5 AND z=17

Networking
• Hyrise2 can be used as library with an interactive SQL console

• (Typically) databases

– Are server applications, running forever,

– Offer a message-based protocol for clients

– Use TCP/IP as network protocol

http://www.vldb.org/pvldb/vol10/p1022-muehleisen.pdf

8

The main contributions of this paper are:

• We benchmark the result set serialization methods
used by major database systems, and measure how
they perform when transferring large amounts of data
in di↵erent network environments. We explain how
these methods perform result set serialization, and
discuss the deficiencies of their designs that make them
ine�cient for transfer of large amounts of data.

• We explore the design space of result set serialization
and investigate numerous techniques that can be used
to create an e�cient serialization method. We exten-
sively benchmark these techniques and discuss their
advantages and disadvantages.

• We propose a new column-based serialization method
that is suitable for exporting large result sets. We
implement our method in the Open-Source database
systems PostgreSQL and MonetDB, and demonstrate
that it performs an order of magnitude better than the
state of the art. Both implementations are available as
Open Source software.

Outline. This paper is organized as follows. In Section
2, we perform a comprehensive analysis of state of the art
in client protocols. In Section 3, we analyze techniques that
can be used to improve on the state of the art. In Section 4,
we describe the implementation of our protocol and perform
an evaluation. In Section 5, we draw our conclusions and
discuss future work.

2. STATE OF THE ART
Every database system that supports remote clients imple-

ments a client protocol. Using this protocol, the client can
send queries to the database server, to which the server will
respond with a query result. A typical communication sce-
nario between a server and client is shown in Figure 2. The
communication starts with authentication, followed by the
client and server exchanging meta information (e.g. protocol
version, database name). Following this initial handshake,
the client can send queries to the server. After computing
the result of a query, (1) the server has to serialize the data
to the result set format, (2) the converted message has to be
sent over the socket to the client, and (3) the client has to
deserialize the result set so it can use the actual data.

The design of the result set determines how much time is
spent on each step. If the protocol uses heavy compression,
the result set (de)serialization is expensive, but time is saved
sending the data. On the other hand, a simpler client protocol
sends more bytes over the socket but can save on serialization
costs. The serialization format can heavily influence the time
it takes for a client to receive the results of a query. In this
section, we will take an in-depth look at the serialization
formats used by state of the art systems, and measure how
they perform when transferring large amounts of data.

2.1 Overview
To determine how state of the art databases perform at

large result set export, we have experimented with a wide
range of systems: The row-based RDBMS MySQL [36],
PostgreSQL [32], the commercial systems IBM DB2 [37]
and “DBMS X”. We also included the columnar RDBMS
MonetDB [5] and the non-traditional systems Hive [33] and

Figure 2: Communication between a client and a
server

MongoDB [23]. MySQL o↵ers an option to compress the
client protocol using GZIP (“MySQL+C”), this is reported
separately.

There is considerable overlap in the use of client protocols.
In order to be able to re-use existing client implementations,
many systems implement the client protocol of more popular
systems. Redshift [15], Greenplum [9], Vertica [20] and
HyPer [24] all implement PostgreSQL’s client protocol. Spark
SQL [3] uses Hive’s protocol. Overall, we argue that this
selection of systems includes a large part of the database
client protocol variety.

Each of these systems o↵ers several client connectors. They
ship with a native client program, e.g. the psql program
for PostgreSQL. This client program typically only supports
querying the database and printing the results to a screen.
This is useful for creating a database and querying its state,
however, it does not allow the user to easily use the data in
their own analysis pipelines.

For this purpose, there are database connection APIs that
allow the user to query a database from within their own
programs. The most well known of these are the ODBC [11]
and JDBC [8] APIs. As we are mainly concerned with the
export of large amounts of data for analysis purposes, we
only consider the time it takes for the client program to
receive the results of a query.

To isolate the costs of result set (de)serialization and data
transfer from the other operations performed by the database
we use the ODBC client connectors for each of the databases.
For Hive, we use the JDBC client because there is no of-
ficial ODBC client connector. We isolate the cost of con-
nection and authentication by measuring the cost of the
SQLDriverConnect function. The query execution time can
be isolated by executing the query using SQLExecDirect with-
out fetching any rows. The cost of result set (de)serialization
and transfer can be measured by fetching the entire result
using SQLFetch.
As a baseline experiment of how e�cient state of the art

protocols are at transferring large amounts of data, we have
loaded the lineitem table of the TPC-H benchmark [34]
of SF10 into each of the aforementioned data management
systems. We retrieved the entire table using the ODBC
connector, and isolated the di↵erent operations that are
performed when such a query is executed. We recorded the
wall clock time and number of bytes transferred that were
required to retrieve data from those systems. Both the server

1023

Networking
PostgreSQL message protocol:

• Regular packet: char tag, int32 len, payload

• PostgreSQL 10.1 Documentation, Chapter 52. Frontend/Backend Protocol
https://www.postgresql.org/files/documentation/pdf/10/postgresql-10-A4.pdf

• https://wulczer.org/postgres-on-the-wire.pdf

9

Networking
Tasks:

• Define a message-based communication protocol for Hyrise2

• Integrate the protocol into the Hyrise2 console

• Implement a server

– High throughput

– Low overhead

10

Partitioning
• Is the division of relations into disjoint subsets

– Is required if the data size exceeds the memory capacity

of a single machine

– Enables pruning (skip processing irrelevant partitions)

• Vertical vs. horizontal

• Physical vs. logical

11

Partitioning
• Logical view

on partitioning

in Hyrise2

12

Table #1

Partition #1 (horizontal, explicit through logical partitioning)

St
at
ic
 p
ar

tit
io
n
pr

un
in
g
po

ss
ib
le

On
ly
 d
yn

am
ic
 p
ar

tit
io
n
pr

un
in
g
po

ss
ib
le

On
ly
 d
yn

am
ic
 p
ar

tit
io
n
pr

un
in
g
po

ss
ib
le

Chunk #1 (implicit horizontal partitioning; physical partition; possibly frozen)

Attr #1 Attr #2 Attr #3 …

Chunk #2 (implicit horizontal partitioning; physical partition; possibly open)

Attr #1 Attr #2 Attr #3 …

Partition #2 (horizontal, explicit through logical partitioning)

Chunk #3 (implicit horizontal partitioning; physical partition; possibly frozen)

Attr #1 Attr #2 Attr #3 …

Chunk #4 (implicit horizontal partitioning; physical partition; possibly open)

Attr #1 Attr #2 Attr #3 …

Partitioning
Task:

• Implement logical horizontal partitioning for Hyrise2

• If needed: Adapt operators to work with partitioned tables

• Adapt insert

• Adapt table load

• (Integrate it into SQL parser)

• (Integrate pruning into SQL optimizer)

13

Strings, Date(time)s and
Functions

• (Enterprise) data consists of many (short) string values

• std::string‘s SSO is a blessing and curse

• Motivation: Footprint reduction & computational efficiency

• std::array<char, 1> ... std::array<char, 255>

• Hide string size by string wrapper class

14

Strings, Date(time)s and
Functions

• Most databases offer multiple ways to represent dates

– DATE, DATETIME and TIMESTAMP

• Internal representation of date types

• (Date) functions are heavily used in benchmarks

– l_shipdate < date '1994-01-01' + interval '1' year

– substring, dateAdd, dayOfMonth…

15

Strings, Date(time)s and
Functions

• Step 1: Implement additional data types

• Step 2: Implement functions that build upon these data

types

• Step 3: Evaluate the implementation‘s impact on

benchmark performance

16

Self-Driving Database
• Large database deployments are configured and tuned by

database administrators

– Which indexes? How to partition data? How many threads?

• Manual tuning is difficult:

– Large problem space

– Inter-dependency between options

– Decisions are tailored to specific workloads

• NP-complete optimization problems

17

Self-Driving Database
• Idea: The database knows best how to tune itself

– It has knowledge about the underlying data, queries and their
access frequencies

• This data can be fed into heuritics to generate close to optimal
solutions

• Index Selection for Hyrise

– Step 1: Extract relevant information from the query plan cache
and statistics component

– Step 2: Pass this information to selection component and create
indexes accordingly

18

More Optimizer Rules

19

SQL	Query
SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	order	ON	customer.id
=	order.cid WHERE	order.priority =	1	GROUP	BY	customer.id

Physical	Query	Plan	(PQP)
GetTable,	TableScan,	Join,	Aggregate,	…

?

More Optimizer Rules

20

SQL	Query
SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	order	ON	customer.id
=	order.cid WHERE	order.priority =	1	GROUP	BY	customer.id

SQL	Parser

hsql::Select
Statement

struct SelectStatement : SQLStatement {
SelectStatement();
virtual ~SelectStatement();

TableRef* fromTable;
bool selectDistinct;
std::vector<Expr*>* selectList;
Expr* whereClause;
GroupByDescription* groupBy;

SelectStatement* unionSelect;
std::vector<OrderDescription*>* order;
LimitDescription* limit;

};

More Optimizer Rules

21

SQL	Query
SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	order	ON	customer.id
=	order.cid WHERE	order.priority =	1	GROUP	BY	customer.id

SQL	Translator

Logical	
Query	
Plan

SQL	Parser

hsql::Select
Statement

More Optimizer Rules

22

SQL	Query
SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	order	ON	customer.id
=	order.cid WHERE	order.priority =	1	GROUP	BY	customer.id

SQL	Translator

Logical	
Query	
Plan

SQL	Parser

hsql::Select
Statement

Opt.	
LQP

Optimizer

More Optimizer Rules

23

SQL	Query
SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	order	ON	customer.id
=	order.cid WHERE	order.priority =	1	GROUP	BY	customer.id

StoredTable(customer)

LogicalQueryPlan (LQP):

StoredTable(order)

Join
JoinMode::Left
customer.id =	order.cid

Predicate
priority	=	1

Aggregate
Group:	customer.id
Func:	COUNT(*)

Nothing	said	about	physical	
implementation	of	Join

(HashJoin,	NLJ,	…)

More Optimizer Rules

24

SQL	Query
SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	order	ON	customer.id
=	order.cid WHERE	order.priority =	1	GROUP	BY	customer.id

StoredTable(customer)

StoredTable(order)

Join
JoinMode::Left
customer.id =	order.cid

Predicate
priority	=	1

Aggregate
Group:	customer.id
Func:	COUNT(*)

StoredTable(customer)

StoredTable(order)

Join
JoinMode::Left
customer.id =	order.cidPredicate

priority	=	1

Aggregate
Group:	customer.id
Func:	COUNT(*)

More Optimizer Rules

25

SQL	Query
SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	order	ON	customer.id
=	order.cid WHERE	order.priority =	1	GROUP	BY	customer.id

SQL	Translator

Logical	
Query	
Plan

SQL	Parser

hsql::Select
Statement

Opt.	
LQP

Optimizer LQP	Translator

Physical	Query	Plan	(PQP)
GetTable,	TableScan,	Join,	Aggregate,	…

More Optimizer Rules
• Add more Rules to the Optimizer so that better decisions

are made

• Example Rules:

– Push-Down of Predicates

– Arithmetic and Logical Optimizations

– Making use of ordered output

26

Subqueries

27

SELECT	customer.id,	(SELECT	COUNT(*)	FROM	order	WHERE	customer.id =	
order.cid) FROM	customer	GROUP	BY	customer.id

SELECT	customer.id,	COUNT(*)	FROM	customer	LEFT	JOIN	(SELECT	*	FROM	
order	WHERE	priority	=	1) ON	customer.id =	order.cid GROUP	BY	customer.id

Simple	Subquery:

Correlated	Subquery:

Subqueires

• Step 1: Extend the SQLTranslator to understand subqueries

– Naïve version: Execute subquery for every row

• Step 2: Decorrelate Subqueries for better performance

– E.g., replace them with a join

28

Topic Overview
• Joins

• Pruning Filters

• Networking

• Partitioning

• Strings, Date(times) and Functions

• Self-Driving Database

• More Optimizer Rules

• Subqueries

29

Logistics
• Together with your Sprint 3 Hand-In, please send us a list

of all topics that you are interested in.

• All choices have the same priority and you can submit as

many choices as you want.

• Next week, we will have a shorter lecture. After that, we

will meet in the groups.

30

Scheduling

31

• Why scheduling?

– Inter query and inter/intra operator parallelism

• Scheduler: Higher entity that offers interface for
multiprocessing

• Implementation requirements:

– Scheduling strategy should be exchangeable

– Scheduler should be disableable

– Simplicity of usage

Scheduling

32

• AbstractTask is base for schedulable units

• A JobTask is a general purpose task for anything that can

parallelized

– JobTask(const std::function<void()>& fn)

• Dependencies via Task::set_as_predecessor_of

– Automatically notifies successors upon finish

Scheduling

33

auto jobs = std::vector<std::shared_ptr<AbstractTask>>{};

for (ChunkID chunk_id{0u}; chunk_id < chunk_count; ++chunk_id) {

auto job_task = std::make_shared<JobTask>([=]() {
// Actual scan goes here

 });

jobs.push_back(job_task);

job_task->schedule();

}

CurrentScheduler::wait_for_tasks(jobs);

■ Atomicity

□ Transactions (Txs) either commit fully or not at all

■ Consistency

■ Isolation

□ Concurrent transactions must not affect each other

■ Durability

Motivation

Concurrency
Control

Chart 2

Motivation – Textbook Example

Concurrency
Control

Chart 3

CustomerName Balance

John Smith 1,000.00 €

… …

How much money does John have?

Tx 2: John Smith receives his 3000 Euro paycheck

Tx 2: UPDATE customers SET balance = balance + 3000 …;

Tx 2: The DBMS reads the current balance

Tx 2: The DBMS calculates the new balance and writes it back

Transaction 1: John Smith pays 300 Euros for a flight

Tx 1: UPDATE customers SET balance = balance – 300 …;

Tx 1: The DBMS reads the current balance

Tx 1: The DBMS calculates the new balance and writes it back

■ Lost Update

□ Two Tx modify the same row, but only one update is saved.

■ Dirty Reads

□ A Tx reads changes that have not been committed yet.

■ Non-Repeatable Reads

□ A Tx reads the same row twice and gets different results.

■ Phantom Reads

□ A Tx sees rows that have been inserted during its lifetime.

Types of Isolation Errors

Concurrency
Control

Chart 4

Isolation Methods

Concurrency
Control

Chart 5

■ In general, databases have two ways to deal with concurrent

modifications:

□ Pessimistic Two-Phase Locking (2PL)

□ Optimistic Concurrency Control (OCC)

■ Hyrise and HANA use different flavors of OCC

□ Good if few conflicts are expected.

■ We do this by storing the commit id of the TX that added or

deleted a row:

■

■ Additionally, we keep the transaction id to lock and mark

transactions that are currently undergoing modifications.

□ We will not discuss this part right now.

Multiversion Concurrency Control

Concurrency
Control

Chart 6

AccountId Balance BeginCid EndCid

00119 1,000.00 € 0 5

00119 700.00 € 5 ∞

00120 …

Example with MVCC

Concurrency
Control

Chart 7

Account Balance BeginCid EndCid

X 7 5 ∞

Y 0 5 ∞

■ We use the same example as for 2PL.

■ Both rows were inserted by the last Tx, commit id 5.

■ They are visible to future Txs because the BeginCid is equal and

the EndCid is larger than the last commit id of new Txs.

Global LastCid 5

For this lecture, we leave out some parts of MVCC (such as the two-phase commit) and discuss
MVCC only on a conceptual level. For more details, please refer to the HYRISE documentation
and Schwalb et al.: Efficient Transaction Processing for Hyrise in Mixed Workload Environments

Stores the commit id
of the last Tx that

committed, i.e., the
timestamp of „now“

Example with MVCC

Concurrency
Control

Chart 8

Account Balance BeginCid EndCid

X 7 5 ∞

Y 0 5 ∞

■ Transaction A starts and retrieves the snapshot commit id from

the global store.

Global LastCid 5

Snapshot TxA 5

Example with MVCC

Concurrency
Control

Chart 9

Account Balance BeginCid EndCid

X 7 5 ∞

Y 0 5 ∞

■ It performs the check for sufficient funds in the account of X.

Row 0 is visible because 5 ≤ 5 < ∞.

Global LastCid 5

Snapshot TxA 5

Example with MVCC

Concurrency
Control

Chart 10

Account Balance BeginCid EndCid

X 7 5 ∞

Y 0 5 6

Y 5 6 ∞

■ 5 € are added to the account of Y. This happens by invalidating

the old row and adding a new row.

■ For simplicity, let us assume that TxA has commit id 6.

Global LastCid 6

Snapshot TxA 5

Example with MVCC

Concurrency
Control

Chart 11

Account Balance BeginCid EndCid

X 7 5 6

Y 0 5 6

Y 5 6 ∞

X 2 6 ∞

■ 5 € are subtracted from the account of X. Again, the old row is

invalidated and the updated version of the row is appended.

Global LastCid 6

Snapshot TxA 5

Example with MVCC

Concurrency
Control

Chart 12

Account Balance BeginCid EndCid

X 7 5 6

Y 0 5 6

Y 5 6 ∞

X 2 6 ∞

■ Transaction B starts. It retrieves the global LastCID 6.

■ Row 0 cannot be used for validating, because its EndCid is not

greater that TxB‘s snapshot commit id. It is invisible.

■ Instead, row 3 is used for verification.

Global LastCid 6

TxA completed

Snapshot TxB 6

■ It is impossible to recover from conflicts.

■ If a transaction finds that the row that it wants to invalidate has

already been invalidated by another Tx, it has to abort and

rollback all its changes.

■ There is no guarantee that a Tx that started first will win this

conflict. For highly contested rows, starvation is possible.

Multiversion Concurrency Control

Concurrency
Control

Chart 13

Next Steps
• Submit Sprint 3 and List of Preferred Projects

• Next Week

– Review Sprint 3

– Intro Hyrise Repo and Development Process

– shared_ptr vs const shared_ptr& vs T&

35

