Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Build your own Database

Week 7




Agenda

« Q&A Sprint 3

« Group Projects
« Logistics

« Scheduling

- MVCC

- Hasso
Plattner
Institut



Sprint 3

Questions?

—oT

o R
o

ASn



NUMA-Optimized Join

« As of now, Hyrise supports three join types (Hash, Sort-
Merge, and Nested Loop)

« Most of them are optimized for parallel execution (cf. radix

partitioning from last week)

« However, large modern NUMA systems move the major

bottleneck from CPU caches to the NUMA bus

— Over the past months, Hyrise gained NUMA support ...
let’s leverage it!

- Hasso
Plattner
Institut



NUMA-Optimized Join

Tasks:
« Warm-Up: IndexJoin

 Implement the massively

parallel sort-merge-join [1]

 Thoroughly benchmark,
optimize, and compare

against other joins

« Introduce join to optimizer
B ﬂ Hasso

Plattner
Institut

larger
T
sort
|
smaller
smaller
sort
larger

"""‘
I
1
I | —
— _—
C; C_" Cj C4
range partition
R, R, R;

=2

Ss

. A

R data

S data

Figure 5: P-MPSM join with four workers W,

[1] Albutiu, Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems, VLDB 2012




Pruning Filters

Column scans are efficient and fast in main memory column

stores, but still every avoided scan is beneficial

This gets increasingly important for data that is not local

(e.g., NUMA-distant data, data on secondary storage)

Goal: we'd like to recognize unnecessary chunk accesses
through small data structures (<1 MB in size; chunk-local)

to improve the overall system performance

Hasso
Plattner 6
Institut



Pruning Filters

Tasks:

Implement pruning filters in Hyrise2
with a focus on efficient creation and

validation

Introduce chunk pruning to the

optimizer (+ improving estimates)

Allow operators (e.g., joins) to prune

chunks dynamically during execution

Hasso
Plattner
Institut

SELECT *x FROM

WHERE AN

. °
PO

Table X

A

\‘ N
.
A .
[y .
.
.

Chunk #1 (compressed)

PF

Chunk #2 (compressed)

PF

Chunk #3 (open,
uncompressed)




Networking

« Hyrise2 can be used as library with an interactive SQL console
« (Typically) databases
— Are server applications, running forever,

— Offer a message-based protocol for clients

— Use TCP/IP as network protocol

http://www.vldb.org/pvidb/vol10/p1022-muehleisen.pdf

ien \ »
csu c
- Hasso
Plattner 8
Institut




Networking

Client Server
Query

PostgreSQL message protocol:

 Regular packet: char tag, int32 len, payload RowDesorpion

DataRow

DataRow

DataRow

CommandComplete

ReadyForQuery

« PostgreSQL 10.1 Documentation, Chapter 52. Frontend/Backend Protocol
https://www.postgresqgl.org/files/documentation/pdf/10/postgresqgl-10-A4.pdf

« https://wulczer.org/postgres-on-the-wire.pdf

- Hasso
Plattner 9
Institut




Networking

Tasks:

« Define a message-based communication protocol for Hyrise2

« Integrate the protocol into the Hyrise2 console

Andy Pavlo @andy_pavio - 15 Nov 2016 v
~ # Our new DBMS is the fastest NOOP system available today. We can do "no

e Im p | ement a server work® faster than Postgres and TimesTen. This is a major breakthrough

No-Op Benchmark (SQL=";")

== Peloton == TimesTen =@= Postgres

— High throughput

— Low overhead

- ﬂ Pt | o
Plattner
L Q s I 20 Q 4 ™~
Institut

Throughput (op/sec)




Partitioning

Is the division of relations into disjoint subsets

— Is required if the data size exceeds the memory capacity

of a single machine
— Enables pruning (skip processing irrelevant partitions)
Vertical vs. horizontal

Physical vs. logical

Hasso
Plattner 11
Institut



Logical view
on partitioning

in Hyrise2

Hasso
Plattner
Institut

Partitioning

Table #1

Partition #1 (horizontal, explicit through logical partitioning)

(Chunk #1 (implicit horizontal partitioning; physical partition; possibly frozen)

[Attr #1] [Attr #2] [Attr #3]

.

P
Chunk #2 (implicit horizontal partitioning; physical partition; possibly open)

[Attr #1] [Attr #2] [Attr #3]

Partition #2 (horizontal, explicit through logical partitioning)

p
Chunk #3 (implicit horizontal partitioning; physical partition; possibly frozen)

[Attr #’I] [Attr #2] [Attr #3]

-

P
Chunk #4 (implicit horizontal partitioning; physical partition; possibly open)

[Attr #‘I] [Attr #2] [Attr #3]




Partitioning

Task:

« Implement logical horizontal partitioning for Hyrise2

« If needed: Adapt operators to work with partitioned tables
« Adapt insert

« Adapt table load

 (Integrate it into SQL parser)

« (Integrate pruning into SQL optimizer)

- Hasso
Plattner
Institut

13



Strings, Date(time)s and
Functions

(Enterprise) data consists of many (short) string values

std::string‘s SSO is a blessing and curse

MemOU[[[TIIECEEEEETErrrrrerrrrrrrrrerrrrrrrr 1.01T/1.48T]
SwellTEEEEEEEEErerrrreerrr e 858M/1.68G]

Hide string size by string wrapper class

Hasso
Plattner
Institut

14



Strings, Date(time)s and
Functions
Most databases offer multiple ways to represent dates
— DATE, DATETIME and TIMESTAMP
Internal representation of date types
(Date) functions are heavily used in benchmarks
— 1 shipdate < date '1994-01-01' + interval '1' year

— substring, dateAdd, dayOfMonth..

Hasso
Plattner
Institut

15



Strings, Date(time)s and
Functions

Step 1: Implement additional data types

Step 2: Implement functions that build upon these data

types

Step 3: Evaluate the implementation's impact on

benchmark performance

Hasso
Plattner
Institut

16



Self-Driving Database

« Large database deployments are configured and tuned by
database administrators

— Which indexes? How to partition data? How many threads?
« Manual tuning is difficult:

— Large problem space

— Inter-dependency between options

— Decisions are tailored to specific workloads

« NP-complete optimization problems

- Hasso
Plattner 17
Institut



Self-Driving Database

Idea: The database knows best how to tune itself

— It has knowledge about the underlying data, queries and their
access frequencies

This data can be fed into heuritics to generate close to optimal
solutions

Index Selection for Hyrise

— Step 1: Extract relevant information from the query plan cache
and statistics component

— Step 2: Pass this information to selection component and create
indexes accordingly
Hasso

Plattner
Institut

18



More Optimizer Rules

SQL Query
SELECT customer.id, COUNT(*) FROM customer LEFT JOIN order ON customer.id
= order.cid WHERE order.priority = 1 GROUP BY customer.id

|

Physical Query Plan (PQP)
GetTable, TableScan, Join, Aggregate, ...

- Hasso
Plattner 19
Institut



More Optimizer Rules

(sQL Query

SELECT customer.id, COUNT(*) FROM customer LEFT JOIN order ON customer.id
_= order.cid WHERE order.priority = 1 GROUP BY customer.id

SQL Parser

hsql::Select
Statement

4

- Hasso
Plattner
Institut

4

struct SelectStatement : SQLStatement {

}s

SelectStatement();
virtual ~SelectStatement();

TableRef* fromTable;

bool selectDistinct;

std: :vector<Expr*>* selectList;
Expr* whereClause;
GroupByDescription* groupBy;

SelectStatement* unionSelect;
std: :vector<OrderDescription*>* order;
LimitDescription* limit;

20



More Optimizer Rules

(sQL Query
SELECT customer.id, COUNT(*) FROM customer LEFT JOIN order ON customer.id
_= order.cid WHERE order.priority = 1 GROUP BY customer.id

SQL Parser

SQL Translator

hsql::Select
Statement

4

Hasso
Plattner
Institut

Logical
Query

Plan

7

21



More Optimizer Rules

(sQL Query
SELECT customer.id, COUNT(*) FROM customer LEFT JOIN order ON customer.id
_= order.cid WHERE order.priority = 1 GROUP BY customer.id

SQL Parser SQL Translator Optimizer

hsql::Select Iggmal Opt.
Statement uery LQP
Plan
74 4 7

- Hasso
Plattner 22
Institut



More Optimizer Rules

SQL Query
SELECT customer.id, COUNT(*) FROM customer LEFT JOIN order ON customer.id
= order.cid WHERE order.priority = 1 GROUP BY customer.id

LogicalQueryPlan (LQP):

StoredTable(customer)

Join . Aggregate
: Predicate
JoinMode::Left o Group: customer.id
. : priority = 1 .
StoredTable(order) customer.id = order.cid Func: COUNT(*)

Nothing said about physical
implementation of Join
(HashJoin, NLJ, ...)

- Hasso
Plattner 23
Institut




More Optimizer Rules

SQL Query
SELECT customer.id, COUNT(*) FROM customer LEFT JOIN order ON customer.id
= order.cid WHERE order.priority = 1 GROUP BY customer.id

StoredTable(customer)

Join . Aggregate
JoinMode::Left Prfed!cate Group: customer.id
. : priority = 1 .
StoredTable(order) customer.id = order.cid Func: COUNT(*)
StoredTable(customer)
Join Aggregate
JoinMode::Left Group: customer.id
StoredTable(order) Predicate customer.id = order.cid Func: COUNT(*)
priority =1

- Hasso
Plattner 24
Institut



More Optimizer Rules

r

NG

SQL Query
SELECT customer.id, COUNT(*) FROM customer LEFT JOIN order ON customer.id
= order.cid WHERE order.priority = 1 GROUP BY customer.id

SQL Parser

SQL Translator Optimizer LQP Translator

hsql::Select Iggmal Opt.
Statement uery LQP
Plan
| 74 v I

|

Physical Query Plan (PQP) =
GetTable, TableScan, Join, Aggregate, ...

- Hasso
Plattner 25
Institut



More Optimizer Rules

Add more Rules to the Optimizer so that better decisions

are made

Example Rules:

— Push-Down of Predicates

— Arithmetic and Logical Optimizations

— Making use of ordered output

Hasso
Plattner
Institut

26



Subqueries

Simple Subquery:

SELECT customer.id, COUNT(*) FROM customer LEFT JOIN (SELECT * FROM
order WHERE priority = 1) ON customer.id = order.cid GROUP BY customer.id

Correlated Subquery:

SELECT customer.id, (SELECT COUNT(*) FROM order WHERE customer.id =
order.cid) FROM customer GROUP BY customer.id

- Hasso
Plattner
Institut

27



Subqueires

Step 1: Extend the SQLTranslator to understand subqueries
— Naive version: Execute subquery for every row
Step 2: Decorrelate Subqueries for better performance

— E.g., replace them with a join

Hasso
Plattner 28
Institut



Topic Overview

Joins

Pruning Filters

Networking

Partitioning

Strings, Date(times) and Functions
Self-Driving Database

More Optimizer Rules

Subqueries

Hasso
Plattner
Institut

29



Logistics

Together with your Sprint 3 Hand-In, please send us a list

of all topics that you are interested in.

All choices have the same priority and you can submit as
many choices as you want.

Next week, we will have a shorter lecture. After that, we

will meet in the groups.

Hasso
Plattner
Institut

30



Scheduling

Why scheduling?
— Inter query and inter/intra operator parallelism

Scheduler: Higher entity that offers interface for
multiprocessing

Implementation requirements:

— Scheduling strategy should be exchangeable
— Scheduler should be disableable

— Simplicity of usage

Hasso
Plattner
Institut

31



Scheduling

AbstractTask is base for schedulable units

A JobTask is a general purpose task for anything that can
parallelized

— JobTask(const std::function<void()>& fn)
Dependencies via Task::set _as_predecessor of

— Automatically notifies successors upon finish

Hasso
Plattner
Institut

32



Scheduling

auto jobs = std::vector<std::shared ptr<AbstractTask>>{};

for (ChunkID chunk_id{@u}; chunk _id < chunk_count; ++chunk_id) {
auto job _task = std::make_shared<JobTask>([=]() {
// Actual scan goes here

});

jobs.push_back(job_task);
job_task->schedule();

}

CurrentScheduler: :wait for tasks(jobs);

- Hasso
Plattner
Institut

33




I
Motivation ﬂHasso

Plattner

Institut

m Atomicity

o Transactions (Txs) either commit fully or not at all

m Consistency

m Isolation
o Concurrent transactions must not affect each other Concurrency
Control
m Durability

Chart 2



Motivation — Textbook Example ﬂHasso
Plattner
Institut

CustomerName Balance

John Smith 1,000.00 €

Transaction 1: John Smith pays 300 Euros for a flight

Tx 2: John Smith receives his 3000 Euro paycheck
Tx 1: UPDATE customers SET balance = balance - 300 ...;
Tx 2: UPDATE customers SET balance = balance + 3000 ...;
Tx 1: The DBMS reads the current balance
Concurrency

Tx 2: The DBMS reads the current balance [prasrn

Tx 1: The DBMS calculates the new balance and writes it back

Tx 2: The DBMS calculates the new balance and writes it back Chart 3
ar

How much money does John have?



Types of Isolation Errors ﬂHasso

m Lost Update
o Two Tx modify the same row, but only one update is saved.
m Dirty Reads
o A Tx reads changes that have not been committed yet.
m Non-Repeatable Reads
o A Tx reads the same row twice and gets different results.
Concurrency

m Phantom Reads Control

o A Tx sees rows that have been inserted during its lifetime.
Chart 4

Plattner
Institut



[ ]
Isolation Methods ﬂHasso
Plattner

Institut

m In general, databases have two ways to deal with concurrent

modifications:
o Pessimistic Two-Phase Locking (2PL)
o Optimistic Concurrency Control (OCC)

m Hyrise and HANA use different flavors of OCC

Concurrency
Control

o Good if few conflicts are expected.

Chart 5



Multiversion Concurrency Control

m We do this by storing the commit id of the TX that added or

deleted a row:

00119 1,000.00 €
00119 700.00 € 5 00
00120

m Additionally, we keep the transaction id to lock and mark

transactions that are currently undergoing modifications.

o We will not discuss this part right now.

Hasso
Plattner
Institut

Concurrency
Control

Chart 6



Plattner
Institut

Example with MVCC E Hasso

X 7 5 [0 N\

Stores the commit id
Y 0 5 00 of the last Tx that

committed, i.e., the
timestamp of ,now"

m We use the same example as for 2PL.
m Both rows were inserted by the last Tx, commit id 5.

m They are visible to future Txs because the BeginCid is equal and Concurrency

Control

the EndCid is larger than the last commit id of new Txs.

For this lecture, we leave out some parts of MVCC (such as the two-phase commit) and discuss
MVCC only on a conceptual level. For more details, please refer to the HYRISE documentation
and Schwalb et al.: Efficient Transaction Processing for Hyrise in Mixed Workload Environments

Chart 7



Plattner
Institut

Example with MVCC ﬂ Hasso

Snapshot TxA

m Transaction A starts and retrieves the snapshot commit id from

Concurrency

the global store. Control

Chart 8



Plattner
Institut

Example with MVCC ﬂ Hasso

» Snapshot TxA

Y 0 5

8

m It performs the check for sufficient funds in the account of X.

Concurrency

Row O is visible because 5 < 5 < oo, Control

Chart 9



Plattner
Institut

Example with MVCC ﬂ Hasso

-Y 0 5 6
mp v 5 6 o0

Snapshot TxA

m 5 € are added to the account of Y. This happens by invalidating

Concurrency

the old row and adding a new row. Control

m For simplicity, let us assume that TxA has commit id 6.
Chart 10



Plattner
Institut

Example with MVCC ﬂ Hasso

. :
Y 0 5 6
Y 5 6 o)
oo

-x 2 6

m 5 € are subtracted from the account of X. Again, the old row is

Concurrency

invalidated and the updated version of the row is appended. Control

Chart 11



Plattner
Institut

Example with MVCC ﬂ Hasso

X 7 5 XA

6 completed
Y 5 6 o'
» X 2 6 o)

m Transaction B starts. It retrieves the global LastCID 6.
Concurrency

m Row 0 cannot be used for validating, because its EndCid is not Control

greater that TxB's snapshot commit id. It is invisible.

. . . Chart 12
m Instead, row 3 is used for verification.



Multiversion Concurrency Control ﬂHasso
Plattner
Institut
m It is impossible to recover from conflicts.
m If a transaction finds that the row that it wants to invalidate has
already been invalidated by another Tx, it has to abort and
rollback all its changes.
m There is no guarantee that a Tx that started first will win this
conflict. For highly contested rows, starvation is possible. Concurrency

Control

Chart 13



Next Steps

Submit Sprint 3 and List of Preferred Projects
Next Week

— Review Sprint 3

— Intro Hyrise Repo and Development Process

— shared_ptr vs const shared_ptr& vs T&

Hasso
Plattner
Institut

35



