Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Build your own Database

Week 9

Agenda

« Review Sprint 3
« Logistics
« Midterm Presentation

« Group Meetings

- Hasso
Plattner
Institut

Review Sprint 3

 Good Things First ©
— All implementations work
— All are (with variations) easy to understand
— Many placed code for internal classes in .cpp files
— All groups have a shortcut if no matches exist

— In total >100 new tests have been written

- Hasso
Plattner
Institut

Review Sprint 3

42 mmmmm src/lib/operators/table_scan.hpp

@@ -0, +1,42 @@

L +#¥pragma once
d+

5 +#include <memorv>
4 +#include <opt
o +#include =str
o +#include <veciur~

215 mmmmm src/lib/operators/table_scan_impl.hpp

+
+#include "abstract_operator.hpp"
< +#include "all_type_variant.hpp"
L0 +#include "table_scan_impl.hpp"

17 +#include "tvoes.hop"

- Hasso
Plattner 4
Institut

Review Sprint 3

if (table->chunk _count() == 1) {

/[]

if (reference_column) {

}
}

// [deal with value / dict column...]

/7L

return output table;

-]

// We assume that the chunk_1ids of positions are always 1in order.

Hasso
Plattner
Institut

Review Sprint 3

const std::vector<T>* ref val vector

/L]

ref _val vector = ref val col ? &ref val col->values() : nullptr;

= nullptr;

template <typename T>

void TableScanImpl<T>:: scanColumn(std::shared ptr<PosList> position_list,

std: :shared ptr<DictionaryColumn<T>> dc,
const ChunkID chunk_id) {

- Hasso
Plattner
Institut

Review Sprint 3

const auto& rp = *rc.pos_list();
const size t size = rc.size();
for (size t index = 0; index < size; ++index) {
const RowID entry = rp[index];
const auto bc = rc.referenced table()
->get _chunk(entry.chunk_id)
.get_column(rc.referenced _column_id());

/-]

template <typename M, typename N>

void _appendPositionlList(std: :shared ptr<PoslList> position_list, M accessor,
size t size, N compare_value,
ChunkID chunk_id, bool all true) {

- Hasso
Plattner 7
Institut

ELON MUSK: TESLA, SPACEX, AND THE QUEST FO..

From time to time, Musk will send out an e-mail to the entire company to
enforce a new policy or let them know about something that’s bothering him. One of
the more famous e-mails arrived in May 2010 with the subject line: Acronyms
Seriously Suck:

There is a creeping tendency to use made up acronyms at SpaceX.
Excessive use of made up acronyms is a significant impediment to
communication and keeping communication good as we grow is incredibly
important. Individually, a few acronyms here and there may not seem so
bad, but if a thousand people are making these up, over time the result will
be a huge glossary that we have to issue to new employees. No one can
actually remember all these acronyms and people don’t want to seem
dumb in a meeting, so they just sit there in ignorance. This is particularly
tough on new employees.

That needs to stop immediately or I will take drastic action—I have
given enough warnings over the years. Unless an acronym is approved by
me, it should not enter the SpaceX glossary. If there is an existing acronym
that cannot reasonably be justified, it should be eliminated, as I have
requested in the past.

For example, there should be no “HTS” [horizontal test stand] or
“VTS” [vertical test stand] designations for test stands. Those are
particularly dumb, as they contain unnecessary words. A “stand” at our
test site is obviously a *test* stand. VTS-3 is four syllables compared with
“Tripod,” which is two, so the bloody acronym version actually takes longer
to say than the name!

The key test for an acronym is to ask whether it helps or hurts
communication. An acronym that most engineers outside of SpaceX
already know, such as GUI, is fine to use. It is also ok to make up a few
acronyms/contractions every now and again, assuming I have approved
them, eg MVac and Mg instead of Merlin 1C-Vacuum or Merlin 1C-Sea
Level, but those need to be kept to a minimum.

From time to time, Musk will send out an e-mail to the entire company to
enforce a new policy or let them know about something that’s bothering him. One of
the more famous e-mails arrived in May 2010 with the subject line: Acronyms
Seriously Suck:

important. Individually, a few acronyms here and there may not seem so
bad, but if a thousand people are making these up, over time the result will
be a huge glossary that we have to issue to new employees. No one can
actually remember all these acronyms and people don’t want to seem
dumb in a meeting, so they just sit there in ignorance. This is particularly
tough on new employees.

That needs to stop immediately or I will take drastic action—I have

Review Sprint 3

134 lines (111 sloc) 5.01 KB

} ¥ namespace opossum

X | Qn AV | 1 of 1 match Reached end of page, cor

-

DebugAssert(dict _column, "Unknown Column Type in Table Scan");
// make sure the above 1s the case; only in debug mode

- Hasso
Plattner 10
Institut

Review Sprint 3

[:~] $ grep '//' ~/tmp/comm.txt | sed -e 's/A *//'
} // namespace operators

// check invalid id

// => value not found

/1= < <= all

// => value found

// -> exact match

/1= all

// > swap operator to >=

// <= swap operator to <

// < <= >= normal scan/check
} // namespace opossum

- Hasso
Plattner
Institut

CoONOOULE WNE

=
*
*

This file contains the actual filter logic.
Every filter has its own struct.

—

The structs implement three major methods:
check_value
This method is used to compare plain values (i.e. in
check_value_id
This method is used to compare value ids (i.e. in Di]
Note that the comparison operator in use might be di
This will be explained in detail later.
begin_dictionary_column
Since tables may have multiple chunks, and dictionar]
on a per-chunk basis, the value id of the filter val
This method is used to look up the respective value

Optimizations

Sorted, dictionary-compressed columns offer a great way
First, we use binary searches to look up the respectivd
Second, depending on the operator, we either use a loweq
The idea is to make use of the respective characteristi
lower_bound
Returns the first value in a vector that is greater|
Returns vector.end() if last value is strictly lesq
upper_bound
Returns the first value in a vector that is strictl
Returns vector.end() if last value is less than or

In conclusion, this offers the following possibilities:
Operator | Applied Logic

>= b / >
ub / >
b/ <

ub / <

|
> |
< |
<= |
As an example, let's look at the '>' operator.
We use upper_bound to search for the value in the dict.
We now have two options:
1. The searched value is in the dict.
upper_bound will return the value in the vector thg
We can therefore include this value when we filter
However, we do not include the searched value as tH
2. The searched value is not in the dict.
upper_bound will return the value in the vector thg
that is smaller than the searched value.
This value must be greater than the searched value
Consequently, using the '>=' operator on the found valu¢g

The main advantage we get out of this is that if the val
we do not have to spend time to decide that we actually
rather than the requested '>' operator.

The other operators mentioned above behave similarly.
The 'BETWEEN' operator is a combination of '>=' and '<='
'=" and '!=' use lower_bound and check if the returned \

Additionally, the operators implement logic to recognizd
For example, if there is an equal scan requested on a di
present in the dictionary, we can completely disregard {

¥R K K K X K K K X K K K X K K K X K K K X KK KKK KR KKK KKK KR KKK R KK KRR K KR KKK KR KR KKK KX

*
~

#pragma once

#include <limits>
#include <vector>

#include "types.hpp"

namespace opossum {

enum class ScanScope { ALL, SCAN, NONE };
template <typename T>

struct EqFilter {

evnlirit FaFilterlranct T Rualue)l + wvaluelvalue)

i

Get the right operation for the given operator.

For most operations, there is the possibility that either all values or no values match.

We can catch and easily process these cases by looking at the value that is returned by lower_bound or
upper_bound.

Say we have the following dictionary vector:

* X K K X X X

ValueID | Value

*

Then upper_bound (U) / lower_bound (L) return the following values:

Value | U | L
A | o | @
B | 1 | o
D | 3| 2
E | 3 | 3
G | INn. | 4
H | INV. | INV.

Then the table scan should return all values that match the following:
(X = No values, A = All Values)

Operation | A | B | D | E | G | H |
= | X |=0]=2]| X |=4] X |

I= | A | !'=0 | !=2 | A | =4 | A |

> | A | >0 | >2]|>2| | X |

< | A | X | <2 | <3| <4| X |

>= | A | A | >=2 | >=3 | >=4 | X |

<= | X | <1 | <3| <3| A | X |

We then just pick the right method, according to the upper tables, and check for edge cases
(thus, an A or X in the table above). Afterwards, we iterate over the attribute vector and execute
the regarding method on it.

¥ X W RN NN X NN R RN NN NN NN NN N RN R NN NN

*/
std::pair<std::function<bool(ValueID)>, Match> get_dictionary_comparator(
const std::string &op, const AllTypeVariant &allTypeVariant, const optional<AllTypeVariant> &allTypeVariant2,
const DictionaryColumn<T> &column) const {
const T value = type_cast<T>(allTypeVariant);

// Calculate operation to check for valid entries.
if (op == "=") {
auto valueID = column.lower_bound(value);
if (valueID !'= INVALID_VALUE_ID && column.value_by_value_id(valueID) == value) {
return std::make_pair([valueID](ValueID entry) { return entry == valueID; }, Match::some);
} else {
// In case we found did not find a value id that matches the given value,
// we can assume that no entries with this value exist -> return an empty position list.
return std::make_pair(_none_match, Match::none);

}
} else if (op == "!=") {

12

Review Sprint 3

auto value column = std::dynamic_pointer_cast<ValueColumn<T>>(column);
if (value _column) {
return process _value column(chunk id, value column);

}

auto dictionary column =
std: :dynamic_pointer cast<DictionaryColumn<T>>(column);
if (dictionary column) {
return process _dictionary column(chunk _id, dictionary_ column);

}

if (reference_column) {
return _process_reference_column(chunk id, reference_column);

}

auto reference column = std::dynamic_pointer_cast<ReferenceColumn>(column);

- Hasso
Plattner
Institut

13

Review Sprint 3

const auto result table
Chunk chunk;

std: :make_shared<opossum::Table>();

Hasso
Plattner
Institut

14

06.12. 13.12. 20.12.

- Hasso
Plattner
Institut

Logistics

----- Review Sprint 3*

Christmas Party Recovery
------ Acad. Holiday (ending on 03.01.)

————— Midterm Presentations

03.01. 10.01. 17.01. 24.01. 31.01. 07.02. 21.02. 07.03.

*) For Sprint 3, we do not expect you to refactor your code

Logistics

8 (89% of users)
5 (56% of users)
1(11% of users)
3 (33% of users)
3 (33% of users)

0 (0% of users)

A total of 9 vote(s) in 143 hours

7.2.,11:00 - 12:30
7.2.,13:30 - 15:00
7.2.,15:15 - 16:45
7.2.,17:00 - 18:30
ein anderer Termin in der Woche

31.2., zum Seminartermin

Hasso
Plattner
Institut

16

Midterm Presentations

First meeting in the new year (10.01.)
5+2 minutes per group
— What are you working on?

— What design decisions did you make / will you have to

make?
— What is your biggest challenge?

Please send us the slides before, so that we don’t have to

switch laptops

Hasso
Plattner
Institut

17

Group Meetings

Group 1 (AH, AS, LW): Self-Driving
Group 2 (LB, SD, RS): Networking
Group 3 (BF, MJ, TS): Data Types
Group 4 (DH, PO, JW): Subqueries
Group 5 (AP, DS, ST): Pruning

Group 6 (JB, JN, FW): Joins

Group 7 (JC, NH, FM): Partitioning
Group 8 (FD, MF, TF): Optimizer Rules

Hasso
Plattner
Institut

Glaskasten

Glaskasten

V-2.16

here

here

V-2.16

18

