
Develop your own Database 2019/2020

Week 1



Outlook

1. High-Level Overview

2. First Work Package

3. Organizational Stuff

2



What can you expect?
• Better understand how in-memory databases work

• Learn how to familiarize yourself with a larger code base

• Gain experience in systems development

• Improve your C++(2a) skills

• Work in small teams on a larger project

If this sounds interesting to you, you are in the right room.

3



Timeline

4

W
ee

kl
y

M
ee

ti
ng

s

1. Sprint
Simple Table Functionality (Segments, Chunks, Types)

3. Sprint
First Operators (Scan, Sort, ...) 

2. Sprint
Dictionary Compression

Group Phase
It’s all about performance
• Optimizer Rules
• Self-Tuning
• and more...

Final Presentation



Timeline
• In addition to introducing you to the architecture, the first

two sprints aim at

– refreshing your C++ knowledge

– getting you up to speed with our code style, test setup, 

and expectations

• If you and C++ are on a first-name basis, this might

appear a bit slow - please bear with us

5



What do we expect?

• Fruitful discussions about why we do things the way we do

• Active participation in the group work and our meetings

6



What do we hope for?

1. Generate interest in our research

2. Continue to work with you in Master‘s theses, Hiwi jobs, ...

If anyone is interested right away, please contact us.

7



Who are we?

Markus Dreseler

• Non-Volatile Memory

Jan Kossmann

• Self-Driving Databases

8

Martin Boissier

• Data Aging & 
Tiering

Thomas Bodner

• Cloud-based
Databases

Stefan Halfpap

• Replication



Introducing Opossum

9



Introducing Opossum
• Opossum is the (1) prototypical, (2) columnar (3) in-

memory database that we will build during the first three

sprints

• Prototypical: We do not plan for Opossum to be used in a 

productive environment

• Columnar: We exclusively use columnar orientation for data

• In-Memory: All data that we work with is stored in RAM

10



Why In-Memory?

11
http://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
http://www.montana.edu/cpa/news/wwwpb-archives/yuth/pigeon.html

CPU
Registers

CPU L3 Cache

DRAM

SSD

HDD

Access Time If a nanosecond was
a second, similar to
retrieving the data from...

1 ns

10 ns

100 ns

16 µs

3 ms

your memory (1 sec)

your desk (10 sec)

the next office (01:40 min)

Düsseldorf, by train (04:27 h)

Australia, by pigeon (34 days)



Why In-Memory?

12
http://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
http://www.montana.edu/cpa/news/wwwpb-archives/yuth/pigeon.html

CPU
Registers

CPU L3 Cache

DRAM

SSD

HDD

Access Time If a nanosecond was
a second, similar to
retrieving the data from...

1 ns

10 ns

100 ns

16 µs

3 ms

your memory (1 sec)

your desk (10 sec)

the next office (01:40 min)

Düsseldorf, by train (04:27 h)

Australia, by pigeon (34 days)



Why In-Memory?

13
http://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
http://www.montana.edu/cpa/news/wwwpb-archives/yuth/pigeon.html

CPU
Registers

CPU L3 Cache

DRAM

SSD

HDD

Access Time If a nanosecond was
a second, similar to
retrieving the data from...

1 ns

10 ns

100 ns

16 µs

3 ms

your memory (1 sec)

your desk (10 sec)

the next office (01:40 min)

Düsseldorf, by train (04:27 h)

Australia, by pigeon (34 days)



Why write our own database at all?

• For research, we need a database that has reasonable

performance but is easier to modify than product databases

• Leaving out things like authentication and error handling

makes the database leaner, thus easier to understand and

maintain

• Re-building Hyrise takes <2s, with a commercial database

it comes close to an hour

14



Why write our own database at all?

• Focus on the things we need, for example, fast 

benchmarking:

15



Status Quo

• Hyrise has grown significantly and can slowly be considered

a real database

– Just as in industry, you will have to work your way into a 

grown (but well maintained) code base

– We will help you by proposing group projects that are

digestible chunks

• Compared to commercial databases, our query latency is

within 5x; sometimes, we are actually faster

16



First Work Package

Build your own Database – Week 1

17



Description

• You can find the description of the work package online:

– https://hpi.de/plattner/teaching/winter-term-

201920/develop-your-own-database.html

18

https://hpi.de/plattner/teaching/winter-term-201920/develop-your-own-database.html


First tasks
1. Set up your build environment

2. Implement a single segment

3. Group segments into a chunk

4. Append data to a chunk

5. Group chunks into a table

6. Store tables in a StorageManager

19



Setting up your Environment

• Demo (git clone, install, cmake, make test -j)

20



Up-to-Date Build Setup
• Why do we require current compiler and library versions?

• First reason: New C++17 features are great, but building 

up technical debt for workarounds is not:

21



Up-to-Date Build Setup
• Second reason: Even compilers are not infallible

22



Up-to-Date Build Setup
• Once we had gcc 8…

23



The Opossum Table Model

24

Table T

Chunk #1

Segment a

dictionary-
encoded

Segment b

run length-
encoded

Segment c

unencoded

Chunk #2

Segment a

dictionary-
encoded

Segment b

dictionary-
encoded

Segment c

dictionary-
encoded

Chunk #n-1

Segment a

unencoded

Segment b

unencoded

Segment c

unencoded

Chunk #n

Segment a

unencoded

Segment b

unencoded

…

im
m

ut
ab

le
im

m
ut

ab
le

im
m

ut
ab

le
m

ut
ab

le
Segment c

unencoded

Column T.a Column T.b Column T.c



Document Walkthrough

25



Organizational Stuff

Build your own Database – Week 1

26



About Correctness
• For the sprints, we are using a stripped Hyrise code base

• Some things look slightly different in the master, but we

believe that this is a better start

• We have tested that everything works the way we expect it

to, but this does not mean that everything is perfect

• If something looks wrong, or if you have any issues about

the course itself, please do not hesitate to talk to us

27



Einschreibung und -fristen, 
Leistungserfassungsprozess, 
Vertiefungsgebieteinordnung

28



Einschreibung und -fristen, 
Leistungserfassungsprozess, 
Vertiefungsgebieteinordnung

29

Kriterium Gewichtung
Sprint 1-3 30 %
Gruppenphase 60 %
Aktive Mitarbeit 10 %



Piazza
• Most likely, there will be remaining questions about the

architecture or the implementation

• Waiting for a week is not an option

• Your classmates may have the same question or be able to

help you

30



Piazza

• We use Piazza to answer questions, communicate, and

organize the class:

• https://piazza.com/hpi.uni-potsdam.de/fall2019/dyod/home

• Please use common sense in how much of your

implementation you should share

31

https://piazza.com/hpi.uni-potsdam.de/fall2019/dyod/home


Groups
• We would like for you to work in groups of three

• Feel free to start working on the first sprint now

• Please wait with forming groups until you have received

your confirmation by the Studienreferat (Monday?)

• You can also use Piazza to find team members

• For your submission, please send us an email with the

names of your group members, a link to your repositority, 

and the SHA-1 hash of your final commit

32



Deliverables
• 29 Oct Code Sprint 1

• 5 Nov Review Sprint 1

• 12 Nov Code Sprint 2

• 19 Nov Review Sprint 2

• 26 Nov Code Sprint 3

• 3 Dec Review Sprint 3

(Group phase)

• 5 Feb Final Presentation, First Code Group Phase

• tbd Review and Final Code Group Phase

33

(tbc)



Next Week

• Deep Dive into some of the used C++ concepts and beyond

– Templates

– Smart Pointers

– RAII

34


