

IT Systems Engineering | Universität Potsdam

Develop your own Database 2019/2020

Week 1

Outlook

- 1. High-Level Overview
- 2. First Work Package
- 3. Organizational Stuff

What can you expect?

- Better understand how in-memory databases work
- Learn how to familiarize yourself with a larger code base
- Gain experience in systems development
- Improve your C++(2a) skills
- Work in small teams on a larger project

If this sounds interesting to you, you are in the right room.

Timeline

HPI

Institut

Timeline

- In addition to introducing you to the architecture, the first two sprints aim at
 - refreshing your C++ knowledge
 - getting you up to speed with our code style, test setup, and expectations
- If you and C++ are on a first-name basis, this might appear a bit slow - please bear with us

What do we expect?

- Fruitful discussions about why we do things the way we do
- Active participation in the group work and our meetings

What do we hope for?

- 1. Generate interest in our research
- 2. Continue to work with you in Master's theses, Hiwi jobs, ...

If anyone is interested right away, please contact us.

Who are we?

Markus Dreseler

• Non-Volatile Memory

Martin Boissier

 Data Aging & Tiering

Thomas Bodner

Cloud-based
 Databases

Stefan Halfpap

Replication

Jan Kossmann

• Self-Driving Databases

Introducing Opossum

Introducing Opossum

- Opossum is the (1) prototypical, (2) columnar (3) inmemory database that we will build during the first three sprints
- Prototypical: We do not plan for Opossum to be used in a productive environment
- Columnar: We exclusively use columnar orientation for data
- In-Memory: All data that we work with is stored in RAM

Why In-Memory?

http://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html http://www.montana.edu/cpa/news/wwwpb-archives/yuth/pigeon.html

Why In-Memory?

http://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html http://www.montana.edu/cpa/news/wwwpb-archives/yuth/pigeon.html

Why In-Memory?

http://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html http://www.montana.edu/cpa/news/wwwpb-archives/yuth/pigeon.html

Why write our own database at all?

- For research, we need a database that has reasonable performance but is easier to modify than product databases
- Leaving out things like authentication and error handling makes the database leaner, thus easier to understand and maintain
- Re-building Hyrise takes <2s, with a commercial database it comes close to an hour

Why write our own database at all?

• Focus on the things we need, for example, fast

benchmarking:

HPI

Hasso

nstitu

arkus.Dreseler@nemea:~/hyrise2/build-release\$/scripts/compare_benchmarks.py master.json joinfilter.json						
 I Benchmark	+ prev. iter/s	++- runs	new iter/s	+ runs	++ change [%]	p-value (significant if <0.001)
ТРС-Н 01	0.583272814751	++ 6	0.58503818512	+ 6	+	r I (run time too short) (not enough runs) 0.9276
I TPC-H 02	12.2122583389	123	12.3910360336	124	+1%	(run time too short) 0.0001
I ТРС-Н Ø3	6.2827539444	63	6.31416416168	64	l +0%	(run time too short) 0.6343
I TPC-H 04	7.17641639709	72	7.8329167366	1 79	+9%	(run time too short) 0.0000
I TPC-H 05	3.85262989998	I 39 I	4.11281108856	42	+7%	(run time too short) 0.0001
ТРС-Н 06	103.950958252	1040	144.989700317	1450	+39%	(run time too short) 0.0000
I ТРС-Н 07	1.56280565262	16	7.49639177322	75	+380%	(run time too short) 0.0000
I TPC-H 08	5.72817850113	58	5.78137683868	58	+1%	(run time too short) 0.1058
I TPC-H 09	1.55589616299	16	1.58627402782	16	+2%	(run time too short) 0.0012
I ТРС-Н 10	3.06244921684	31	3.01984548569	31	-1%	(run time too short) 0.2416
I TPC-H 11	24.9604892731	250	25.2486057281	253	+1%	(run time too short) 0.0000
I TPC-H 12	8.46087646484	85	8.28251552582	83	-2%	(run time too short) 0.0000
I TPC-H 13	2.30729389191	24	2.30352401733	24	-0%	(run time too short) 0.7996
I ТРС-Н 14	45.7575836182	458	47.1410064697	472	l +3%	(run time too short) 0.0000
TPC-H 15	70.9292907715	710	69.5209503174	696	-2%	(run time too short) 0.0000
I TPC-H 16	1 7.09942245483	71	7.41175889969	75	+4%	(run time too short) 0.0000
I ТРС-Н 17	1.25438761711	13	1.29478621483	13	l +3%	(run time too short) 0.0012
I TPC-H 18	0.7444460392	8 1	0.770791292191	8	+4%	(run time too short) (not enough runs) 0.0086
I ТРС-Н 19	8.53706359863	I 86 I	15.7614822388	158	+85%	(run time too short) 0.0000
I ТРС-Н 20	2.78222179413	28	2.82980847359	1 29	+2%	(run time too short) 0.0651
ТРС-Н 21	1.49094378948	15	1.45969891548	15	-2%	(run time too short) 0.0029
I TPC-H 22	13.8242092133	139	13.8192062378	139	-0%	(run time too short) 0.9070
l geometric mean					+14%	

Status Quo

- Hyrise has grown significantly and can slowly be considered a real database
 - Just as in industry, you will have to work your way into a grown (but well maintained) code base
 - We will help you by proposing group projects that are digestible chunks
- Compared to commercial databases, our query latency is within 5x; sometimes, we are actually faster

IT Systems Engineering | Universität Potsdam

Build your own Database – Week 1

First Work Package

Description

- You can find the description of the work package online:
 - <u>https://hpi.de/plattner/teaching/winter-term-</u>
 <u>201920/develop-your-own-database.html</u>

First tasks

- 1. Set up your build environment
- 2. Implement a single segment
- 3. Group segments into a chunk
- 4. Append data to a chunk
- 5. Group chunks into a table
- 6. Store tables in a StorageManager

Setting up your Environment

• Demo (git clone, install, cmake, make test -j)

Up-to-Date Build Setup

- Why do we require current compiler and library versions?
- First reason: New C++17 features are great, but building up technical debt for workarounds is not:

```
-#if __has_include(<optional>)
-template <class T>
-using optional = ::std::optional<T>;
-static auto nullopt = ::std::nullopt;
-#else
-template <class T>
-using optional = ::std::experimental::optional<T>;
-static auto nullopt = ::std::experimental::nullopt;
-#endif
```


Up-to-Date Build Setup

• Second reason: Even compilers are not infallible

Bug 79180 - Nested lambda-capture causes segfault for parameter pack					
Status: RESOLVED FIXED	Reported: 2017-01-22 08:25 UTC by Markus Dreseler Modified: 2017-10-02 12:48 UTC (History)				
Alias: None	CC List: 5 users (show)				
Product: gcc Component: c++ (show other bugs) Version: 6.3.0	<u>See Also:</u> <u>Host:</u> <u>Target:</u>				
Importance: P3 normal Target Milestone: 8.0 Assignee: Not yet assigned to anyone	Build: <u>Known to work:</u> <u>Known to fail:</u> Last reconfirmed: 2017-01-23 00:00:00				

Up-to-Date Build Setup

• Once we had gcc 8...

The Opossum Table Model

Table T					
Column <i>T.a</i>	Column T.b	Column <i>T.c</i>			
Chunk #1					
Segment a	Segment b	Segment c	ble		
dictionary- encoded	run length- encoded	unencoded	immutal		
Chunk #2					
Segment a	Segment b	Segment c	ble		
dictionary- encoded	dictionary- encoded	dictionary- encoded	immuta		
	•				
Chunk #n-1					
Segment a	Segment b	Segment c	ble		
unencoded	unencoded	unencoded	immuta		
Chunk #n					
Segment a	Segment b	Segment c	٩		
unencoded	unencoded	unencoded	mutabl		

HPI

Hasso

Plattner Institut

Document Walkthrough

IT Systems Engineering | Universität Potsdam

Build your own Database – Week 1

Organizational Stuff

About Correctness

- For the sprints, we are using a stripped Hyrise code base
- Some things look slightly different in the master, but we believe that this is a better start
- We have tested that everything works the way we expect it to, but this does not mean that everything is perfect
- If something looks wrong, or if you have any issues about the course itself, please do not hesitate to talk to us

Einschreibung und -fristen, Leistungserfassungsprozess, Vertiefungsgebieteinordnung

Allgemeine Information		
> Semesterwochenstunden : 4		
> ECTS : 6		
> Benotet : Ja		
> Einschreibefrist : 20. Oktober 2019 (s	s.u.)	
> Programm : IT-Systems Engineering M	A, Data Engineering MA	
> Lehrform : PS		
> Belegungsart : Wahlpflicht	Module	
	IT-Systems Engineering > ITSE-{Analyse, Entwo > BPET-{Konzepte und > OSIS-{Konzepte und I > SAMT-{Konzepte und Data Engineering > PREP-{Konzepte und > SCAL-{Konzepte und	g urf, Konstruktion, Maintenance} Methoden, Spezialisierung, Techniken und Werkzeuge} Methoden, Spezialisierung, Techniken und Werkzeuge} Methoden, Spezialisierung, Techniken und Werkzeuge} Methoden, Spezialisierung, Techniken und Werkzeuge}

HPI

Hasso

Plattner Institut

Einschreibung und -fristen, Leistungserfassungsprozess, Vertiefungsgebieteinordnung

Kriterium	Gewichtung
Sprint 1-3	30 %
Gruppenphase	60 %
Aktive Mitarbeit	10 %

Piazza

- Most likely, there will be remaining questions about the architecture or the implementation
- Waiting for a week is not an option
- Your classmates may have the same question or be able to help you

Piazza

- We use Piazza to answer questions, communicate, and organize the class:
- <u>https://piazza.com/hpi.uni-potsdam.de/fall2019/dyod/home</u>
- Please use common sense in how much of your implementation you should share

Groups

- We would like for you to work in groups of three
- Feel free to start working on the first sprint now
- Please wait with forming groups until you have received your confirmation by the Studienreferat (Monday?)
- You can also use Piazza to find team members
- For your submission, please send us an email with the names of your group members, a link to your repositority, and the SHA-1 hash of your final commit

Deliverables

•	29 Oct	Code Sprint 1	
•	5 Nov	Review Sprint 1	
٠	12 Nov	Code Sprint 2 (tbc)	
•	19 Nov	Review Sprint 2	
•	26 Nov	Code Sprint 3	
•	3 Dec	Review Sprint 3	
(e	Froup phase)	Harte Code-Deadline klar kommunizieren: einigen Gruppen war nicht bekannt, dass der Terr der Final Presentation auch die Code-Deadline ist.	nin
•	5 Feb	Final Presentation, First Code Group Phase	
٠	tbd	Review and Final Code Group Phase	

HPI

Hasso Plattner

Institut

Next Week

- Deep Dive into some of the used C++ concepts and beyond
 - Templates
 - Smart Pointers
 - RAII

