
DYOD
WOCHE 6

AGENDA

▸ Q&A Sprint 3

▸ Review Sprint 2

▸ Query Processing

▸ Group Projects

▸ Benchmarking?

2

DYOD - WOCHE 6

SPRINT 3

Questions?

3

DYOD - WOCHE 6

REVIEW SPRINT 2

4

DYOD - WOCHE 6

const std::shared_ptr<ValueColumn<T>>& p_column =
std::dynamic_pointer_cast<ValueColumn<T>>(base_column);

_attribute_vector =
std::dynamic_pointer_cast<BaseAttributeVector>(

std::make_shared<FittedAttributeVector<uint8_t>>(
column.size()));

const auto value_column =
dynamic_cast<ValueColumn<T>*>(base_column.get());

REVIEW SPRINT 2

5

DYOD - WOCHE 6

ValueID lower_bound(const AllTypeVariant& value) const {
const T val = dynamic_cast<T>(value);

if (!val) {
return INVALID_VALUE_ID;

}

return lower_bound(val);
}

auto segment = std::dynamic_pointer_cast<ValueSegment<T>>(base_segment);
auto segment_values = segment->values();

REVIEW SPRINT 2 - CASTS

▸ Do not explicitly upcast pointers

▸ Do not use static/dynamic_cast on smart pointers

▸ Check the return value of dynamic_pointer_casts (DebugAssert)

▸ If the type is already in the same line, do not repeat it - instead use
auto

▸ Use type_cast for AllTypeVariant

▸ Do not use plain C-style casts

6

DYOD - WOCHE 6

_dictionary = std::make_shared<std::vector<T>>(segment_values);
std::sort(_dictionary->begin(), _dictionary->end());
_dictionary->erase(std::unique(_dictionary->begin(), _dictionary->end()),
_dictionary->end());

...

// fill attribute vector with valueIDs
for (ValueID position(0); position < segment->size(); position++) {
 auto value_id = ValueID(std::distance(_dictionary->begin(), std::find(_dictionary-
>begin(), _dictionary->end(),
 segment_values.at(position))));
 _attribute_vector->set(position, value_id);
}

REVIEW SPRINT 2

7

DYOD - WOCHE 6

REVIEW SPRINT 2

8

DYOD - WOCHE 6

const auto entropy = ((int) std::log2(_dictionary->size())) + 1;

if(entropy <= 8){
 _attribute_vector =
std::make_shared<FixedSizeAttributeVector<uint8_t>>(FixedSizeAttributeVector<uint8_t>());
} else if(entropy <= 16){
 _attribute_vector =
std::make_shared<FixedSizeAttributeVector<uint16_t>>(FixedSizeAttributeVector<uint16_t>());
} else if(entropy <= 32) {
 _attribute_vector =
std::make_shared<FixedSizeAttributeVector<uint32_t>>(FixedSizeAttributeVector<uint32_t>());
} else{
 throw std::runtime_error(std::string("Not enough memory"));
}

REVIEW SPRINT 2

9

DYOD - WOCHE 6

void append(const AllTypeVariant&) override {}

std::mutex compression_mutex;

“Issue all the warnings demanded by strict ISO C and ISO C++; reject all
programs that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C standard
specified by any -std option used.”

REVIEW SPRINT 2

10

DYOD - WOCHE 6

TEST_F(StorageDictionarySegmentTest, SortedValues){
 // Setup
 vc_int->append(87);
 vc_int->append(90);
 vc_int->append(3);
 auto col = opossum::make_shared_by_data_type<opossum::BaseSegment,
opossum::DictionarySegment>("int", vc_int);
 auto dict_col = std::dynamic_pointer_cast<opossum::DictionarySegment<int>>(col);
 //std::cout<<(dict_col->get((opossum::ValueID)0))<<std::endl;
 EXPECT_EQ(dict_col->value_by_value_id((opossum::ValueID)0), 3);
}

REVIEW SPRINT 2

11

DYOD - WOCHE 6

TEST_F(StorageTableTest, CompressTable) {
 t.compress_chunk((ChunkID) 1);
 EXPECT_TRUE(true);
}

TEST_F(StorageTableTest, CompressChunkReplacesWithDictionarySegment) {
 t.append({4, "Hello,"});
 t.append({6, "world"});

 t.compress_chunk(ChunkID{0});
 auto& chunk = t.get_chunk(ChunkID{0});
 auto segment_ptr = chunk.get_segment(ColumnID{0});
 auto dictionary_segment_ptr = std::dynamic_pointer_cast<DictionarySegment<int>>(segment_ptr);
 EXPECT_TRUE(dictionary_segment_ptr);
}

REVIEW SPRINT 2

12

DYOD - WOCHE 6

size_t attribute_vector_size = 0;
std::set<T> dictionary_helper;

for (size_t segment_iterator = 0; segment_iterator < base_segment->size(); ++segment_iterator) {
 dictionary_helper.insert(type_cast<T>((*base_segment)[segment_iterator]));
 attribute_vector_size++;
}

_dictionary->reserve(dictionary_helper.size());
for (auto it = dictionary_helper.begin(); it != dictionary_helper.end();) {
 _dictionary->emplace_back(std::move(dictionary_helper.extract(it++).value()));
}

CREATING A SORTED, UNIQUE DICTIONARY

13

DYOD - WOCHE 6

▸ How can we derive a sorted and unique std::vector from a non-
sorted ValueSegment that might contain duplicates?

▸ std::sort, std::unique, std::erase

▸ std::sort, std::unique, std::resize

▸ std::set

▸ std::unordered_set

▸ std::map as intermediary structure

▸ Benchmark above on vector of 500,000 std::strings

CREATING A SORTED, UNIQUE DICTIONARY

14

DYOD - WOCHE 6

String length 10 characters

CREATING A SORTED, UNIQUE DICTIONARY

15

DYOD - WOCHE 6

String length 30 characters

ESTIMATE MEMORY USAGE

16

DYOD - WOCHE 6

Query Processing

Motivation

Slide 5

Query Processing

How does a database actually
process incoming SQL queries?

How does a database process queries?

Slide 6

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

1. The database receives the SQL queries on the network interface and
passes it to the SQL parser.

1 SELECT wp.city , wp.first_name, wp.last_name

2 FROM world_population AS wp

3 INNER JOIN locations ON wp.city = locations.city

4 WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5 INNER JOIN actors ON actors.first_name = wp.first_name

6 AND actors.last_name = wp.last_name

How does a database process queries?

Slide 7

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

2. The SQL parser generates a logical query plan. This plan contains the
relational operators required to execute the query and the order in
which they have to be called.

1 SELECT wp.city , wp.first_name, wp.last_name

2 FROM world_population AS wp

3 INNER JOIN locations ON wp.city = locations.city

4 WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5 INNER JOIN actors ON actors.first_name = wp.first_name

6 AND actors.last_name = wp.last_name

How does a database process queries?

Slide 8

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

3. Depending on the order of operations in the query plan, runtimes can
differ by orders of magnitude. Thus, the database employs the query
optimizer to determine efficient query plans.

How does a database process queries?

Slide 9

Query Processing

SQL Parsing Plan
Building Optimization Translation Execution

4. After a logical query plan is decided upon, the relational operators are translated to
their actual implementations. Further, the database scheduler can determine where
& when to run the query and how much resources to allocate.

CPU #1

CPU #2 Task #4
Task #4Task #4
MVCC Check

Task #1
Selection

Task #2
Selection

Task #3
Join

(linear scan) (index scan)

(index join)

(hash join)

How does a database process queries?

Slide 10

Query Processing

SQL Parsing Plan
Building Optimization Scheduling Execution

5. Finally, the database executes all scheduled tasks and returns the result
set to the user.

Query Optimization

Often, the impact of the query optimizer is much larger than the impact of
the runtime system [..] Changes to an already tuned runtime system might
bring another 10% improvement, but changes to the query optimizer can

often bring a factor 10.

T. Neumann. Engineering high-performance database engines. PVLDB, 2014

Query Optimization
Motivation

Slide 12

Query Processing

q For a given query (remember: SQL is declarative), there is a large array
of alternative (logically equivalent) query plans

q The query optimizer is a module that enumerates possible query plans
and estimates the costs of each plan.

q Usually selects the plan with the lowest estimated costs.

Costs to consider

q Algorithmic: e.g., runtime complexity of different SORT operators

q Logical: estimated output size of the operator (e.g., decreasing for
filter operations, de- or increasing for joins)

q Physical: hardware-dependent cost calculations such as IO
bandwidth, cache misses, etc.

Query Optimization
Motivation

Query Processing

Slide 13

q Operator costs are often interacting with each other, making accurate cost
estimations computationally expensive

q As a consequence, most optimizers concentrate on logical costs and thrive
to reduce operator results as early as possible

q Reducing logical costs further leads to less memory traffic, which indirectly
improves NUMA performance, cache hit rates, and more

How can we reduce the intermediate result size of a query plan (i.e.,
logical costs) as early as possible?

Execute operators first that exclude large fractions of data (e.g., equi-filters
on attributes with many distinct values, joins on foreign keys, etc.)

Query Optimization
Creating Query Plans

Slide 14

Query Processing

Query optimization can be seen as a two-step process

1. Semantic query transformations and simple heuristics to

reformulate queries

2. Cost model-driven approaches that estimate costs in order

to reorder operators

Query Optimization
Introduction

Slide 15

Query Processing

Query reformulation: exploit semantic query transformations and simple
heuristics to reformulate a query plan to a (logically equivalent) plan with
lower expected costs.

SELECT * FROM T

WHERE A < 10 AND A > 12

SELECT * FROM T

WHERE A < 10 AND A < 20

AND A IS NOT NULL

Query Optimization
Semantic Transformations & Heuristics

Slide 16

Query Processing

» return empty result

» SELECT * FROM T WHERE A < 10

SELECT * FROM T1,

(SELECT * FROM T WHERE B > 17) AS T2

Query Optimization
Semantic Transformations & Heuristics

Slide 17

Query Processing

SELECT * FROM T1,

(SELECT * FROM T) AS T2 »
WHERE T2.B > 17

SELECT (A + 2) + 4 FROM T

» SELECT A + 2 + 4 FROM T

» SELECT A + 6 FROM T

Query Optimization
Semantic Transformations & Heuristics

Slide 18

■ Optimization heuristics:

□ Execute most restrictive filters first

□ Execute filters before joins

□ Predicate/limit push downs

□ Join reordering based on estimated cardinalities

■ Such optimizations are heuristics as they are usually good estimates of
operator costs.

■ Nonetheless, possible that joining before filtering can lead to a better query
runtime for certain constellations.

Query Processing

Query Optimization
Query Plan Reformulation

Slide 19

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Query Optimization
Query Plan Reformulation

Slide 20

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Scanning ~100 tuples

Query Optimization
Query Plan Reformulation

Slide 21

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using
equivalence rules (i.e., operators can only be reordered to an extend that
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Sequentially scanning
8 billion tuples

Sequentially scanning
1 million tuples

Joining 400 tuples
* 600 million tuples

Joining 400 tuples
* 600 million tuplesScanning ~100 tuples

The Physical Query Plan/Evaluation Plan defines which algorithm is used for
each operation, and how the execution of operations is coordinated.

Query Optimization
Physical Query Plan

Slide 22

Query Processing

q Statistics are, e.g., used to estimate intermediate result size for logical
cost estimations to compute overall cost of complex expressions.

q Especially for cost model-driven approaches, accurate statistics are
indispensable.

q Such statistics include:

q Number of distinct values for a table

q Presence or absence of indices

q Value distribution of attributes (e.g., histograms)

q Top-n values with occurrence count

q Min/Max values

Query Optimization
Statistics

Slide 23
http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query_optimization.pdf

Query Processing

Table: world_population

Meta Data

Data

Attributes: {‘first_name’: char(50), ‘last_name’ […]}
Indexed Columns: {‘first_name’, ‘last_name’, […]}
…
Statistics:
 min/max: {‘birth_year’: [’1900’, ‘2017’], […]}
 distinct_counts: {‘birth_year’: 118, […]}
 histograms:
 first_name:

 country:

a-c d-f g-i …

CN US DE …

q Accuracy of estimation depends on quality and
currency of statistical information DBMS holds

q Keeping statistics up to date can be problematic

q Updating them on the fly increases load on
latency-critical execution paths

q Updating them periodically (e.g., during chunk
compression in Hyrise2) might introduce
misleading estimations due to outdated
statistics

Query Optimization
Statistics

Slide 24

Query Optimization
Join Ordering

Slide 25

Query Processing

The task of join ordering is to find a join order that is estimated to have the
lowest costs (ordered by input and output cardinality).

To do so, we need to estimate the size of the join result (so-called join
cardinality estimation):

q Knowledge about foreign key relationships can be used

q Values are rarely uniformly distributed, histograms help estimating

q But histograms do not contain correlation information

For all relations r1, r2, and r3,

(r1 r2) r3 =r1 (r2 r3)

à Join Associativity

If r2 r3 is quite large and r1 r2 is small, we choose

(r1 r2) r3

so that we compute and store a smaller temporary relation.

Query Optimization
Join Ordering

Slide 26

Query Processing

Estimating join cardinalities is one of the challenging tasks of query

optimization, but also indispensable to performance.

Query Optimization
Join Ordering

Slide 27

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Estimating join cardinalities is one of the challenging tasks of query

optimization, but also indispensable to performance.

Query Optimization
Join Ordering

Slide 28

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Runtime impact of inaccurate join
estimates can be desastrous:

“The average fraction between the worst and
the best plan, […] is 101× […]”

We learned that query optimization becomes increasingly important due to …

q ever growing data sets

q increasingly complex queries.

However, finding efficient plans remains a challenging task as …

q the number of possible plans is enormous, and

q costs rely on estimation using potentially outdated statistics.

Query Optimization
Summary

Query Processing

Slide 29

DYOD - WEEK 6

GROUP TOPICS

▸ Query Plan Cache Parametrization (JK)

▸ Smart Positions Lists (JK)

▸ Cost Model Calibration (MB/JK)

▸ Utilize sortation during query execution (MB)

▸ More Statistics (MB)

▸ Faster Statistics (TB)

▸ Set Operations (MD)

▸ Speed-up sorting (MD)

▸ Transactions and benchmarking over the network (SH)

17

DYOD - WEEK 6

QUERY PLAN CACHE PARAMETRIZATION

▸ Introduction:

▸ Complex transformations create imperative query plans from declarative SQL queries

▸ Query plans are cached to avoid expensive repeated transformations/optimizations

▸ Motivation

▸ For fast, short-running queries, optimizations cause significant overhead

▸ Our current cache can only handle identical queries: WHERE x = 4 != WHERE x = 5

▸ Tasks

▸ Enable caching for almost identical queries based on parsing structures

▸ Use data statistics to determine when a plan could be reused for similar queries

▸ Evaluation

▸ Investigate impact on selected TPC-C and TPC-H benchmark queries

18

DYOD - WEEK 6

SMART POSITION LISTS

▸ Motivation

▸ Currently, position lists are (almost) only wrapping std::vectors<RowID>

▸ A little bit of additional state/behavior offers potential for performance optimizations

▸ Tasks

▸ Introduce a matches_all flag to avoid costly translations from Data- to Reference-Tables

▸ If all rows reference the same chunk, an std::vector<ChunkOffset> is sufficient
(IndexScan)

▸ Further ideas: nullable, sortation information

▸ Evaluation

▸ Investigate impact on TPC-C, -H, -DS, and the Join Order Benchmark

19

DYOD - WEEK 6

COST MODEL CALIBRATION

▸ Cost Models: predict the execution time of database operators

▸ Cost models are often built with the help of statistics or machine learning techniques

▸ Motivation

▸ Such learned cost models need to be trained on data that allows to generalize for different
workloads

▸ This training data must be obtained quickly

▸ Tasks

▸ Generate and execute calibration queries that enable generalization and export the results

▸ Train simple models on the observed measurements

▸ Evaluation

▸ Investigate the models’ accuracy for the TPC-H benchmark

20

DYOD - WEEK 6

SORT-BASED QUERY EXECUTION

▸ Motivation

▸ Sorted data allows for various optimizations (e.g., binary search)

▸ Several operators in Hyrise profit from sorted input, which can be the result of previous
operators (e.g., sort, sort-merge joins, …)

▸ Tasks

▸ Improve the passing of sort information throughout logical and physical plans

▸ Improve existing operators to make use of the sort information

▸ Implement simple and defensive optimizer rules when to use sort-based operators

▸ Evaluation

▸ Measure the runtime effects for TPC-H

21

DYOD - WEEK 6

BETTER ESTIMATIONS THROUGH SAMPLING

▸ Motivation

▸ To optimize a query, accurate cardinality estimations are mandatory

▸ Hyrise uses histograms, which can be very inaccurate for string estimations or outliers

▸ Tasks

▸ Implement sampling in Hyrise, focus on efficiency

▸ For every sufficiently large table, a small sample is taken which is processed whenever
histograms are expected to be inaccurate (or always?)

▸ Evaluation

▸ Measure the effects on estimation accuracy for an array of different cases

▸ Evaluate the memory overhead as well as the runtime overhead for sample collection and
cardinality estimation using samples

22

DYOD - WEEK 6

FASTER STATISTICS GENERATION
▸ Motivation

▸ Cost-based query optimization depends on accurate cost estimates

▸ Cost estimates result from a cost model and summary statistics (histograms, samples, sketches)

▸ Hyrise employs histograms, which can be costly to generate (for many attributes, very accurate)

▸ This hinders experimentation, benchmarks, and practical statistics updates!

▸ Tasks

▸ Extend binary data export/import with statistics

▸ Parallelize histogram generation at segment level; merge per-segment histograms

▸ Meet the scheduler and the profiler

▸ Evaluation

▸ Measure the effects of the parallelization on histogram and estimation accuracy

▸ Evaluate the runtime gains of the various improvements

23

DYOD - WEEK 6

TRANSACTIONS AND BENCHMARKING OVER THE NETWORK
▸ Hyrise Network Interface

▸ Implements the PostgreSQL wire protocol

▸ We believe it has decent performance, but it is currently difficult to benchmark, because
(1) functionality, e.g., support to load data and transaction support, and (2) tool support are missing

▸ Motivation

▸ Network is the primary interface for a database

▸ Besides good performance, the network interface must provide functionality to the user

▸ Tasks

▸ Add and maintain transaction state information for database connections

▸ Integrate and run existing TPC-C and TPC-H benchmarks in Hyrise

▸ Evaluation

▸ Demonstrate transaction support via the network interface

▸ Compare the TPC-H benchmark performance of the Hyrise library and server for different data set sizes

24

TEXT

25

Faster Sort
• The current sort implementation was one of the first operators in Hyrise

and has been practically untouched since then

• Improvements in the query plans and other operators mean that the
performance of sort now becomes an issue

• Challenges:

• Sorting across multiple columns – can we do better than sorting
multiple times?

• Exploiting information from the encoding – can dictionary encoding
speed up the sort process?

• Parallelism – can we sort segments in parallel and merge the results?

TEXT

26

SQL Set Operations

SELECT name FROM students UNION SELECT name FROM teachers WHERE
name LIKE ‘Peter%’

• SQL supports three different (multi-)set operations

• UNION (ALL), INTERSECT, EXCEPT

• Supporting these enables multiple TPC-DS queries and opens up new

optimization challenges

• In the example above, can we push the predicate below the set?

• This project is a good chance to work on different steps in the pipeline,

including SQL parsing and translation, optimization, and execution

DYOD - WEEK 6

NEXT STEPS

▸ Please send us a list of all topics that you are interested in until
Sunday, 24 November, 23:59pm CET.

▸ The current groups stay the same for the project phase

▸ All choices have the same priority and you can submit as many
choices as you want.

▸ The supervisors are not fix yet.

▸ For further questions, send an email to:

▸ Martin Boissier, Markus Dreseler, Stefan Halfpap, Jan Kossmann,
Thomas Bodner

27

