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const std::shared_ptr<ValueColumn<T>>& p_column =
std::dynamic_pointer_cast<ValueColumn<T>>(base_column);

_attribute_vector =
std::dynamic_pointer_cast<BaseAttributeVector>(

std::make_shared<FittedAttributeVector<uint8_t>>(
column.size())); 

const auto value_column =
dynamic_cast<ValueColumn<T>*>(base_column.get());



REVIEW SPRINT 2
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ValueID lower_bound(const AllTypeVariant& value) const {
const T val = dynamic_cast<T>(value); 

if (!val) {
return INVALID_VALUE_ID;

}

return lower_bound(val);
} 

auto segment = std::dynamic_pointer_cast<ValueSegment<T>>(base_segment); 
auto segment_values = segment->values(); 



REVIEW SPRINT 2 - CASTS 

▸ Do not explicitly upcast pointers 

▸ Do not use static/dynamic_cast on smart pointers 

▸ Check the return value of dynamic_pointer_casts (DebugAssert) 

▸ If the type is already in the same line, do not repeat it - instead use 
auto 

▸ Use type_cast for AllTypeVariant 

▸ Do not use plain C-style casts
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_dictionary = std::make_shared<std::vector<T>>(segment_values); 
std::sort(_dictionary->begin(), _dictionary->end()); 
_dictionary->erase(std::unique(_dictionary->begin(), _dictionary->end()), 
_dictionary->end()); 

... 

// fill attribute vector with valueIDs 
for (ValueID position(0); position < segment->size(); position++) { 
  auto value_id = ValueID(std::distance(_dictionary->begin(), std::find(_dictionary-
>begin(), _dictionary->end(),  
                  segment_values.at(position)))); 
  _attribute_vector->set(position, value_id); 
} 

REVIEW SPRINT 2
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REVIEW SPRINT 2
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const auto entropy = ((int) std::log2(_dictionary->size())) + 1; 

if(entropy <= 8){ 
  _attribute_vector = 
std::make_shared<FixedSizeAttributeVector<uint8_t>>(FixedSizeAttributeVector<uint8_t>()); 
} else if(entropy <= 16){ 
  _attribute_vector = 
std::make_shared<FixedSizeAttributeVector<uint16_t>>(FixedSizeAttributeVector<uint16_t>()); 
} else if(entropy <= 32) { 
  _attribute_vector = 
std::make_shared<FixedSizeAttributeVector<uint32_t>>(FixedSizeAttributeVector<uint32_t>()); 
} else{ 
  throw std::runtime_error(std::string("Not enough memory")); 
} 



REVIEW SPRINT 2

9

DYOD - WOCHE 6

void append(const AllTypeVariant&) override {} 

std::mutex compression_mutex; 

“Issue all the warnings demanded by strict ISO C and ISO C++; reject all 
programs that use forbidden extensions, and some other programs that do not 
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C standard 
specified by any -std option used.”



REVIEW SPRINT 2
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TEST_F(StorageDictionarySegmentTest, SortedValues){ 
  // Setup 
  vc_int->append(87); 
  vc_int->append(90); 
  vc_int->append(3); 
  auto col = opossum::make_shared_by_data_type<opossum::BaseSegment, 
opossum::DictionarySegment>("int", vc_int); 
  auto dict_col = std::dynamic_pointer_cast<opossum::DictionarySegment<int>>(col); 
  //std::cout<<(dict_col->get((opossum::ValueID)0))<<std::endl; 
  EXPECT_EQ(dict_col->value_by_value_id((opossum::ValueID)0), 3); 
} 



REVIEW SPRINT 2
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TEST_F(StorageTableTest, CompressTable) { 
  t.compress_chunk((ChunkID) 1); 
  EXPECT_TRUE(true); 
} 

TEST_F(StorageTableTest, CompressChunkReplacesWithDictionarySegment) { 
  t.append({4, "Hello,"}); 
  t.append({6, "world"}); 

  t.compress_chunk(ChunkID{0}); 
  auto& chunk = t.get_chunk(ChunkID{0}); 
  auto segment_ptr = chunk.get_segment(ColumnID{0}); 
  auto dictionary_segment_ptr = std::dynamic_pointer_cast<DictionarySegment<int>>(segment_ptr); 
  EXPECT_TRUE(dictionary_segment_ptr); 
} 



REVIEW SPRINT 2
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size_t attribute_vector_size = 0; 
std::set<T> dictionary_helper; 

for (size_t segment_iterator = 0; segment_iterator < base_segment->size(); ++segment_iterator) { 
  dictionary_helper.insert(type_cast<T>((*base_segment)[segment_iterator])); 
  attribute_vector_size++; 
} 

_dictionary->reserve(dictionary_helper.size()); 
for (auto it = dictionary_helper.begin(); it != dictionary_helper.end();) { 
  _dictionary->emplace_back(std::move(dictionary_helper.extract(it++).value())); 
} 



CREATING A SORTED, UNIQUE DICTIONARY
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▸ How can we derive a sorted and unique std::vector from a non-
sorted ValueSegment that might contain duplicates? 

▸ std::sort, std::unique, std::erase 

▸ std::sort, std::unique, std::resize 

▸ std::set 

▸ std::unordered_set 

▸ std::map as intermediary structure 

▸ Benchmark above on vector of 500,000 std::strings



CREATING A SORTED, UNIQUE DICTIONARY
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String length 10 characters



CREATING A SORTED, UNIQUE DICTIONARY
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String length 30 characters



ESTIMATE MEMORY USAGE
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Query Processing



Motivation

Slide 5

Query Processing

How does a database actually
process incoming SQL queries?



How does a database process queries?

Slide 6

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

1. The database receives the SQL queries on the network interface and 
passes it to the SQL parser.

1   SELECT wp.city , wp.first_name, wp.last_name

2   FROM world_population AS wp

3   INNER JOIN locations ON wp.city = locations.city

4   WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5   INNER JOIN actors ON actors.first_name = wp.first_name

6   AND actors.last_name = wp.last_name



How does a database process queries?

Slide 7

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

2. The SQL parser generates a logical query plan. This plan contains the 
relational operators required to execute the query and the order in 
which they have to be called.

1   SELECT wp.city , wp.first_name, wp.last_name

2   FROM world_population AS wp

3   INNER JOIN locations ON wp.city = locations.city

4   WHERE locations.state = ’Hessen’ AND wp.birth_year > 2010

5   INNER JOIN actors ON actors.first_name = wp.first_name

6   AND actors.last_name = wp.last_name



How does a database process queries?

Slide 8

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

3. Depending on the order of operations in the query plan, runtimes can 
differ by orders of magnitude. Thus, the database employs the query 
optimizer to determine efficient query plans.



How does a database process queries?

Slide 9

Query Processing

SQL Parsing Plan 
Building Optimization Translation Execution

4. After a logical query plan is decided upon, the relational operators are translated to 
their actual implementations. Further, the database scheduler can determine where 
& when to run the query and how much resources to allocate.

CPU #1

CPU #2 Task #4
Task #4Task #4
MVCC Check

Task #1
Selection

Task #2
Selection

Task #3
Join

(linear scan) (index scan)

(index join)

(hash join)



How does a database process queries?
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Query Processing

SQL Parsing Plan 
Building Optimization Scheduling Execution

5. Finally, the database executes all scheduled tasks and returns the result 
set to the user.



Query Optimization



Often, the impact of the query optimizer is much larger than the impact of 
the runtime system [..] Changes to an already tuned runtime system might 
bring another 10% improvement, but changes to the query optimizer can 

often bring a factor 10.

T. Neumann. Engineering high-performance database engines. PVLDB, 2014

Query Optimization
Motivation

Slide 12

Query Processing



q For a given query (remember: SQL is declarative), there is a large array 
of alternative (logically equivalent) query plans

q The query optimizer is a module that enumerates possible query plans 
and estimates the costs of each plan.

q Usually selects the plan with the lowest estimated costs.

Costs to consider

q Algorithmic: e.g., runtime complexity of different SORT operators

q Logical: estimated output size of the operator (e.g., decreasing for 
filter operations, de- or increasing for joins)

q Physical: hardware-dependent cost calculations such as IO 
bandwidth, cache misses, etc.

Query Optimization
Motivation

Query Processing

Slide 13



q Operator costs are often interacting with each other, making accurate cost 
estimations computationally expensive

q As a consequence, most optimizers concentrate on logical costs and thrive 
to reduce operator results as early as possible

q Reducing logical costs further leads to less memory traffic, which indirectly 
improves NUMA performance, cache hit rates, and more

How can we reduce the intermediate result size of a query plan (i.e., 
logical costs) as early as possible?

Execute operators first that exclude large fractions of data (e.g., equi-filters 
on attributes with many distinct values, joins on foreign keys, etc.)

Query Optimization
Creating Query Plans

Slide 14

Query Processing



Query optimization can be seen as a two-step process

1. Semantic query transformations and simple heuristics to 

reformulate queries

2. Cost model-driven approaches that estimate costs in order 

to reorder operators

Query Optimization
Introduction

Slide 15

Query Processing



Query reformulation: exploit semantic query transformations and simple 
heuristics to reformulate a query plan to a (logically equivalent) plan with 
lower expected costs.

SELECT * FROM T 

WHERE A < 10 AND A > 12 

SELECT * FROM T 

WHERE A < 10 AND A < 20 

AND A IS NOT NULL

Query Optimization
Semantic Transformations & Heuristics

Slide 16

Query Processing

» return empty result

» SELECT * FROM T WHERE A < 10



SELECT * FROM T1, 

(SELECT * FROM T WHERE B > 17) AS T2

Query Optimization
Semantic Transformations & Heuristics

Slide 17

Query Processing

SELECT * FROM T1, 

(SELECT * FROM T) AS T2 »
WHERE T2.B > 17

SELECT (A + 2) + 4 FROM T

»   SELECT A + 2 + 4 FROM T

»   SELECT A + 6      FROM T



Query Optimization
Semantic Transformations & Heuristics

Slide 18

■ Optimization heuristics:

□ Execute most restrictive filters first

□ Execute filters before joins

□ Predicate/limit push downs

□ Join reordering based on estimated cardinalities

■ Such optimizations are heuristics as they are usually good estimates of 
operator costs.

■ Nonetheless, possible that joining before filtering can lead to a better query 
runtime for certain constellations.

Query Processing



Query Optimization
Query Plan Reformulation

Slide 19

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using 
equivalence rules (i.e., operators can only be reordered to an extend that 
ensures correct results)

Query Processing



Query Optimization
Query Plan Reformulation

Slide 20

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using 
equivalence rules (i.e., operators can only be reordered to an extend that 
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Scanning ~100 tuples



Query Optimization
Query Plan Reformulation

Slide 21

■ Logical Query Plan can be seen as a tree of relational algebra operators

■ Enumeration phase generates logically equivalent expressions using 
equivalence rules (i.e., operators can only be reordered to an extend that 
ensures correct results)

Query Processing

Joining 100 000 tuples
* 8 billion tuples

Joining 100 000 tuples
* 1 million tuples

Scanning ~100 000 tuples

Sequentially scanning
8 billion tuples

Sequentially scanning
1 million tuples

Joining 400 tuples
* 600 million tuples

Joining 400 tuples
* 600 million tuplesScanning ~100 tuples



The Physical Query Plan/Evaluation Plan defines which algorithm is used for 
each operation, and how the execution of operations is coordinated.

Query Optimization
Physical Query Plan

Slide 22

Query Processing



q Statistics are, e.g., used to estimate intermediate result size for logical 
cost estimations to compute overall cost of complex expressions.

q Especially for cost model-driven approaches, accurate statistics are 
indispensable.

q Such statistics include:

q Number of distinct values for a table

q Presence or absence of indices

q Value distribution of attributes (e.g., histograms)

q Top-n values with occurrence count

q Min/Max values

Query Optimization
Statistics

Slide 23
http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query_optimization.pdf

Query Processing



Table: world_population

Meta Data

Data

Attributes: {‘first_name’: char(50), ‘last_name’ […]}
Indexed Columns: {‘first_name’, ‘last_name’, […]}
…
Statistics:
    min/max: {‘birth_year’: [’1900’, ‘2017’], […]}
    distinct_counts: {‘birth_year’: 118, […]}
    histograms:
        first_name:

        country:

a-c d-f g-i …

CN US DE …

q Accuracy of estimation depends on quality and 
currency of statistical information DBMS holds

q Keeping statistics up to date can be problematic

q Updating them on the fly increases load on 
latency-critical execution paths

q Updating them periodically (e.g., during chunk 
compression in Hyrise2)  might introduce 
misleading estimations due to outdated 
statistics

Query Optimization
Statistics

Slide 24



Query Optimization 
Join Ordering

Slide 25

Query Processing

The task of join ordering is to find a join order that is estimated to have the 
lowest costs (ordered by input and output cardinality).

To do so, we need to estimate the size of the join result (so-called join 
cardinality estimation):

q Knowledge about foreign key relationships can be used

q Values are rarely uniformly distributed, histograms help estimating

q But histograms do not contain correlation information



For all relations r1, r2, and r3,

(r1    r2)    r3 =r1    (r2   r3) 

à Join Associativity

If r2    r3 is quite large and r1    r2 is small, we choose

(r1    r2)    r3 

so that we compute and store a smaller temporary relation. 

Query Optimization 
Join Ordering 

Slide 26

Query Processing



Estimating join cardinalities is one of the challenging tasks of query 

optimization, but also indispensable to performance.

Query Optimization 
Join Ordering 

Slide 27

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.



Estimating join cardinalities is one of the challenging tasks of query 

optimization, but also indispensable to performance.

Query Optimization 
Join Ordering 

Slide 28

Query Processing

Leis et al., How Good Are Query Optimizers, Really?, PVLDB, vol 9, no 3, 2015.

Runtime impact of inaccurate join
estimates can be desastrous:

“The average fraction between the worst and
the best plan,  […] is 101× […]”



We learned that query optimization becomes increasingly important due to …

q ever growing data sets

q increasingly complex queries.

However, finding efficient plans remains a challenging task as …

q the number of possible plans is enormous, and

q costs rely on estimation using potentially outdated statistics.

Query Optimization 
Summary

Query Processing

Slide 29
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GROUP TOPICS

▸ Query Plan Cache Parametrization (JK) 

▸ Smart Positions Lists (JK) 

▸ Cost Model Calibration (MB/JK) 

▸ Utilize sortation during query execution (MB) 

▸ More Statistics (MB) 

▸ Faster Statistics (TB) 

▸ Set Operations (MD) 

▸ Speed-up sorting (MD) 

▸ Transactions and benchmarking over the network (SH)
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QUERY PLAN CACHE PARAMETRIZATION

▸ Introduction: 

▸ Complex transformations create imperative query plans from declarative SQL queries 

▸ Query plans are cached to avoid expensive repeated transformations/optimizations 

▸ Motivation 

▸ For fast, short-running queries, optimizations cause significant overhead 

▸ Our current cache can only handle identical queries: WHERE x = 4 != WHERE x = 5 

▸ Tasks 

▸ Enable caching for almost identical queries based on parsing structures 

▸ Use data statistics to determine when a plan could be reused for similar queries 

▸ Evaluation 

▸ Investigate impact on selected TPC-C and TPC-H benchmark queries
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SMART POSITION LISTS

▸ Motivation 

▸ Currently, position lists are (almost) only wrapping std::vectors<RowID> 

▸ A little bit of additional state/behavior offers potential for performance optimizations 

▸ Tasks 

▸ Introduce a matches_all flag to avoid costly translations from Data- to Reference-Tables 

▸ If all rows reference the same chunk, an std::vector<ChunkOffset> is sufficient 
(IndexScan) 

▸ Further ideas: nullable, sortation information 

▸ Evaluation 

▸ Investigate impact on TPC-C, -H, -DS, and the Join Order Benchmark
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COST MODEL CALIBRATION

▸ Cost Models: predict the execution time of database operators 

▸ Cost models are often built with the help of statistics or machine learning techniques 

▸ Motivation 

▸ Such learned cost models need to be trained on data that allows to generalize for different 
workloads 

▸ This training data must be obtained quickly 

▸ Tasks 

▸ Generate and execute calibration queries that enable generalization and export the results 

▸ Train simple models on the observed measurements 

▸ Evaluation 

▸ Investigate the models’ accuracy for the TPC-H benchmark
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SORT-BASED QUERY EXECUTION

▸ Motivation 

▸ Sorted data allows for various optimizations (e.g., binary search) 

▸ Several operators in Hyrise profit from sorted input, which can be the result of previous 
operators (e.g., sort, sort-merge joins, …) 

▸ Tasks 

▸ Improve the passing of sort information throughout logical and physical plans 

▸ Improve existing operators to make use of the sort information 

▸ Implement simple and defensive optimizer rules when to use sort-based operators 

▸ Evaluation 

▸ Measure the runtime effects for TPC-H
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BETTER ESTIMATIONS THROUGH SAMPLING

▸ Motivation 

▸ To optimize a query, accurate cardinality estimations are mandatory 

▸ Hyrise uses histograms, which can be very inaccurate for string estimations or outliers 

▸ Tasks 

▸ Implement sampling in Hyrise, focus on efficiency 

▸ For every sufficiently large table, a small sample is taken which is processed whenever 
histograms are expected to be inaccurate (or always?) 

▸ Evaluation 

▸ Measure the effects on estimation accuracy for an array of different cases 

▸ Evaluate the memory overhead as well as the runtime overhead for sample collection and 
cardinality estimation using samples
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FASTER STATISTICS GENERATION
▸ Motivation 

▸ Cost-based query optimization depends on accurate cost estimates 

▸ Cost estimates result from a cost model and summary statistics (histograms, samples, sketches) 

▸ Hyrise employs histograms, which can be costly to generate (for many attributes, very accurate) 

▸ This hinders experimentation, benchmarks, and practical statistics updates! 

▸ Tasks 

▸ Extend binary data export/import with statistics 

▸ Parallelize histogram generation at segment level; merge per-segment histograms 

▸ Meet the scheduler and the profiler 

▸ Evaluation 

▸ Measure the effects of the parallelization on histogram and estimation accuracy 

▸ Evaluate the runtime gains of the various improvements
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TRANSACTIONS AND BENCHMARKING OVER THE NETWORK
▸ Hyrise Network Interface 

▸ Implements the PostgreSQL wire protocol 

▸ We believe it has decent performance, but it is currently difficult to benchmark, because  
(1) functionality, e.g., support to load data and transaction support, and (2) tool support are missing 

▸ Motivation 

▸ Network is the primary interface for a database 

▸ Besides good performance, the network interface must provide functionality to the user 

▸ Tasks 

▸ Add and maintain transaction state information for database connections 

▸ Integrate and run existing TPC-C and TPC-H benchmarks in Hyrise 

▸ Evaluation 

▸ Demonstrate transaction support via the network interface 

▸ Compare the TPC-H benchmark performance of the Hyrise library and server for different data set sizes
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Faster Sort
• The current sort implementation was one of the first operators in Hyrise 

and has been practically untouched since then

• Improvements in the query plans and other operators mean that the 
performance of sort now becomes an issue

• Challenges:

• Sorting across multiple columns – can we do better than sorting 
multiple times?

• Exploiting information from the encoding – can dictionary encoding 
speed up the sort process?

• Parallelism – can we sort segments in parallel and merge the results?



TEXT
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SQL Set Operations

SELECT name FROM students UNION SELECT name FROM teachers WHERE
name LIKE ‘Peter%’

• SQL supports three different (multi-)set operations

• UNION (ALL), INTERSECT, EXCEPT

• Supporting these enables multiple TPC-DS queries and opens up new 

optimization challenges

• In the example above, can we push the predicate below the set?

• This project is a good chance to work on different steps in the pipeline, 

including SQL parsing and translation, optimization, and execution
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NEXT STEPS

▸ Please send us a list of all topics that you are interested in until 
Sunday, 24 November, 23:59pm CET. 

▸ The current groups stay the same for the project phase 

▸ All choices have the same priority and you can submit as many 
choices as you want. 

▸ The supervisors are not fix yet. 

▸ For further questions, send an email to: 

▸ Martin Boissier, Markus Dreseler, Stefan Halfpap, Jan Kossmann, 
Thomas Bodner
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