
Termin Endpräsentation

• 16 / 19 können um 11:00 – 12:00, also machen wir es so

Running Order

• Networking
• Small String Optimization
• Partitioning
• Optimizer Rules
• Pruning Filters
• Subqueries
• Self-Driving
• NUMA-Optimized Join

HaaS - Lawrence, Stephan, Robert |

Hyrise as a Server
10.01.2018

Lawrence, Stephan, Robert

Supervisor: Stefan Klauck

HaaS - Lawrence, Stephan, Robert |

Task

> psql -h 123.456.1.1 -p 5432

=> SELECT * FROM foo;

 a

123

(1 row)

> ./hyriseServer 5432

Server running…
Start Hyrise as a
Server application

Use any existing
Postgres client and
execute queries

2

HaaS - Lawrence, Stephan, Robert |

Work Done so Far

● SELECT * FROM foo;

● Async request handling

● Basic tests

3

HaaS - Lawrence, Stephan, Robert |

Async Request Handling
● Handle network connections concurrently from one thread

● boost::asio::io_service dispatches methods

Query
Completed

Row
Description

Sent

Row Data
SentStarted

Connection
Setup

Send Row
Description

Send Row
Data

4

Accept
Query

Execute
Query

Command Completed

HaaS - Lawrence, Stephan, Robert | 5

HaaS - Lawrence, Stephan, Robert |

Work to come
● Full query support

○ Currently only SELECT works

● Benchmarking
○ Send timing information back to client
○ Analyze performance (e.g. with pgbench)

● Optimizing #packets sent

● Testing (unit / end2end)

● Bug fixing

● Submit PR

6

 Small String Optimization
 Develop your own database

Benjamin Feldmann, Marcel Jankrift, Toni Stachewicz
Advisor: Jan Kossmann
Hasso Plattner Institute

Problem

■ (Enterprise) data usually contains many short strings

■ std::string uses small-string-optimization
□ msvc: 0 - 15 byte strings
□ gcc >= 5: 0 - 15 byte strings
□ clang: 0 - 22 byte strings

■ Longer strings
□ Compiler allocates memory on heap
□ Additional indirection
□ msvc and clang allocate more memory than the string size

Chart 2

Example

■ Extract of SAP ACDOCA table

MATNR SEGMENT

P-100 MANF

P-1 MANF

P-1234 MANF

Layout of vector:

MATNR: ...

SEGMENT: ...

P - 1 0 0 P - 1

M A N F M A N

Our Solution

■ Define maximum string length

■ Store all strings in one vector of chars
□ Each string has maximum length

Chart 4

Our Solution: Example

■ MATNR string length: 6

■ SEGMENT string length: 4

Chart 5

Layout of vector:

MATNR:

SEGMENT:

P - 1 0 0 \0 P - 1 \0 \0 \0 P - 1 2 3 4

M A N F M A N F M A N F

Drawbacks

■ Only one (or a few) long strings
□ More memory consumption for smaller strings

Chart 6

ExampleColumn

ab

cd

this_is_a_very_very_very_very_very_very_very_very_very_very_very_long_string

123

B

m

ValueVector Implementation

■ New class for:
□ DictionaryColumn :: _dictionary
□ ValueColumn :: _values

■ ValueVector can store values in
std::vector<std::string|int|float|...>

■ or strings with a fixed length in std::vector<char>

Chart 7

ValueVector Implementation

■ Has std::vector functions

■ Additional constructor for fixed string length

Chart 8

Partitioning

Felix Musmann, Jonas Chromik, Niklas Hoffmann
Winter Term 2017 / 2018
DYOD

Partitioning

= Dividing a table in multiple parts

➚ Performance gain for queries

partitions not matching the criteria can be pruned

➙ Manageability

➙ Availability

➙ Load-balancing

2

Vertical Partitioning

3

Name Birthday City Country

Neo 1970-01-01 Oslo Norway

Morpheus 1955-12-11 Murmansk Russia

Trinity 1976-06-07 Darwin Australia

Smith 1970-01-01 Yokohama Japan

similar to database normalization, but on physical level

Horizontal Partitioning

4

Name Birthday City Country

Neo 1970-01-01 Oslo Norway

Morpheus 1955-12-11 Murmansk Russia

Trinity 1976-06-07 Darwin Australia

Smith 1970-01-01 Yokohama Japan

take partitioning key and assign data to partition based on some criteria

Horizontal Partitioning:
Partitioning Criteria

5

Problem: How to determine which tuple resides in which partition?

Approaches:

● Range-based

● Hash-based

● Round Robin

● Tuple matching some predicate

● Time-based

● List-based

How to build this?

6

How to handle partition management?

7

Table

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Partition 1 Partition 2 Partition 3

Partitions

Chunks

Logic for handling Partitions

Alternative #1

How to handle partition management?

8

Table

Chunks

Partition Manager

Partitions
Partition 1 Partition 2 Partition 3

Logic for handling Partitions

Table

Chunks

Table

Chunks

Alternative #2

How to handle partition management?

9

Table

Chunks

Table

Chunks

Table

Chunks

Partition Manager

Partition Logic

Partitions

Partition Manager

Partition Logic

Partitions

Partition Manager

Partition Logic

Partitions

Alternative #3

How we built this.

10

Partitioning as a Strategy

11

Table PartitionSchema Partition 1

Partition 2

Partition 3

NullPartitionSchema HashPartitionSchema

RangePartitionSchemaRoundRobinPartitionSchema

Our Implementation:
Chunks in Partitions

12

PartitionSchema
Partition 1

Partition 2

Partition 3

Chunk 1

Chunk 1 Chunk 2 Chunk 3

Chunk 1 Chunk 2

Our implementation:
Interface

void create_hash_partitioning(const ColumnID column_id, const HashFunction hash_function,
 const size_t number_of_partitions);

void create_range_partitioning(const ColumnID column_id,
const std::vector<AllTypeVariant> bounds);

void create_round_robin_partitioning(const size_t number_of_partitions);

bool is_partitioned() const;

void remove_partitioning();

std::vector<ChunkID> get_partition(PartitionID partition_id);

std::vector<PartitionID> get_partition_ids(); 13

Problems to solve

14

(excerpt from table.hpp)

We had to deal with the following questions:

● Single criterion vs. multiple criteria

● What if a tuple does not belong in any partition?

Partitioning Criteria

15

Multiple Criteria:
Problem Statement

16

gender = ‘M’ AND year < 1970

Partition 1

gender = ‘M’
AND
year < 1970

Partition 2

[everything else]

Multiple Criteria:
Problem Statement

17

gender = ‘M’ AND year < 1970

Partition 1

gender = ‘M’
AND
year < 1970

Partition 2

gender = ‘M’
AND
NOT year < 1970

Partition 3

NOT gender = ‘M’
AND
year < 1970

Partition 4

NOT gender = ‘M’
AND
NOT year < 1970

Each table has only one partition schema. The partition schema has to ensure consistency.

For example:

● Range partitioning uses split points.

[20, 50] leads to 3 partitions:
○ one with values <= 20
○ one with 20 < values <= 50
○ one with values > 50

● Hash partitioning has user-defined number of partitions.

E.g. modulo of hash value.

Multiple Criteria:
Approach and Solution

18

Further Work:
Liberal Partitioning

Liberal Partitioning:

Partitioning criteria are not disjoint

→ One tuple can be in multiple partitions

If a tuple matches multiple partitions, we have to decide

1. Put it in all matching partitions → Deduplication problem

2. Put it in one matching partition → More partitions to be searched

3. Put it in a remainder partition → Can lead to uneven distribution

19

Optimizer Rules
Midterm Presentation

Develop your own database
Falco Dürsch, Maxi Fischer, Tim Friedrich

2018-01-10

Optimizer
Dürsch
Fischer
Friedrich

Idea: Transform a query plan to a more performant one (memory, CPU)

● Consists of a set of transformation rules

● Loops through them without any sense of ordering (no dependency

management between rules)

Optimizer Component

Slide 2

Optimizer
Dürsch
Fischer
Friedrich

Predicate Pushdown Explained

Slide 3

Stored Table Stored Table

Join

Predicate

Projection

1000 rows1000 rows

1000 rows

300 rows

Stored Table Stored Table

Join

Predicate

Projection

1000 rows

1000 rows

300 rows

300 rows

Optimizer
Dürsch
Fischer
Friedrich

Predicate Pushdown - Node Types

Slide 4

Stored Table Tables need to be loaded first

Aggregate, Limit Predicate could change row count or refer to aggregated value

Union, Select Distinct Not implemented

Validate, Predicate Subject to Predicate Reordering Rule

Optimizer
Dürsch
Fischer
Friedrich

Predicate Pushdown - Node Types

Slide 5

Stored Table Tables need to be loaded first

Aggregate, Limit Predicate could change row count or refer to aggregated value

Union, Select Distinct Not implemented

Validate, Predicate Subject to Predicate Reordering Rule

Projection Possible if predicate column remains unchanged (arithmetic)

Sort Possible

Join Possible, dependent on join type
Predicate must not involve reference both join partners

Optimizer
Dürsch
Fischer
Friedrich

Predicate Pushdown Example

Slide 6

Stored Table Stored Table

Join

Predicate

Projection

1000 rows1000 rows

1000 rows

300 rows

WHERE a = 3

 R(a, b, c) S(d,e)

WHERE a = b

WHERE a = d

WHERE d = NULL

in a Left Outer Join

Optimizer
Dürsch
Fischer
Friedrich

● Costs of joins can be reduced

● Precise definition required to keep LQP idempotence

● Another optimizer rule (Logical optimization, Sort Positioning Rule)

● Support more node types (Projection, Sort)

● Support TPC-H-13 query

Conclusion and Next steps

Slide 7

Backup

8

Optimizer
Dürsch
Fischer
Friedrich

Predicates Pushdown Example

Slide 9

Pruning Filters
Speed up filter operations

1Dimitri Schmidt, Alexander Popiak, Sören Tietböhl

What is Pruning?
Reducing the amount of data (chunks in our case) to process when executing
queries.

Improves cardinality estimation of filtering operations
(and thus helps the optimizer determine a better order of execution)

2

What do we do?
We will implement pruning for immutable chunks by extending compressed
chunks with statistics (e.g. min, max).

These will be used to reduce the amount of chunks that are considered in the
GetTable operator.

3

a > 5
Table Table

prune chunk

Reference
Table

a > 5

scan

How do we do it?
● add statistics calculation to chunk compression
● make chunk statistics available to the optimizer
● add ChunkPruningRule to the query optimizer
● create exclusion list of chunks for the StoredTable LQP Nodes
● use exclusion lists to perform less scanning
● remove prunable chunks in GetTable Operator

4

Predicate #1
b > 7

Predicate #2
a < 10

StoredTable

Predicate #3
c = 8

All Chunks: {1, …, 10}

exclusion list: nullptr

How does the optimizer rule work?

Predicate #1
b > 7

Predicate #2
a < 10

StoredTable

Predicate #3
c = 8

All Chunks: {1, …, 10}

exclusion list: nullptr

How does the optimizer rule work?

detect predicate chain

that ends in
StoredTable Node

Predicate #1
b > 7

Predicate #2
a < 10

StoredTable

Predicate #3
c = 8

{1,2,5}

{2,7}

All Chunks: {1, …, 10}

exclusion list: {1,2,5,7}

How does the optimizer rule work?

+

initialize

calculate
and union
exclusion
lists

Predicate #1
b > 7

Predicate #2
a < 10

StoredTable

Predicate #3
c = 8

All Chunks: {1, …, 10}

exclusion list: {1,2,5,7}

How does the optimizer rule work?

detect

Predicate #1
b > 7

Predicate #2
a < 10

StoredTable

{3,7,9}

All Chunks: {1, …, 10}

exclusion list: {1,2,5,7}
 {7}

How does the optimizer rule work?

calculatePredicate #3
c = 8

intersect

Things that will get modified
● Chunk: store ChunkStatistics with std::optional
● New Class: ChunkStatistics
● compress_* methods: calculate and create ChunkStatistics
● New Optimizer Rule (as shown in previous slide)
● GetTable Operator: create temporary table without the excluded chunks
● StoredTableNode (LQP): store the exclusion list

10

Timeline

min/max
calculation

10.1.
now

pruning
pipeline

17.1.

benchmarks

24.1.

optional
features
(e.g. more
filters)

31.1.

final
presentation

7.2.

11

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

Subqueries

Philipp Otto, Juliane Waack, David Hahn
Develop your own Database - Winter Term 2017/18

1

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

SELECT a FROM t1
WHERE a < (SELECT MAX(b) FROM t2)

2

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

Uncorrelated:

SELECT a FROM t1 WHERE a < (SELECT MAX(b) FROM t2)

Correlated:

SELECT a, (SELECT b FROM t2 WHERE b = a + 4) FROM t1;

3

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018
4

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018
5

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

SQL Translator

Logical
Query
Plan

SQL Parser

hsql::Select
Statement Opt. LQP

Optimizer LQP Translator

6

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

SQL Translator

Logical
Query
Plan

SQL Parser

hsql::Select
Statement Opt. LQP

Optimizer LQP Translator

7

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018
8

projection

table_scan

projection

subselect

SELECT a FROM t1
WHERE a < (SELECT MAX(b) FROM t2)

get table

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018
9

projection

table_scan

projection

get table

subselect

SELECT a FROM t1
WHERE a < (SELECT MAX(b) FROM t2)

a

5

6

8

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018
10

projection

table_scan

projection

get table

subselect

SELECT a FROM t1
WHERE a < (SELECT MAX(b) FROM t2)

a MAX(b)

5 7

6 7

8 7

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018
11

projection

table_scan

projection

get table

subselect

SELECT a FROM t1
WHERE a < (SELECT MAX(b) FROM t2)

a MAX(b)

5 7

6 7

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018
12

projection

table_scan

projection

get table

subselect

SELECT a FROM t1
WHERE a < (SELECT MAX(b) FROM t2)

a

5

6

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

execute subquery
separately for every

row

optimize uncorrelated
subqueries by only

executing once

flatten correlated
subqueries to JOINs

if possible

Step 1 Step 3Step 2

13

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

SELECT a, (SELECT b FROM t2 WHERE b = a + 4) FROM t1;

SELECT a, b FROM t1 LEFT JOIN t2 ON b = a + 4;

14

Step 3

DYOD: Subqueries - Juliane Waack, Philipp Otto and David Hahn - Midterm Presentation - 10.01.2018

Subqueries

Philipp Otto, Juliane Waack, David Hahn
Develop your own Database - Winter Term 2017/18

15

Self Driving Database

Adrian Holfter, Arthur Silber, Lukas Wenzel
Instructor: Jan Kossmann

Manual DB tuning is difficult

Which indexes should be created?

How should the data be partitioned?

How many threads should be used?

Large Problem Space, Inter-dependencies, Workload-specific decisions

The database knows best how to tune itself

Use Heuristics to automatically create indices

Example: Bank Accounts

NAME (string) BALANCE (int) INTEREST (float) LEVEL (int)

Danni Cohdwell 144’811 0.157 3

Rosemary Picardi 236 0.226 3

Xenia Ziegler 424’675 0.239 2

Lilly Goodwin 3’645 0.538 5

...

Example: Bank Accounts

NAME (string) BALANCE (int) INTEREST (float) LEVEL (int)

Danni Cohdwell 144’811 0.157 3

Rosemary Picardi 236 0.226 3

Xenia Ziegler 424’675 0.239 2

Lilly Goodwin 3’645 0.538 5

...

select BALANCE from CUSTOMER where NAME = 'Danni Cohdwell'

select NAME from CUSTOMER where LEVEL = 5

select INTEREST from CUSTOMER where NAME = 'Rosemary Picardi'

Example: Bank Accounts

NAME (string) BALANCE (int) INTEREST (float) LEVEL (int)

Danni Cohdwell 144’811 0.157 3

Rosemary Picardi 236 0.226 3

Xenia Ziegler 424’675 0.239 2

Lilly Goodwin 3’645 0.538 5

...

select BALANCE from CUSTOMER where NAME = 'Danni Cohdwell'

select NAME from CUSTOMER where LEVEL = 5

select INTEREST from CUSTOMER where NAME = 'Rosemary Picardi'

⇒ Which indices should be created?

Example: Bank Accounts

NAME (string) BALANCE (int) INTEREST (float) LEVEL (int)

Danni Cohdwell 144’811 0.157 3

Rosemary Picardi 236 0.226 3

Xenia Ziegler 424’675 0.239 2

Lilly Goodwin 3’645 0.538 5

...

select BALANCE from CUSTOMER where NAME = 'Danni Cohdwell'

select NAME from CUSTOMER where LEVEL = 5

select INTEREST from CUSTOMER where NAME = 'Rosemary Picardi'

scanned 2x
unique values

Example: Bank Accounts

NAME (string) BALANCE (int) INTEREST (float) LEVEL (int)

Danni Cohdwell 144’811 0.157 3

Rosemary Picardi 236 0.226 3

Xenia Ziegler 424’675 0.239 2

Lilly Goodwin 3’645 0.538 5

...

select BALANCE from CUSTOMER where NAME = 'Danni Cohdwell'

select NAME from CUSTOMER where LEVEL = 5

select INTEREST from CUSTOMER where NAME = 'Rosemary Picardi'

scanned 2x
unique values

scanned 1x
repeating values

Example: Bank Accounts

NAME (string) BALANCE (int) INTEREST (float) LEVEL (int)

Danni Cohdwell 144’811 0.157 3

Rosemary Picardi 236 0.226 3

Xenia Ziegler 424’675 0.239 2

Lilly Goodwin 3’645 0.538 5

...

select BALANCE from CUSTOMER where NAME = 'Danni Cohdwell'

select NAME from CUSTOMER where LEVEL = 5

select INTEREST from CUSTOMER where NAME = 'Rosemary Picardi'

scanned 2x
unique values

scanned 1x
repeating values

Example: Bank Accounts

NAME (string) BALANCE (int) INTEREST (float) LEVEL (int)

Danni Cohdwell 144’811 0.157 3

Rosemary Picardi 236 0.226 3

Xenia Ziegler 424’675 0.239 2

Lilly Goodwin 3’645 0.538 5

...

select BALANCE from CUSTOMER where NAME = 'Danni Cohdwell'

select NAME from CUSTOMER where LEVEL = 5

select INTEREST from CUSTOMER where NAME = 'Rosemary Picardi'

⇒ Create index on NAME and (maybe) LEVEL

scanned 2x
unique values

scanned 1x
repeating values

Our Architecture

Demo

Loading binary table...
Table loaded (10’000’000 rows in 10 chunks)
Executing queries a first time to fill up the cache...
Execute IndexTuner...

Recommended changes:
 Create index on table CUSTOMER, column NAME (desirablity 100%)
 Create index on table CUSTOMER, column LEVEL (desirablity 75%)

Demo

Executing queries a second time (with optimized indices)...
Execution times are in microseconds

SELECT BALANCE FROM CUSTOMER WHERE NAME = 'Danni Cohdwell'
reduced to: 27.829% (before/after: 2060 / 558)

SELECT NAME FROM CUSTOMER WHERE LEVEL = 5
reduced to: 7.507% (before/after: 60370 / 4810)

SELECT INTEREST FROM CUSTOMER WHERE NAME = 'Rosemary Picardi’
reduced to: 2.896% (before/after: 2033 / 57)

Outlook

● Desirability metrics (consider value distributions, query frequencies)

● Index budgeting (creation and maintenance costs, memory footprint) → Cost/Benefit optimization

● Integration into Hyrise:
○ Generalize cache implementation specifics
○ SQL Pipeline does not yet use caching
○ IndexScan not yet used

NUMA-Optimized Join
Develop Your Own Database - WS 17/18

Mid-term Presentation
Jonas Beyer, Julian Niedermeier, Florian Wagner

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Existing Joins

1. Hash Join
2. Sort Merge Join
3. Nested Loop Join

2

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Existing Joins

1. Hash Join
2. Sort Merge Join
3. Nested Loop Join

3

Not NUMA aware

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

What is NUMA? Reminder

4

Board

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Massively Parallel Sort-Merge Join (MPSM)

5

● No hash calculation

● No hashmap probing

● Only sequential data access through
histogram based partitioning

● No synchronisation during join

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Massively Parallel Sort-Merge Join

6

Board

CPU
(W1)

RAM

CPU
(W2)

RAM

CPU
(W4)

RAM

CPU
(W3)

RAM

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Massively Parallel Sort-Merge Join

7

Board

CPU
(W1)

RAM

CPU
(W2)

RAM

CPU
(W4)

RAM

CPU
(W3)

RAM

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Massively Parallel Sort-Merge Join - Phase 2

8

Board

CPU
(W1)

RAM

CPU
(W2)

RAM

CPU
(W4)

RAM

CPU
(W3)

RAM

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Massively Parallel Sort-Merge Join - Phase 4

9

Board

CPU
(W1)

RAM

CPU
(W2)

RAM

CPU
(W4)

RAM

CPU
(W3)

RAM

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

In Hyrise (Outlook)
● Build Index Join

● Implement Range-Partitioned MPSM Join

● Extend MPSM Join to split smartly (using histograms)

● (Make Index Join NUMA aware)

10

NUMA-Optimized Join - Develop Your Own Database - WS 17/18 - 10.01.18

Benchmarks
● TPCH

○ Queries 2, 8, 9

● Join on selected columns
○ Happens often
○ Can skew range partitions

● Generated data
○ Different skew
○ Different relative sizes

11

