Data-Driven Decision-Making In Enterprise Applications

Linear Programming II

Rainer Schlosser

Hasso Plattner Institute (EPIC)

April 29, 2019

Decision-Making Using Linear Programming

Linear Programming

- Questions regarding last week?
- Implemented/Solved Examples (using AMPL)?
- Today: Tricks to Circumvent Non-Linearities
- Penalty Approaches & Continuous Relaxations
- Description of the HPI Master Project Assignment Problem

Nonlinear Programming Models

- Often non-linear expressions are needed within a model
- (-) Linear solvers cannot be used anymore
- (-) NL solvers often cannot guarantee optimality
- (+) So-called "mild" nonlinearities can be expressed linearly
- (+) This is very valuable as we can exploit LP solvers and their optimality
- The price of such transformations is acceptable: More variables and constraints

I Linearization of "and" in the Constraints

Objective: $\min_{x_1, x_2 \in \{0, 1\}} 2 \cdot x_1 + x_2$

Constraints NL: ...

$$x_1 = 1$$
 and $x_2 = 1$ (e.g. needed as joint condition)

Objective: $\min_{x_1, x_2 \in \{0, 1\}} 2 \cdot x_1 + x_2$

Constraints LIN: ...

$$x_1 + x_2 = 2$$

II Linearization of "or" in the Constraints

 $\min_{x_1, x_2 \in \{0,1\}, x_3 \in [0,M]} 2 \cdot x_1 + x_2 + x_3$ **Objective:** $x_1 = 1 \text{ or } x_2 = 1$ Constraints NLa: (e.g. needed as joint condition) $x_1 = 1 \text{ or } x_2 = 0$ Constraints NLb: $x_3 = 0 \text{ or } x_3 \ge 3$ Constraints NLc: $\min_{x_1, x_2 \in \{0,1\}, x_3 \in [0,M], z \in \{0,1\}} 2 \cdot x_1 + x_2 + x_3$ **Objective:** Constraints LINa: $x_1 + x_2 \ge 1$ $x_1 + (1 - x_2) \ge 1$ Constraints LINb: Constraints LINc: $x_3 \leq M \cdot z$, $x_3 \geq 3 \cdot z$

III Linearization of "max" in the Objective

IV Linearization of "min" in the Objective

V Linearization of "min" in the Constraints

Objective: $\min_{x_1, x_2 \in [0,M]} 2 \cdot x_1 + x_2$

Constraints NL: $4 \le \min(x_1, x_2) \le 7$

Objective: $\min_{x_1, x_2 \in [0,M], z_1, z_2 \in \{0,1\}} 2 \cdot x_1 + x_2$

Constraint LIN: $4 \le x_i$ for all i=1,2

new $M \cdot z_i \ge x_i - 7$ for all i=1,2new $z_1 + z_2 \le 1$

VI Linearization of "abs" in the Objective

Objective NL: $\min_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + abs(3 - x_2)$

Constraints: ...

Objective LIN: $\min_{x_1, x_2 \in \mathbb{R}, z \in \mathbb{R}} 2 \cdot x_1 + z$

. . .

Constraints:

new $x_2 - 3 \le z$

new $3-x_2 \le z$

VII Linearization of "abs" in the Constraints

Objective: $\min_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + x_2$

Constraints NL: $abs(3-x_2) \le x_1$

Objective LIN: $\min_{x_1, x_2 \in \mathbb{R}, z \in \mathbb{R}} 2 \cdot x_1 + x_2$ Constraints: $z \leq x_1$ new $x_2 - 3 \leq z$

new $3-x_2 \le z$

HPI

VIII Linearization of "if-then-else"

Objective NL:
$$\min_{x_1, x_2 \in \{0, 1, 2, \dots, M\}} 2 \cdot x_1 + (if \ x_2 \le 5.5 \ then \ a \ else \ b)$$

Constraints: ...

Objective LIN:
$$\min_{x_1, x_2 \in \{0, 1, 2, \dots, M\}, z \in \{0, 1\}} 2 \cdot x_1 + b \cdot z + a \cdot (1 - z)$$

Constraints:

new $x_2 - 5.5 \le M \cdot z$

. . .

 $\text{new} \qquad 5.5 - x_2 \le M \cdot (1 - z)$

IX Linearization of a Product of Binary Variables

Objective: $\min_{x_1, x_2 \in \{0, 1\}} 2 \cdot x_1 + x_2$

Constraints NL: including the term: $x_1 \cdot x_2$

Objective:
$$\min_{x_1, x_2 \in \{0,1\}, z \in \{0,1\}} 2 \cdot x_1 + x_2$$

Constraints LIN: include the term z instead, where

$$z \le x_i, \qquad \text{for } i=1,2$$
$$z \ge x_1 + x_2 - 1$$

X Linearization of a Binary x Continuous Variable

Objective: $\min_{x_1 \in \{0,1\}, x_2 \in [0,M]} 2 \cdot x_1 + x_2$

Constraints NL: including the term: $x_1 \cdot x_2$

Objective: $\min_{x_1 \in \{0,1\}, x_2 \in [0,M], z \in [0,M]} 2 \cdot x_1 + x_2$

Constraints LIN: include the term z instead, where

$$z \le M \cdot x_1, \quad \text{for } i=1,2$$
$$z \le x_2$$
$$z \ge x_2 - (1-x_1) \cdot M$$

Solution Tuning

Recall Example IV: Project Assignment Problem

 $x_{i,j} \in \{0,1\}$ whether project *i*, *i*=1,...,*N*, is assigned to worker *j*, *j*=1,...,*N*

LP:
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}} \sum_{i=1,...,N, j=1,...,N} w_{i,j} \cdot x_{i,j}$$

s.t.
$$\sum_{i=1,...,N} x_{i,j} = 1$$
 for all $j=1,...,N$ (each worker gets 1 project)
$$\sum_{j=1,...,N} x_{i,j} = 1$$
 for all $i=1,...,N$ (each project is assigned)

- Will the allocation always be fair?
- How "outliers" can be avoided?
- Approaches: (i) utility functions, (ii) max min, (iii) multi-objective

Approach (i): Fair Project Assignment (Non-linear)

 $x_{i,j} \in \{0,1\}$ whether project *i*, *i*=1,...,*N*, is assigned to worker *j*, *j*=1,...,*N*

NLP:

$$\max_{x_{i,j} \in \{0,1\}^{N \times N}} \sum_{j=1,...,N} u \left(\sum_{i=1,...,N} w_{i,j} \cdot x_{i,j} \right)$$
using, e.g., $u(z) \coloneqq \ln(z)$, $u(z) \coloneqq z^{0.6}$, $u(z) \coloneqq -e^{-0.1 \cdot z}$
s.t.

$$\sum_{i=1,...,N} x_{i,j} = 1$$
 for all $j=1,...,N$ (each worker gets 1 project)

$$\sum_{j=1,...,N} x_{i,j} = 1$$
 for all $i=1,...,N$ (each project is assigned)

- Idea: Avoiding low scores is better than including high scores
- Disadvantage (i): Non-linear solver is needed

Approach (ii): Fair Project Assignment (Linear!)

 $x_{i,j} \in \{0,1\}$ whether project *i*, *i*=1,...,*N*, is assigned to worker *j*, *j*=1,...,*N*

LP:
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}, z \in \mathbb{R}} z \quad \text{s.t.} \quad z \le \sum_{i=1,\dots,N} w_{i,j} \cdot x_{i,j} \quad \text{for all } j=1,\dots,N$$

 $\sum_{i=1,...,N} x_{i,j} = 1$ for all j=1,...,N (each worker gets 1 project) $\sum_{j=1,...,N} x_{i,j} = 1$ for all i=1,...,N (each project is assigned)

- Idea: Optimize the lowest willingness (cf. worst case criteria)
- Disadvantage (ii): Total willingness score can be low

Approach (iii): Fair Project Assignment (Linear!)

 $x_{i,j} \in \{0,1\}$ whether project *i*, *i*=1,...,*N*, is assigned to worker *j*, *j*=1,...,*N*

LP:
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}, z \in \mathbb{R}} \sum_{i=1,\dots,N, j=1,\dots,N} w_{i,j} \cdot x_{i,j} + \alpha \cdot z, \text{ with parameter } \alpha \ge 0$$

s.t.
$$Z \leq \sum_{i=1,...,N} w_{i,j} \cdot x_{i,j} \quad \forall j$$
$$\sum_{i=1,...,N} x_{i,j} = 1 \qquad \text{for all } j=1,...,N \quad (\text{each worker gets 1 project})$$
$$\sum_{j=1,...,N} x_{i,j} = 1 \qquad \text{for all } i=1,...,N \quad (\text{each project is assigned})$$

- Idea: Combine both objectives as a weighted sum
- Disadvantage (iii): Suitable weighting factor α has to be determined

Penalty Approaches & Efficient Frontiers

Penalty Formulations for Pareto-Optimal Relaxations

Objective:

 $\max_{x_1,...,x_N \in \{0,1\}} \sum_{i=1,...,N} u_i \cdot x_i$

Constraints:

$$\sum_{i=1,\dots,N} s_i \cdot x_i \le C$$

(One) Hard Constraint

Knapsack example

Penalty-Objective:
$$\max_{x_1,...,x_N \in \{0,1\}} \sum_{i=1,...,N} u_i \cdot x_i - \alpha \cdot \sum_{i=1,...,N} s_i \cdot x_i$$
 (Soft Constraint)Constraints:noneResults:Pareto-optimal combinations of "Utility" and "Space"

Pareto-Optimal Relaxations (int. vs. cont. solutions)

Continuous Solution -- Integer Solution

(i) Optimal integer solution (blue):

- (ii) Continuous relaxation:
- (iii) Penalty formulation (red):

 $\min_{\vec{x}\in\{0,1\}^N} F(\vec{x}) \text{ s.t. } M(\vec{x}) \leq A \implies \vec{x}^*(A) \text{ optimal}$

 $\min_{\vec{x} \in [0,1]^N} F(\vec{x}) + \alpha \cdot M(\vec{x}) \implies \vec{x}^*(\alpha) \in \{0,1\}^N \text{ and}$ $\uparrow \qquad Pareto-optimal!$

HPI

When do Integer & Continuous Solutions Coincide?

maximize $a \cdot x_1 + b \cdot x_2$ s.t. ... with $x_1, x_2 \in \mathbb{R}$ vs. $x_1, x_2 \in \mathbb{N}$

• Answer: The corners of the polygon have to be "integers"!

HPI Master Project Assignment Problem

Description HPI Master Project Assignment Problem

- Each worker gets 1 project
- 0, 3, 4, 5, or 6 students per project
- Each student has a "first/second/third choice" project
- Can a student exclude one/two projects? -> no
- Average number of students/projects?
- Maximize the number of first choices?
- Minimize the number of unfulfilled dreams?
- Weighted sum?

Homework: Try to apply/implement the Linearizations I-X!

Formulate the HPI Master Project Assignment Problem

Outlook:

- Nonlinear Programming and Suitable Solvers
- Linear Regression
- Logistic Regression
- Probabilities & Random Variables

Overview

2	April 25	Linear Programming I
3	April 29	Linear Programming II
4	May 2	Linear/Logistic Regression + Homework (2 weeks time)
5	May ?	Exercise Implementations (postponed)
6	May 16	Dynamic Programming I
7	May 20	Dynamic Programming II
8	May 23	Response Strategies / Game Theory
9	May 27	Project Assignments
10	June 3	Robust Optimization
11	June 13	Workshop / Group Meetings
12	June 20	Presentations (First Results)
13/14	June 24/27	Workshop / Group Meetings
15/16	July 1/4	Workshop / Group Meetings
17	July 11	Presentations (Final Results), Feedback, Documentation (Aug 31)