Data-Driven Decision-Making In Enterprise Applications

Linear Programming

Rainer Schlosser, Martin Boissier, Matthias Uflacker

Hasso Plattner Institute (EPIC)

April 25, 2019

Decision-Making Using Linear Programming

Linear Programming

- What is a Linear Program?
- Theoretical Foundations
- Standard Solution Algorithms
- Tricks to formulate decision problems as LP
- Examples, Examples, . . .

What is a Linear Program?

Decision variables $x_1, x_2,...$

The controls to be determined.

Constraints via ≤,=,≥

Expressed linearly in $x_1, x_2, ...$

One objective: max or min

Expressed linearly in $x_1, x_2, ...$

- Does the solver help you to define the right LP?
- How to formulate a given problem as an LP?
- What does "expressed linearly" means?

Which Terms are Linear in the Variables x_1, x_2, \dots ?

$$3x_1 - 2x_2$$
, x_1^{-3} , $a \cdot \ln(x_1)$, $\ln(a) \cdot x_1$
 $a \cdot x_1$, $a \cdot b \cdot x_1$, $a^2 \cdot x_1$, $a \cdot x_1^2$
 $|x_1|$, $\max(x_1, 5)$, x_1^2 / x_1 , $(x_1 - 3) \cdot (x_2 + 3)$
 $x_1 \cdot x_2$, x_1 / x_2 , $1_{\{x_1 = 5\}} := \text{ if } x_1 = 5 \text{ then } 1 \text{ else } 0$

Example of a Linear Program

Objective:
$$\max_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + 3 \cdot x_2$$

Constraints:
$$0.5 \cdot x_1 + x_2 \le 4$$
,

$$0 \le x_1 \le 3$$
, $x_2 \ge 0$

- Only use linear expressions
- Only use \leq , =, \geq in the constraints (<, \neq , > are not allowed!)
- Is such an LP understandable for all solvers?

Example of a Linear Program in Standard Form

Objective:
$$\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2$$

subject to
$$1 \cdot x_1 + 2 \cdot x_2 \le 8$$

$$1 \cdot x_1 + 0 \cdot x_2 \le 3$$

Standard form:

- Linear combinations of (*non-negative*) variables
- Use \leq (or =) in all constraints
- No variables on the "right-hand side" of the constraints

Optimal Solutions

Objective:
$$\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2$$

s.t.
$$1 \cdot x_1 + 2 \cdot x_2 \le 8$$

$$1 \cdot x_1 + 0 \cdot x_2 \le 3$$

$$\max_{x_1, x_2 \ge 0} \vec{c} \cdot \vec{x} \quad \text{s.t.} \quad A \cdot \vec{x} \le \vec{b}$$

with
$$\vec{c} := (2,3)$$
, $\vec{b} := (8,3)$,

$$A := \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$

Optimal Solution: Computed by solvers using standard algorithms

For further reading see: Simplex Algorithm,

Convex Polyeder Theory, etc.

Graphical Solutions (Continuous LP)

Example: $\max_{x_1 \ge 0, x_2 \ge 2} 4 \cdot x_1 + 3 \cdot x_2$ s.t. $2 \cdot x_2 \le 25 - x_1$, $4 \cdot x_2 \ge 2x_1 - 8$, $x_2 \le 2x_1 - 5$

• Continuous LP: One corner of the feasible space is always optimal!

Graphical Solutions (Integer LP)

Example: $\max_{\substack{x_1=0,1,2,...\\x_2=2,3,4,...}} 4 \cdot x_1 + 3 \cdot x_2$ s.t. $2 \cdot x_2 \le 25 - x_1$, $4 \cdot x_2 \ge 2x_1 - 8$, $x_2 \le 2x_1 - 5$

• Integer LP: Use discrete variables $x_1, x_2, ... \in \{0,1\}$ or $\in \{0,1,2,...\}$ Optimal solutions via integer solvers (see "Branch & Bound")

Examples, Examples

- Knapsack Problem
- Magic Square
- Matrix Inversion
- Project Assignment Problems
- Mixed Equilibria (Game Theory)

I Knapsack Problem

Given parameters:

- Number of potential items
- u_i Utility of packing item i, i=1,...,N
- S_i Space of item i, i=1,...,N
- C Capacity of the knapsack

Problem: Decide which items to take in order to maximize total utility while not exceeding the knapsack's capacity

I LP Model for the Knapsack Problem

Variables: x_i binary variable whether to pack item i, i=1,...,N

LP:
$$\max_{x_1,...,x_N \in \{0,1\}} \sum_{i=1,...,N} u_i \cdot x_i$$

maximize total utility

s.t.
$$\sum_{i=1,\dots,N} s_i \cdot x_i \le C$$

satisfy budget constraint

Let the solver do the rest!

Done.

I Implementation of the Knapsack LP (AMPL)

$$\max_{x_1,\dots,x_N\in\{0,1\}} \sum_{i=1,\dots,N} u_i \cdot x_i \qquad \text{s.t.} \qquad \sum_{i=1,\dots,N} s_i \cdot x_i \le C$$

```
reset;
param C := Uniform(50,100);
                                           # capacity
param N := Uniform(100,200);
                                           # number of items
param u \{ i \text{ in } 1..N \} := Uniform(3,8)
                                           # utility of item i
param s \{i in 1..N\} := Uniform(1,2)
                                           # space of item i
var x {i in 1..N} binary;
                                           # binary variables
maximize
           LP: sum{i in 1..N} u[i]*x[i]; # objective
subject to NB: sum\{i in 1..N\} s[i]*x[i] \leftarrow C; \# budget con.
                                           # obtain solution
solve; display x;
```

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

II Magic Square

$$N = n^2$$
 Numbers $i=1,...,N$ to be filled in a square of size $n \times n$, $n \ge 3$

Problem: Assign the numbers i=1,...,N to the cells of a square such that the sum of each row and each column is the same.

Note: The magic number is
$$C := N \cdot (N+1)/2 / n = n \cdot (n^2+1)/2 = 15$$

II LP Model for the Magic Square

Variables: $x_{i,j,k}$ binary variable whether number k, k=1,...,N is assigned to row i and column j, i,j=1,...,n

LP:
$$\max_{x_{i,j,k} \in \{0,1\}^{N \times n \times n}} \sum_{i=1,\dots,n,\ i=1,\dots,N} x_{i,j,k}$$
 (no objective is needed!)

s.t.
$$\sum_{i=1,...,n, k=1,...,N} k \cdot x_{i,j,k} = C$$
 for all $j=1,...,n$

$$\sum_{j=1,\dots,n,\ k=1,\dots,N} k \cdot x_{i,j,k} = C$$
 for all $i=1,\dots,n$

$$\sum_{k=1,...,N} x_{i,j,k} = 1$$
 for all $i,j=1,...,n$

$$\sum_{i=1,...,n, j=1,...,n} x_{i,j,k} = 1$$
 for all $k=1,...,N$

Hints

- At first: **Think!** Do not start to implement too early
- Do not hope that the LP/solver thinks in your favour!
- Remember: You have to **force** the solver to do the right thing
- Try as hard as you can to formulate the problem **linearly**
- Do not hesitate to use many variables and constraints
- 95% of the work is setting up the LP, 5% is implementation

III Matrix Inversion

$$a_{i,j}$$
 Coefficients of a given matrix A of size $n \times n$, $i,j=1,...,n$

Problem: Find the **inverse matrix** A^{-1} of matrix A determined by its coefficients $X_{i,j}$, i,j=1,...,n.

Note: The inverse A^{-1} is uniquely determined by satisfying:

$$A^{-1} \times A = A \times A^{-1} = I := \begin{pmatrix} 1 & 0 \\ \dots & 0 \\ 0 & 1 \end{pmatrix}$$

III Implementation of the Matrix Inversion LP

```
continuous variable for the coefficient of
Variables:
              X_{i,j}
                       row i and column j of the inverse matrix A^{-1}, i,j=1,...,n
           \max_{x_{i,j} \in \mathbb{R}^{n \times n}} \sum_{i,j=1,\dots,n} x_{i,j}
LP:
                                             (objective is optional!)
           \sum a_{i,k} \cdot x_{k,j} = 1_{\{i=j\}}
                                             for all i,j=1,...,n
s.t.
param n := 5;
                                                               # size of A
param a {i in 1..n,j in 1..n} := Uniform(-1,1); # coeff. of A
                                                              # coeff. of A^-1
       x {i in 1..n, j in 1..n};
var
subject to NB{i in 1..n,j in 1..n}:
                                                               # identity
        sum\{k in 1..n\} a[i,k]*x[k,j] = if i=j then 1 else 0;
solve; display x;
                                                               # solution output
```


IV Project Assignment Problem

Given parameters:

Number of workers/projects

 $W_{i,j}$ Willingness of worker i=1,...,N

to take project j=1,...,N

Problem: Decide how to distribute all projects

in order to maximize total welfare

while assigning one project to each worker

IV LP Model for the Project Assignment Problem

Variables: $X_{i,j}$ binary variable whether project i, i=1,...,N

is assigned to worker j, j=1,...,N

LP:
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}} \sum_{i=1,...,N, j=1,...,N} w_{i,j} \cdot x_{i,j}$$

s.t.
$$\sum_{i=1,...,N} x_{i,j} = 1$$
 for all $j=1,...,N$ (each worker gets 1 project)

$$\sum_{j=1,...,N} x_{i,j} = 1$$
 for all $i=1,...,N$ (each project is assigned)

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

Next Week

Homework: Try to solve/implement problem example I and II!

Describe the HPI Master Project Assignment Problem

Outlook:

- More complex (nonlinear) Examples
- Tricks to linearize Nonlinearities
- Implementations and Solvers
- Multi-objective Approaches

2	April 25	Linear Programming
3	April 29	Linear Programming II
4	May 2	Linear/Logistic Regression
5	May 6	Exercise Implementations
6	May 16	Dynamic Programming I
7	May 20	Dynamic Programming II
8	May 23	Response Strategies / Game Theory
9	May 27	Project Assignments
10	June 3	Robust Optimization
11	June 13	Workshop / Group Meetings
12	June 20	Presentations (First Results)
13/14	June 24/27	Workshop / Group Meetings
15/16	July 1/4	Workshop / Group Meetings
17	July 11	Presentations (Final Results), Feedback, Documentation (Aug 31)

Data-Driven Decision-Making in Enterprise Applications – Linear Programming