Data-Driven Demand Learning and Dynamic Pricing Strategies in Competitive Markets

Introduction

Rainer Schlosser, Martin Boissier, Matthias Uflacker

Hasso Plattner Institute (EPIC)

April 17, 2018

Outline

- Motivation: Dynamic Pricing under Competition
- Goals of the Course & Grading
- Introduction: Lecturer & Students
- Structure of the Course
- What will be expected from you?

Motivation

Opportunities:

Online markets are transparent

Prices can be easily adjusted

Market data (offer prices, sales) can be analyzed

Existing rule-based pricing strategies are suboptimal

• Challenges:

Stochastic demand, unknown customer behavior

Many competitors, steadily changing markets

Derive successful data-driven repricing strategies

Application: Selling Books on Amazon

Data-Driven Demand Learning and Dynamic Pricing Strategies - Introduction

Suboptimal Response Strategies in a Duopoly

	(small) profnath	(big)	profnath over previous bordeebook	bordeebook over profnath
8-Apr	\$1,730,045.91	\$2,198,177.95		1.27059
9-Apr	\$2,194,443.04	\$2,788,233.00	0.99830	1.27059
10-Apr	\$2,783,493.00	\$3,536,675.57	0.99830	1.27059
11-Apr	\$3,530,663.65	\$4,486,021.69	0.99830	1.27059
12-Apr	\$4,478,395.76	\$5,690,199.43	0.99830	1.27059
13-Apr	\$5,680,526.66	\$7,217,612.38	0.99830	1.27059

Which strategies are applied? Response times? Relevant factors?

How to find Smart Pricing Strategies?

Are there better strategies? Any ideas? Are you interested?

Technical Information

• Credits: 4 SWS (V/Ü), 6 ECTS (graded)

• When? Monday/Tuesday 13.30 - 15.00, weekly

Start: April 17, 2018, End: July 17, 2018

• Where? D-E 9/10

• Who? Rainer Schlosser, rainer.schlosser@hpi.de

Martin Boissier, martin.boissier@hpi.de

• Slides? HPI, Teaching, Summer 2018

Goals of the Course & Grading

• Goal: Build data-driven dynamic pricing strategies

for competitive online markets

• Learn: Demand estimation + Optimization + Simulation

• Do: Apply approaches & Measure performance

• Grading: 10% Regular attendance / Personal engagement

20% Performance / Design of strategies

30% Presentations

40% Documentation / Paper (End of semester)

Example: Dynamic Pricing Strategies under Competition

Rule-Based vs. Data-Driven Pricing

Demand Learning

time	sales	price	rank	com	petitor's p	rices for j	product i	(ISBN)
t	$\mathcal{Y}_t^{(i)}$	$a_t^{(i)}$	$r_t^{(i)}$	$p_{t,1}^{(i)}$	$p_{\scriptscriptstyle t,2}^{\scriptscriptstyle (i)}$	$p_{t,3}^{(i)}$	$p_{\scriptscriptstyle t,4}^{\scriptscriptstyle (i)}$	$ p_{t,K}^{(i)}$
1	0	19	3	13	17	20	25	
2	0	15	2	13	17	20	25	
3	1	10	1	13	15	20	/	
4	0	10	1	13	15	20	22	
5	1	12	2	11	15	20	24	

$$\arg \max_{\vec{\beta}} P(Y_1 = y_1 \mid a_1, \vec{s}_1, \dots, Y_N = y_N \mid a_N, \vec{s}_N)$$

$$= \underset{\beta_{m} \in \mathbb{R}, m=1,...,M}{\operatorname{arg max}} \left\{ \sum_{i=1}^{N} \left(y_{i} \cdot \ln \left(\frac{e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \right) + (1 - y_{i}) \cdot \ln \left(1 - \frac{e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \right) \right) \right\}$$

Stochastic Dynamic Optimization

$$\max E \left[\sum_{t=0}^{T} \underbrace{\mathcal{S}^{t}}_{\substack{discount \\ factor}} \cdot \left(\sum_{\substack{i_{t} \geq 0 \\ at \ price \ a_{t} \ in \ situation \ S_{t}}} \underbrace{P(i_{t}, a_{t}, S_{t})}_{\substack{t \ items \\ sales \ price}} \cdot \underbrace{i_{t}}_{\substack{t}} \cdot \underbrace{a_{t}}_{\substack{t \ initial \ state}} \right], \quad 0 < \delta \leq 1$$

$$V_{t}(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{probability} \cdot \left(\underbrace{i \cdot a}_{today's \ profit} + \underbrace{\delta \cdot V_{t+1}(F(a))}_{best \ disc. \ exp. future \ profits \ of \ new \ state} \right) \right\}$$

Price Wars Platform

Data-Driven Demand Learning and Dynamic Pricing Strategies - Introduction

Pricing under Competition: Performance Measuring

Prerequisites

• Programming

Parameters, Data Preparation & Analysis Loops, Recursions

Basic Mathematical Background

Sets, Vectors
Probabilities, Random Variables, Expected Values

More does not harm

Regression Analysis
Machine Learning Techniques
Game Theory

Introduction: Lecturer & Students

Lecturer: Background / Education

Interests / Field of Research

Expectations

• Students: Background / Education?

Interests / Field of Research?

Expectations?

Structure of the Course

- Meetings: Lectures on "Dynamic Pricing":
 - (i) Pricing Simulation Platform
 - (ii) Customer Behavior
 - (iii) Demand Estimation
 - (iv) Pricing Strategies
 - (v) Dynamic Pricing Challenge
- June/July: Apply & Improve Data-Driven Strategies
 - Input/Support, Questions/Answers, Presentations
- Aug/Sep: Documentation of Projects Results

What will be expected from you?

- Use Machine Learning to Estimate Demand / Sales Probabilities
- Implement Algorithms to Compute Optimized Prices
- Simulate the Outcome of Dynamic Pricing Strategies
- Measure the Performance of Strategies
- Document your Results

Overview

2	April 23/24	Price Wars Platform
3	April 30/1	Customer Behavior
4	May 7/8	Demand Estimation I
5	May 14/15	Demand Estimation II
6	May 21/22	Pricing Strategies
7	May 28/29	Dynamic Pricing Challenge / Projects
8	June 4/5	no Meeting
9	June 11/12	Workshop / Group Meetings
10	June 18/19	Presentations (First Results)
11	June 25/26	Workshop / Group Meetings
12	July 2/3	Workshop / Group Meetings
13	July 9/10	no Meeting
14	July 16/17	Presentations (Final Results), Feedback, Documentation (Aug/Sep)

