Data-Driven Decision-Making In Enterprise Applications

Introduction

Rainer Schlosser, Martin Boissier, Matthias Uflacker

Hasso Plattner Institute (EPIC)

April 18, 2019

The World is Full of Decision Problems

What Constitutes a Decision Problem?

How to Approach Decision Problems?

Agenda

- Introduction \checkmark
- Personal Background
- Goals of the Course & Grading
- Examples: Decision Problems in Data-Driven Applications

HPI

Personal Background

- Ph.D. Operations Research (2014), Humboldt-University of Berlin
- Hasso Plattner Institute, EPIC, since 2015
- Field of Research
 - Data-driven decision support
 - Focus on stochastic dynamic models
- Current Areas of Applications
 - Operations management (e.g., dynamic pricing, ordering, advertising)
 - Database configuration (e.g., data placement problems, index selection)

Agenda

- Introduction \checkmark
- Personal background \checkmark
- Goals of the Course & Grading
- Examples: Decision Problems in Data-Driven Applications

Technical Information

- Credits? 4 SWS (V/Ü), 6 ECTS (graded)
- When? Monday 13.30 15.00 / Thursday 11.00 12.30
 Start: April 18, 2019, End: July 11, 2019
- Where? Room D-E. 9/10
- Who? Rainer Schlosser, <u>rainer.schlosser@hpi.de</u>
 Martin Boissier, <u>martin.boissier@hpi.de</u>
- Slides? EPIC, Teaching, Summer 2019

Structure of the Course

- April/May: Lectures on "Optimization Techniques":
 - (i) Linear Programming
 - (ii) Integer Linear Programming
 - (iii) Linear/Logistic Regression
 - (iv) Dynamic Programming
 - (v) Robust Optimization
- June/July: Choose Projects, Apply/Extend Suitable Techniques, Work in Teams, Input/Support, Presentations
- Aug/Sep: Documentation of Projects Results

Overview

2	April 25	Linear Programming
3	April 29	Integer Linear Programming
4	May 2	Linear/Logistic Regression
5	May 6	Exercise Implementations
6	May 16	Dynamic Programming I
7	May 20	Dynamic Programming II
8	May 23	Response Strategies / Game Theory
9	May 27	Project Assignments
10	June 3	Robust Optimization
11	June 13	Workshop / Group Meetings
12	June 20	Presentations (First Results)
13/14	June 24/27	Workshop / Group Meetings
15/16	July 1/4	Workshop / Group Meetings
17	July 11	Presentations (Final Results), Feedback, Documentation (Aug 31)

Goals of the Course & Grading

- Goal: Develop models to compute optimized decisions for data-driven applications
- Learn: Optimization techniques
- Do: Apply & extend different optimization approaches
- Grading: 10% Regular attendance / Personal engagement
 - 20% Results / Homework
 - 30% Presentations
 - 40% Documentation / Paper (End of semester)

Prerequisites

• Programming

Parameters, Data Preparation Loops, Recursions, Simulations

Basic Mathematical Background

Sets, Vectors Probabilities, Random Variables, Expected Values

• More does not harm

Regression Analysis Experience with Solvers Game Theory

Agenda

- Introduction \checkmark
- Personal Background \checkmark
- Goals of the Course & Grading \checkmark
- Examples: Decision Problems in Data-Driven Applications

Problem Example 1 – Dynamic Pricing

How can we assist an e-commerce merchant in optimizing his/her prices?

Impact of Price Decisions and Changing Markets

Characteristics: - Exits & entries of competitors

- Active and passive competitors
- Price cycles

Pricing Options: Price Updates on Amazon

• Price update process on Amazon: (i) request a market situation (ii) optimize price based on demand model, (iii) send price update

Data-priven perision maning in billiprise apprications introduction

Estimation of Price Impacts and Optimization

- (1) Estimation of Sales Probabilities
 - ca. 10 market situations/day/item with 1-20 firms (100 Mio obs.)
 - ca. 2000 sales/month (1 year of data)
 - Predict sales probabilities (for time intervals and market situations)
- (2) Price Optimization

Estimation of Price Impacts and Optimization

- (1) Estimation of Sales Probabilities
 - ca. 10 market situations/day/item with 1-20 firms (100 Mio obs.)
 - ca. 2000 sales/month (1 year of data)
 - Predict sales probabilities (for time intervals and market situations)
- (2) Price *Optimization*
 - Maximize expected discounted long-term profit
 - Dynamic programming

Estimation of Price Impacts and Optimization

(1) Estimation of Sales Probabilities

- ca. 10 market situations/day/item with 1-20 firms (100 Mio obs.)
- ca. 2000 sales/month (1 year of data)
- Predict sales probabilities (for time intervals and market situations)

(2) Price Optimization

$$\max E(G_t | X_t = n, \vec{S}_t = \vec{s}_t), \quad G_t \coloneqq \sum_{s=t}^{T-1} \delta^{s-t} \cdot \left(\left(a(X_s, \vec{S}_s) - c \right) \cdot \left(X_s - X_{s+1} \right) - l \cdot X_s \right)$$
(1)

$$a(n,\vec{s}) = \operatorname*{arg\,max}_{a\in A} \left\{ \sum_{i\geq 0} \tilde{P}(i,a\mid\vec{s}) \cdot \left((a-c) \cdot \min(n,i) - n \cdot l + \delta \cdot V\left((n-i)^+,\vec{s}\right) \right) \right\}$$
(2)

$$\frac{V(n,\vec{s}) = \max_{a \in \mathcal{A}} \left\{ \sum_{i>0} \tilde{P}(i,a \mid \vec{s}) \cdot \begin{pmatrix} (a-c) \cdot \min(n,i) - n \cdot l \\ -z \cdot \delta \cdot V((n-i)^+, \vec{s}) \end{pmatrix} / (1 - \tilde{P}(0,a \mid \vec{s}) \cdot z \cdot \delta) \right\}$$
(3)

Comparison of Performance Results

Comparison: Our *data-driven* strategy vs. the seller's *rule-based* strategy

Strategy	#Books	% Sold (3 months)		Profit per sale (EUR)		Acc. profit
Rule-Based	5,534	42 %	100.0 %	2.56€	100.0 %	100.0 %
HPI1 (high prices)	5,206	29%	-30 %	3.58€	+40 %	-1.5 %
HPI2	5,407	37 %	-12 %	3.03€	+19 %	+4.3%
HPI3	5,241	44 %	+7 %	2.94 €	+15 %	+23.1 %
HPI ₄ (low prices)	5,200	45 %	+8 %	2.52€	-1 %	+6.4 %

Publications: Computers and Operations Research (2018) KDD 2018

Optimal Response Strategies in Duopoly Settings

Question: How do optimal price adjustment strategies look like?

Setting: Infinite horizon, competitor's response strategy is known

Results:

against $F(a) := \max(a-1,1)$

Optimal Response Strategies in Duopoly Settings

Question: How do optimal price adjustment strategies look like?

Setting: Infinite horizon, competitor's response strategy is known

Data-Driven Decision-Making in Enterprise Applications - Introduction

Optimal Response Strategies in Duopoly Settings

Question: How do optimal price adjustment strategies look like?

Setting: Infinite horizon, competitor's response strategy *is known*

Data-Driven Decision-Making in Enterprise Applications - Introduction

Interaction of Self-Adapting Strategies (Short-Term)

- Now, price responses *have to be learned*!
- Both players update their strategies
- Do equilibria exist?

anticipated price reactions

Further Decision Problems

Revenue Management (Dynamic Programming)

- Inventory Management
- Advertising

Database Configuration (Linear Programming)

- Database Replication
- Data Tiering

Overview

2	April 25	Linear Programming
3	April 29	Integer Linear Programming
4	May 2	Linear/Logistic Regression
5	May 6	Exercise Implementations
6	May 16	Dynamic Programming I
7	May 20	Dynamic Programming II
8	May 23	Response Strategies / Game Theory
9	May 27	Project Assignments
10	June 3	Robust Optimization
11	June 13	Workshop / Group Meetings
12	June 20	Presentations (First Results)
13/14	June 24/27	Workshop / Group Meetings
15/16	July 1/4	Workshop / Group Meetings
17	July 11	Presentations (Final Results), Feedback, Documentation (Aug 31)