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Outline 
 

 Questions regarding last Lecture? 

 Problem Classifications & Solvers 

 Today: Basic Regression Models 

 Linear & Logistic Regression 

 Homework 
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Problem Classifications & Solvers 
 

 Linear Continuous: basically all solvers 

 Linear Integer: Cplex, Gurobi (+), Minos (–) 

 Nonlinear Continuous: Minos (+), Cplex, Gurobi (–) 

 Nonlinear Integer: Bonmin, Baron (+) most solvers (–) 

 Use linearizations and/or continuous relaxations 

 to avoid Nonlinear Integer problems 

 Use:   option solver './cplex';  or   option solver './minos'; 
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 Linear Regression 
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Example: High Jump 
 

 High Jump Results 

 How they can be explained?    What are the key factors? 

 Data:   Results and features of participants (observations) 

 What is a suitable regression model? 

 How does it work?    What is the idea? 

 How can we derive forecasts? 

 How good are our forecasts?    Is there a measure? 
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High Jump Data 
 

 ID Name Result Size Gender Party 

 1 Keven 160 176 1 0 

 2 Martin 155 178 1 0 

 3 Christian 140 172 1 1 

 4 Matthias 150 175 1 0 

 5 Ralf 130 160 1 0 

 6 Stefan 165 190 1 1 

 7 Markus 165 185 1 0 

 8 Cindy 130 168 0 0 

 9 Julia 130 163 0 1 

 10 Anna 145 170 0 0 

 11 Viktoria 155 171 0 0 

 12 Marilena 125 167 0 0 
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Notations 
 

 Number of observations N in the example? 

 Which quantity do we want to explain? (dependent variable y) 

 Which quantities may be factors? (explanatory variables x) 

 What might be missing variables? 

 Mean of the dependent variable? 
1

1 N

i

i

y y
N 

   

 Variance of the dependent variable? 
2

1

1
( )

N

i

i

VAR y y
N 

    

 Plausibility checks:   Expectations?    Hypotheses? 

 How do we quantify the impact/dependencies? 
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Least Squares Regression 
 

 Idea:   Use explanatory variables  x  to explain dependent variable  y. 

 Approach:   Try to reconstruct y by linear parts of x 

  �
(1) (2) (3)

1 2 3

: 1

. . .i i i iy x x x  


           with given data ix
�

, iy , 1,..,i N  

 k - coefficients have to be chosen such that the fit is “good”. 

 What is a “good” fit?    We need a measure. 

 Answer:   Minimize, e.g., the sum of squared deviations, i.e., 
 

   
1 2 3 4

2
(2) (3) (4)

1 2 3 4
, , ,

1

min
N

i i i i

i

x x x y
   

   




      
ℝ
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Solution & Forecasts 
 

 We obtain optimal coefficients 
* * * *

1 2 3 4, , ,      (via a quadratic solver) 

 What can we do with the coefficients  
* ( 102, 1.43, 3.05, 5.43)   
�

? 

 (1)   We can quantify the impact of factors 
(2) (3) (4), ,x x x  on y! 

 (2)   We can compute smart forecasts! 

 Example:   We have a new participant    (179 tall,  male,  party: yes) 

 Forecast:    Estimated/expected result = 
* * * *

1 2 3 4179 0 1 151.74           
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How reliable is our Model? 
 

 We can use various combinations of explanatory variables. 

 We will always obtain a result and some optimal 
*  coefficients! 

 How to measure the quality of a model?    There is a measure:  
2R . 

 Idea:  How much of the variance in y can be explained by the model. 
 

 Model fit: 
* * (2) * (3)

1 2 3
ˆ ...i i i iy x x y          

 

 New variance: 
2

1

1
ˆ( )

N

new i i

i

VAR y y
N 

         
2

1

1
( )

N

i

i

VAR y y
N 

     

 Goodness of fit: 
2 1 [0,1]newVAR

R
VAR

          (large is good)
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 Logistic Regression 



 

11 

 

 

Estimation of Probabilities 
 

 

1 2 3 4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

Can the relation/prediction ( ) 1.06 0.32y x x     be used as sales probability? 

x

no sale

sale

( ) 1.06 0.32y x x  

price
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Second Approach: Logistic Regression 
 

 Binary 0/1 y observations, explanatory variable x, and probabilities P(x) 

 

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

 
 

 What is the idea behind logistic regression? 

1 2

1 2

exp( )
( 1 ) :

1 exp( )

x
P y x

x

 
 
 

 
  

x

sale

no sale

1 13.95, 2.42  

price
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Approach: Maximum Likelihood Estimation 
 

 Idea: (1)  Choose a model + (2)  Find the best calibration 

 Toy Example: Coin Toss 

 Data: 010111010100010001010010001100000 

 Model: Bernoulli Experiment with success probability p 

 Calibration: Which model, i.e., which p explains our data best? 
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Our Model: Bernoulli Distribution 
 

 Random variable Y   sale occurred (1 yes, 0 no) 

 

 Success probability ( 1)P Y p     and   ( 0) 1P Y p    

 

 Bernoulli distribution 
1( ) (1 )k kP Y k p p     ,   0,1k   

 

 (Binomial distribution) ( ) (1 )k n k
n

P Y k p p
k

 
     

 
, 

  for multiple sales 0,....,k n   (cf. n=1) 
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Likelihood Function 
 

 Bernoulli distribution  
1( ) (1 )k kP Y k p p     ,  0,1k   

 

 Consider observed data 1( ,..., )Ny y y
�

,  {0,1}iy  ,  1,...,i N  

 

 Probability for one obs. 
1

( ) (1 )i iy y

i iP Y y p p
    ,  {0,1}iy   

 

 Joint probability 1 1

1

( ,..., ) ( )
N

N N i i

i

P Y y Y y P Y y


     

 (Likelihood Function) 
1

1

(1 )i i

N
y y

i

p p




    

 

 Now, maximize the joint probability over the success probability p! 



 

16 

 

 

Maximize the Likelihood Function 
 

 1 1max ( ,..., )N NP Y y Y y         i.i.d.  (independent, identically distributed) 

  
1

max ( )
N

i i
p

i

P Y y


  

  
1

[0,1]
1

max (1 )i i

N
y y

p
i

p p





   

 

Actually, we wanted to find the best p. 

 

 
1

[0,1] 1

arg max (1 )i i

N
y y

p i

p p


 

   

 

We are interested in First Order Conditions. Hence, we do not like products! 
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Monotone Increasing Transformations 
 

    
1

[0,1] 1

arg max (1 )i i

N
y y

p i

p p


 

 
  

 
  

 
1

[0,1] 1

arg max 5 (1 ) 17i i

N
y y

p i

p p


 

  
      

  
       ?    (linear) 

 

2

1

[0,1] 1

arg max (1 )i i

N
y y

p i

p p


 

   
    

   
               ??   (convex) 

 
1

[0,1] 1

arg max ln (1 )i i

N
y y

p i

p p


 

  
    

  
            ???  (concave) 
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Log-Likelihood Function 
 

    1 1arg max ( ,..., )N N
p

P Y y Y y   

 
1

[0,1] 1

arg max ln (1 )i i

N
y y

p i

p p


 

  
    

  
  

  1

[0,1] 1

arg max ln (1 )i i

N
y y

p i

p p


 

 
   

 
  

     1

[0,1] 1

arg max ln ln (1 )i i

N
y y

p i

p p


 

 
   

 
  

  
[0,1] 1

arg max ln( ) (1 ) ln(1 )
N

i i
p i

y p y p
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Optimization 
 

 FOC: 
!

1 1( ,..., ) 0N NP Y y Y y
p


  

  

   
!

1

ln( ) (1 ) ln(1 ) 0
N

i i

i

y p y p


        

   
!

1

1
) 0

1

N
i i

i

y y

p p

 
   

       

!

1
(1 2 )

(1 ) (1 ) 0

i i

N

i i

i
y y p

p y p y


   

 
      
 
 

 ���������  

 

 Solve for p. 

 1 Variable, 1 Equation    (Unique solution 
*p ) 

 

 Result:  Our data fits to the model 
*( 1)P Y p     and   

*( 0) 1P Y p   . 
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 Generalization & Pricing Use Case 
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Use Case: Demand Estimation on Amazon 
 

 Regular price adjustments  (e.g., time intervals of ca. 2 hours) 

 

 Observation of market conditions (at the time of price adjustments) 

 

 e.g., Competitors’ prices, quality, rating, shipping time, etc. 

 

 Sales observations:  Points in time (within certain intervals) 

 

 Rare events, i.e., 0 or 1 sales between price adjustments (2 hours) 
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A Seller’s Data Set 
 

period sale price rank competitor’s prices  for product i (ISBN) 

t ( )i

ty  
( )i

ta  
( )i

tr  
( )

,1

i

tp  
( )

,2

i

tp  
( )

,3

i

tp  
( )

,4

i

tp  ... 
( )

,

i

t Kp

         

1 0 19 3 13 17 20 25  

2 0 15 2 13 17 20 25  

3 1 10 1 13 15 20 /  

4 0 10 1 13 15 20 22  

5 1 12 2 11 15 20 24  

6 0 15 3 11 14 20 24  

...         
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Estimation of Sales Probabilities 
 

 Goal: Quantify sales probabilities as function of our offer price 

 

 Idea: Sales probabilities should depend on market conditions 

 

 Approach: Maximum Likelihood 

 

 

 (1) Choose family of models:  Logistic function 

 

 (2) Define explanatory variables (based on our data) 
 

 (3) Calibrate model: Find model coefficients 
 

 (4) Result: Quantify sales probabilities for any market situation! 
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Explanatory Variables 
 

 Data:  Market situation in t:  1 1 1 1( , ,..., , ,..., , ,..., , ,..., ,...)K K K Ks t p p q p r r f f
�

 

 

 Define explanatory variables   (What could affect decisions?): 

1( , ) : 1x a s 
�

 (Intercept) 

2 ( , ) :x a s price rank
�

 (Rank of offer price within competitors’ prices) 

3
1,...,

( , ) : min k
k K

x a s a p


 
�

 (Price difference to best competitor) 

4 ( , ) :x a s quality rank
�

 (Rank of our product condition) 

5 ( , ) : #x a s commercials
�

 (Number of competitors with feedback >10000) 

6 ( , ) :x a s combinations
�

 (Number of comp. with better price + better quality) 

7 { 100 mod 10 9}( , ) : 1 ax a s  
�

 (Psychological Prices) 

. . . 
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One Family of Models:  Logistic Function 
 

  1| ( , ) : / (1 )x xP Y x a s e e    
� �� �� �

 

  
 
 

1 1 2 2

1 1 2 2

exp ( , ) ( , ) ...
(0,1)

1 exp ( , ) ( , ) ...

x a s x a s

x a s x a s

 
 
   

 
    

� �

� �  

 

 There are other families, but this is a good family 

 

 Maximum Likelihood Estimation: 

 Find best 
�

 coefficients for our data , ( , )t t ty x a s
� �

, 1,...,t N  
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Maximize the Log-Likelihood Function 
 

 Recall:   

 1 1arg max ( ,..., )N N
p

P Y y Y y   
[0,1] 1

arg max ln( ) (1 ) ln(1 )
N

i i
p i

y p y p
 

 
      

 
  

 

 Now, we have the conditional probabilities: 

  1 1 1 1arg max | , , . . . , | ,N N N NP Y y a s Y y a s


 
�

� �
 

 

( , ) ( , )

( , ) ( , )
, 1,..., 1

arg max ln (1 ) ln 1
1 1

i i i i

i i i i
m

x a s x a sN

i ix a s x a s
m M i

e e
y y

e e

 

 


 

 
  

      
                     


� �� � � �

� �� � � �

ℝ
 



 

27 

 

 

Optimization 
 

 FOC:   
!

1 1 1 1( | , , . . . , | , ) 0N N N NP Y y a s Y y a s



  


� �
�  

 

( , ) ( , ) !

( , ) ( , )
1

ln (1 ) ln 1 0
1 1

i i i i

i i i i

x a s x a sN

i ix a s x a s
i m m

e e
y y

e e

 

  

 

 


     
                   


� �� � � �

� �� � � � , 1,...,m M  


( , ) !

( )

( , )
1

0
1

i i

i i

x a sN
m

i ix a s
i

e
y x

e










  
        


�� �

�� � ,   for all 1,...,m M  

 Solve the nonlinear system for 1( ,..., )M  
�

 

 M Variables, M Equations    (Unique solution 
* * *( ,..., )M M  
�

) 

 Result:  Our data fits to the model  
* *( , ) ( , )1| ( , ) : / (1 )x a s x a sP Y x a s e e    
� �� � � �� �
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Check Proof 
 

 

 

 

1
( , ) ( , ) !1

( , )

( , ) ( , )
1

1
( , )

( , )

( , )

1 (1 ) ln 1 0
1 1

( 1) 1
1

i i i i

i i

i i i i

i i

i i

i i

x a s x a sN
x a s

i ix a s x a s
i m m

x a s
x a s

i x a s

e e
y e y

e e

e
y e

e

 


 






 


 



 









                         

 
     


� �� � � �

�� �

� �� � � �

�� �
�� �

�� �  

   

1
!2 2

( , ) ( , ) ( , )( ) ( )

( , )
1

1 2
( , ) ( , ) ( , ) ( ,( )

1
( ) (1 ) 1 ( ) 0

1

1 ( 1) 1 ( ) (1 ) 1

i i i i i i

i i

i i i i i i i

N
x a s x a s x a sk k

i i ix a s
i

x a s x a s x a s x ak

i i i

e x y e e x
e

y e e e x y e

  



  


 

  





    

              

         


� � �� � � � � �

�� �

� � �� � � � � � � 

 

!1
) ( , ) ( )

1

( , ) !
( ) ( )

( , ) ( , )
1

( , ) !
( ) ( )

( , )
1

( ) 0

1
( ) (1 ) ( ) 0

1 1

( ) ( ) 0
1

i i i

i i

i i i i

i i

i i

N
s x a s k

i

i

x a sN
k k

i i i ix a s x a s
i

x a sN
k k

i i i x a s
i

e x

e
y x y x

e e

e
y x x

e

 



 






 





 







   
 

     
 

 
     







� �� � �

�� �

� �� � � �

�� �

�� �
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Application of the Model Obtained 
 

 Observe current market situation for a product:  s
�

 

 

 For any admissible offer prices a we can evaluate ( , )x a s
� �

 and obtain 

 

  
*

*

( , )

( , )
1| ( , ) :

1

x a s

x a s

e
P Y x a s

e








 



�� �

�� �

� �
 

 

 Now, we can optimize expected profits (for one time interval): 

 

 

*

*

( , )

( , )0
max ( )

1

x a s

x a sa

e
a c

e









  
  

  

�� �

�� �  
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Prediction of Sales Probabilities 
 

 

 Example:   Competitor’s prices   

 

 

 

 

 

 

price
0 5 10 15 20

a

0.05

0.10

0.15

0.20

0 5 10 15 20
a

0.05

0.10

0.15

0.20

( )sales probability P a ( 3) ( )expected profit a P a 

 4.26, 5.18, 5.31, 5.55, 5.86, . . .p 
�
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Summary 
 

(+) Logistic Regression is simple and robust 

 

(+) Allows for many observations N and many features M 

 

(+) Plausibility Checks & Closed Form Expressions 

 

(+/–) Definition of Customized Explanatory Variables 

 

(–) No dependencies between variables 

 

(–) Limited to binary dependent variables 
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What is a good Model? 
 

 Use “Goodness of fit” measures (for MLE models) 

 AIC (low is good, trade-of between fit and number of variables M) 

  
1

: 2 ln (1 ) ln(1 ) 2
N

i i i i

i

AIC y p y p M


           

 Note, ip  depends on all features ix  and the optimal 
*  coefficients. 

 Normalized (McFadden Pseudo R^2): 
2

0: 1 /R AIC AIC     (vs. Null-model) 

 Be creative:   Test different variables and find the smallest AIC value. 

  Hint:  Not quantity but quality counts! 
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Next Lecture (May 16) 
 

Homework: Solve at least 2 out of 4 of the following problems 

  The latest version of the HPI Master Project Assignment Problem 

  A model to solve Sudoku examples 

  Soccer line-up with several constraints 

  A model to solve logistic regressions 

 

Hand in (May 23):  (i) written key formulas/model & (ii) executable (Ampl) files 

Teams of at most two students are allowed. Questions per Mail. 

For further details take a look at the course website. 
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Overview 
 

2 April 25 Linear Programming I 
 

3 April 29 Linear Programming II 
 

4 May 2 Linear/Logistic Regression   +   Homework (3 weeks time) 
 

5 May 16 Exercise Implementations 
 

6 May 20 Dynamic Programming 
 

7 May 23 Response Strategies / Game Theory 
 

8 May 27 Project Assignments 
 

9 June 3 Robust Optimization 
 

10 June 13 Workshop / Group Meetings 
 

11 June 20 Presentations (First Results) 
 

12/13 June 24/27 Workshop / Group Meetings 
 

14/15 July 1/4 Workshop / Group Meetings 
 

16 July 11 Presentations (Final Results), Feedback, Documentation (Aug 31) 


