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The Worlds is Full of . . . ﬂ

° Problems & Goals

° Decisions

e  Uncertainty

° We often hear: “Risk-Sensitive Decision-Making”, “Robustness”,

“Minimizing Risk”, “Eliminate Risk”, “Balance Risks”, . ..

But: What exactly does it mean? What is your definition?
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Examples
e Index Selection, Partial Replication

e Data Layout / Compression, etc.



Database Configuration

Examples
e Index Selection, Partial Replication

e Data Layout / Compression, etc.

Goals & Objectives
e Optimize “performance”: min runtime, min data, max throughout
e Constraints: budgets, bounds, computation time, reconfiguration costs

e Robustness: variance? worst case? uncertainty? risk aversion?



Data-Driven Workload Anticipation ﬂ

Optimize “performance” based on historical data via . . .

e  observed workloads (static + deterministic)
o forecasted workloads (dynamic + deterministic)

e  multiple potential future workload scenarios (dynamic + stochastic)



Data-Driven Workload Anticipation ﬂ

Optimize “performance” based on historical data via . . .
e  observed workloads (static + deterministic)
o forecasted workloads (dynamic + deterministic)

e  multiple potential future workload scenarios (dynamic + stochastic)

Let “workload” be characterized by number & costs of queries over time

(a) types of queries vary
(b) number of queries vary

(c) costs of queries vary (cf. skewness)



Observed, Forecasted, and Potential Workloads
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Solutions for Deterministic Approaches ﬂ

Existing solutions for deterministic workloads (observed & forecast)
e  numerical algorithms (e.g., IBM approach for Index Selection (IS))

e linear programming (e.g., CoPhy for IS or Stefan for Replication)



Solutions for Deterministic Approaches ﬂ

Existing solutions for deterministic workloads (observed & forecast)

e  numerical algorithms (e.g., IBM approach for Index Selection (IS))

e linear programming (e.g., CoPhy for IS or Stefan for Replication)

In general, solution approaches have in common: max f(X)
X

e decisions X satisfy certain constraints (budget, etc.)

e  decisions are chosen based on “performance” comparisons, cf. f(X)
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Performance F'is random! Assume K potential scenarios with probability p; :

e expected performance max E [F ()?)] = Z D, [ (X)
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Approaches for Stochastic Problems & Robustness ﬂ

Performance F'is random! Assume K potential scenarios with probability p; :

e expected performance max E [F ()?)] = Z D, [ (X)

k=T,...K
e mean-variance opt. max £ [F (55)] —-a- Var [F (76)]
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e utility functions

e worst case
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Approaches for Stochastic Problems & Robustness ﬂ

Performance F'is random! Assume K potential scenarios with probability p; :

expected performance

mean-variance opt.

utility functions

worst case

max E[F(¥)]= >, p, fi(¥)

k=1,...K

max E[F(?c)] -a- Var[F(?c)]
X | S ——
= > BARG-EFE))’

k=l,..K

max E|u(F())]= P u(f(%))

k=1,...K

12



Approaches for Stochastic Problems & Robustness ﬂ

Performance F'is random! Assume K potential scenarios with probability p; :

expected performance

mean-variance opt.

utility functions

worst case

max E[F(¥)]= >, p, fi(¥)

k=1,...K

max E[F(fc)] -a- Var[F(?c)]
X | S ——
= > BARG-EFE))’

k=l,..K

max E|u(F())]= P u(f(%))

k=1,...K
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Robustinisierung of Existing Approaches ﬂ

Idea: Adapt existing deterministic solutions max f(X)

(1) use multiple workloads & (2) adapt the performance criteria
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Robustinisierung of Existing Approaches ﬂ

Idea: Adapt existing deterministic solutions max f(X)
(1) use multiple workloads & (2) adapt the performance criteria

Derive stochastic solutions as follows:

(i)  expected performance: let f(xX)=FE :F ()?)] = D, (%)

k=1,...K

(i) mean-variance optimization: let f(X)=F F ()?)] —a-Var [F ()?)]

(iii) utility functions: let f(3¥)=E[u(F)]
(iv) worst case: let f(X):=max kr_lllinK S (%)
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Discussion of Increased Problem Complexity ﬂ

e Definition of workload scenarios:

e Number of scenarios limited:
e More decisions/variables:

e Adaption of constraints:
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Discussion of Increased Problem Complexity ﬂ

e Definition of workload scenarios: based on historical data
use Conf.Intvls of Forecasts (TSA)

let practitioners decide
e Number of scenarios limited:
e More decisions/variables:

e Adaption of constraints:
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Discussion of Increased Problem Complexity ﬂ

Definition of workload scenarios:

Number of scenarios limited:
More decisions/variables:

Adaption of constraints:

based on historical data
use Conf.Intvls of Forecasts (TSA)

let practitioners decide
no
no

no
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Discussion of Increased Problem Complexity ﬂ

e Definition of workload scenarios: based on historical data
use Conf.Intvls of Forecasts (TSA)

let practitioners decide

e  Number of scenarios limited: no
e  More decisions/variables: no
e Adaption of constraints: no
e New Nonlinearity: no, BQP, yes, yes
Is this a problem? no, hardly, yes (iif a solver is used), no
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Examples (Index Selection) ﬂ

e Numerical heuristic “IBM”
(1) define index candidates
(11) pick indexes greedily following the criteria: saved runtime/space

(i11) shuffle to account for index interaction

To do: Adjust step (i1), 1.e., use some adapted “robust” criteria (easy)
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Examples (Index Selection) ﬂ

e Numerical heuristic “IBM”
(1) define index candidates
(11) pick indexes greedily following the criteria: saved runtime/space

(i11) shuffle to account for index interaction

To do: Adjust step (i1), 1.e., use some adapted “robust” criteria (easy)

e Solver-based heuristic “CoPhy”
(1) define index candidates

(i1) solve integer LP, i.e., minimize total runtime

To do: Adjust step (i1) for Mean-Variance optimization (interested?)
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Robustinisierung of CoPhy ﬂ
minimize Z D, Z b, f;()z

Old: Zox e{o 1},mel,

Fatr) el Lo =L, J=LnQsiel ;U0
Z z; =1 VJj Index decision for query j
iel; 0
z; <X, V], i Index i used at all?
Zsm X, <4 Budget constraint
mel
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Robustinisierung of CoPhy ﬂ

o Mz, 2 p 2, b0z

i leel Uo k=L Jj=l,nQsil ;0
_ Z T 1 Jj Index decision for query j
iel; 0
z; <X, Vj,i Index i used at all?
x < .
Zsm X, <4 Budget constraint
mel
New: oinmize, 2, pit 2, b S0z ra
Sp iy el o0 KoK j=1,..0iel; L0 , (quadratic)
—EW )
ta Z P Z bjk fj(l) z, —EW
k=l,...K Jj=lin0,i€l ;L0
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Summary ﬂ

e Use multiple stochastic workloads instead of forecasted ones

e Different techniques to include robustness can be used

e Existing approaches just slightly have to be extended

e Additional complexity is tolerable

e Concepts are general applicable

e Approach is suitable if (1) randomness is high & (i1) robustness is needed
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Summary ﬂ

e Use multiple stochastic workloads instead of forecasted ones

e Different techniques to include robustness can be used

e Existing approaches just slightly have to be extended

e Additional complexity is tolerable

e Concepts are general applicable

e Approach is suitable if (1) randomness is high & (i1) robustness is needed
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Overview

2 April 25 Linear Programming [

3 April 29 Linear Programming II

4 May 2 Linear/Logistic Regression + Homework (3 weeks time)
5 May 16 Exercise Implementations

6 May 20 Dynamic Programming

7 May 23 Pricing in Competitive Markets

8 May 27 Project Assignments + Homework 2 (until June 13)

9 June 3 Workshop / Group Meetings

10 June 13 Workshop / Group Meetings (hand in Homework II)

11 June 20 Presentations (First Results)

12 June 24 Robust Optimization Concepts

13 June 27 Workshop / Group Meetings

14/15 July 1/4 Workshop / Group Meetings

16 July 11 Presentations (Final Results), Feedback, Documentation (Aug 31)
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