Data-Driven Decision-Making In Enterprise Applications

Robust Optimization Concepts

Rainer Schlosser

Hasso Plattner Institute (EPIC)

June 24, 2019

The Worlds is Full of . . .

- Problems & Goals
- Decisions
- Uncertainty

The Worlds is Full of . . .

- Problems & Goals
- Decisions
- Uncertainty

• We often hear: "Risk-Sensitive Decision-Making", "Robustness", "Minimizing Risk", "Eliminate Risk", "Balance Risks", . . .

But: What exactly does it mean? What is your definition?

Database Configuration

Examples

- Index Selection, Partial Replication
- Data Layout / Compression, etc.

Database Configuration

Examples

- Index Selection, Partial Replication
- Data Layout / Compression, etc.

Goals & Objectives

- Optimize "performance": min runtime, min data, max throughout
- Constraints: budgets, bounds, computation time, reconfiguration costs
- Robustness: variance? worst case? uncertainty? risk aversion?

Data-Driven Workload Anticipation

Optimize "performance" based on historical data via . . .

- **observed** workloads (static + deterministic)
- **forecasted** workloads (dynamic + deterministic)
- multiple potential future workload scenarios (dynamic + stochastic)

Data-Driven Workload Anticipation

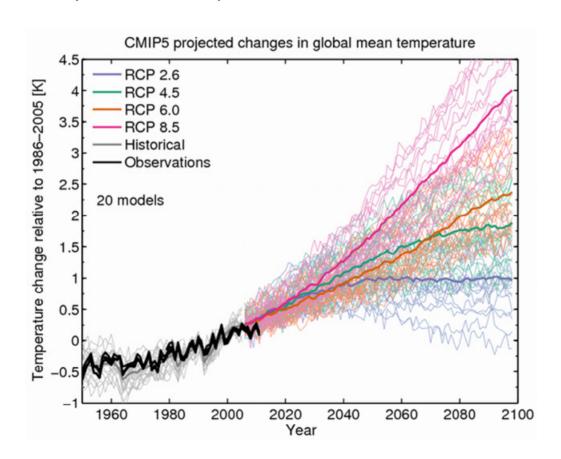
Optimize "performance" based on historical data via . . .

- **observed** workloads (static + deterministic)
- **forecasted** workloads (dynamic + deterministic)
- multiple potential future workload scenarios (dynamic + stochastic)

Let "workload" be characterized by number & costs of queries over time

- (a) types of queries vary
- (b) number of queries vary
- (c) costs of queries vary (cf. skewness)

Observed, Forecasted, and Potential Workloads



Solutions for Deterministic Approaches

Existing solutions for deterministic workloads (observed & forecast)

- numerical algorithms (e.g., IBM approach for Index Selection (IS))
- linear programming (e.g., CoPhy for IS or Stefan for Replication)

Solutions for Deterministic Approaches

Existing solutions for deterministic workloads (observed & forecast)

- numerical algorithms (e.g., IBM approach for Index Selection (IS))
- linear programming (e.g., CoPhy for IS or Stefan for Replication)

In general, solution approaches have in common: $\max_{\vec{x}} f(\vec{x})$

- decisions \vec{x} satisfy certain constraints (budget, etc.)
- decisions are chosen based on "performance" comparisons, cf. $f(\vec{x})$

Performance F is random! Assume K potential scenarios with probability P_k :

$$\max_{\vec{x}} E[F(\vec{x})] := \sum_{k=1,\dots,K} p_k \cdot f_k(\vec{x})$$

Performance F is random! Assume K potential scenarios with probability P_k :

$$\max_{\vec{x}} E[F(\vec{x})] := \sum_{k=1,\dots,K} p_k \cdot f_k(\vec{x})$$

$$\max_{\vec{x}} E[F(\vec{x})] - \alpha \cdot \underbrace{Var[F(\vec{x})]}_{:= \sum_{k=1,\dots,K} P_k \cdot (f_k(\vec{x}) - E[F(\vec{x})])^2}$$

utility functions

worst case

Performance F is random! Assume K potential scenarios with probability P_k :

$$\max_{\vec{x}} E[F(\vec{x})] := \sum_{k=1,\dots,K} p_k \cdot f_k(\vec{x})$$

$$\max_{\vec{x}} E[F(\vec{x})] - \alpha \cdot \underbrace{Var[F(\vec{x})]}_{:=\sum_{k=1,\dots,K} P_k \cdot (f_k(\vec{x}) - E[F(\vec{x})])^2}$$

$$\max_{\vec{x}} E[u(F(\vec{x}))] = \sum_{k=1,\dots,K} p_k \cdot u(f_k(\vec{x}))$$

worst case

Performance F is random! Assume K potential scenarios with probability P_k :

$$\max_{\vec{x}} E[F(\vec{x})] := \sum_{k=1,\dots,K} p_k \cdot f_k(\vec{x})$$

$$\max_{\vec{x}} E[F(\vec{x})] - \alpha \cdot \underbrace{Var[F(\vec{x})]}_{:=\sum_{k=1,\dots,K} P_k \cdot (f_k(\vec{x}) - E[F(\vec{x})])^2}$$

$$\max_{\vec{x}} E[u(F(\vec{x}))] := \sum_{k=1,\dots,K} p_k \cdot u(f_k(\vec{x}))$$

$$\max_{\vec{x}} \min_{k=1,\dots,K} f_k(\vec{x}) \cong \max_{\vec{x},L} L \quad s.t. \quad f_k(\vec{x}) \ge L \quad \forall k$$

Robustinisierung of Existing Approaches

Idea: Adapt existing deterministic solutions $\max_{\vec{x}} f(\vec{x})$

(1) use multiple workloads & (2) adapt the performance criteria

Robustinisierung of Existing Approaches

Idea: Adapt existing deterministic solutions $\max_{\vec{x}} f(\vec{x})$

(1) use multiple workloads & (2) adapt the performance criteria

Derive stochastic solutions as follows:

(i) expected performance: let
$$f(\vec{x}) := E[F(\vec{x})] = \sum_{k=1,\dots,K} p_k \cdot f_k(\vec{x})$$

Robustinisierung of Existing Approaches

Idea: Adapt existing deterministic solutions $\max_{\vec{x}} f(\vec{x})$

(1) use multiple workloads & (2) adapt the performance criteria

Derive stochastic solutions as follows:

(i) expected performance: let
$$f(\vec{x}) := E[F(\vec{x})] = \sum_{k=1,\dots,K} p_k \cdot f_k(\vec{x})$$

(ii) mean-variance optimization: let
$$f(\vec{x}) := E[F(\vec{x})] - \alpha \cdot Var[F(\vec{x})]$$

(iii) utility functions: let
$$f(\vec{x}) := E[u(F(\vec{x}))]$$

(iv) worst case: let
$$f(\vec{x}) := \max_{\vec{x}} \min_{k=1,\dots,K} f_k(\vec{x})$$

• Definition of workload scenarios:

- Number of scenarios limited:
- More decisions/variables:
- Adaption of constraints:

• Definition of workload scenarios: based on historical data

use Conf.Intvls of Forecasts (TSA)

let practitioners decide

- Number of scenarios limited:
- More decisions/variables:
- Adaption of constraints:

• Definition of workload scenarios: based on historical data

use Conf.Intvls of Forecasts (TSA)

let practitioners decide

• Number of scenarios limited: no

• More decisions/variables: no

• Adaption of constraints: no

Definition of workload scenarios: based on historical data

use Conf.Intvls of Forecasts (TSA)

let practitioners decide

• Number of scenarios limited: no

• More decisions/variables: no

• Adaption of constraints: no

• New Nonlinearity: no, BQP, yes, yes

Is this a problem? no, hardly, yes (iif a solver is used), no

Examples (Index Selection)

- Numerical heuristic "IBM"
 - (i) define index candidates
 - (ii) pick indexes greedily following the criteria: saved runtime/space
 - (iii) shuffle to account for index interaction

To do: Adjust step (ii), i.e., use some adapted "robust" criteria (easy)

НРІ

Examples (Index Selection)

- Numerical heuristic "IBM"
 - (i) define index candidates
 - (ii) pick indexes greedily following the criteria: saved runtime/space
 - (iii) shuffle to account for index interaction

To do: Adjust step (ii), i.e., use some adapted "robust" criteria (easy)

- Solver-based heuristic "CoPhy"
 - (i) define index candidates
 - (ii) solve integer LP, i.e., minimize total runtime

To do: Adjust step (ii) for Mean-Variance optimization (interested?)

Robustinisierung of CoPhy

Robustinisierung of CoPhy

НРІ

Summary

- Use multiple stochastic workloads instead of forecasted ones
- Different techniques to include robustness can be used
- Existing approaches just slightly have to be extended
- Additional complexity is tolerable
- Concepts are general applicable
- Approach is suitable if (i) randomness is high & (ii) robustness is needed

НРІ

Summary

- Use multiple stochastic workloads instead of forecasted ones
- Different techniques to include robustness can be used
- Existing approaches just slightly have to be extended
- Additional complexity is tolerable
- Concepts are general applicable
- Approach is suitable if (i) randomness is high & (ii) robustness is needed

Overview

2	April 25	Linear Programming I
3	April 29	Linear Programming II
4	May 2	Linear/Logistic Regression + Homework (3 weeks time)
5	May 16	Exercise Implementations
6	May 20	Dynamic Programming
7	May 23	Pricing in Competitive Markets
8	May 27	Project Assignments + Homework 2 (until June 13)
9	June 3	Workshop / Group Meetings
10	June 13	Workshop / Group Meetings (hand in Homework II)
11	June 20	Presentations (First Results)
12	June 24	Robust Optimization Concepts
13	June 27	Workshop / Group Meetings
14/15	July 1/4	Workshop / Group Meetings
16	July 11	Presentations (Final Results), Feedback, Documentation (Aug 31)