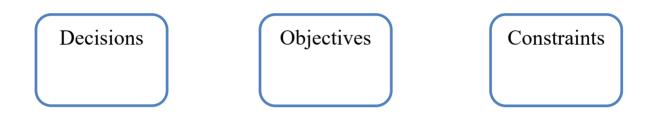
Data-Driven Decision-Making In Enterprise Applications

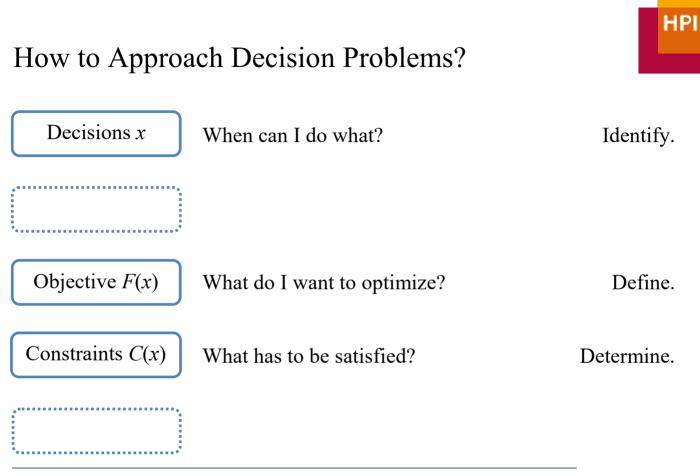
Introduction

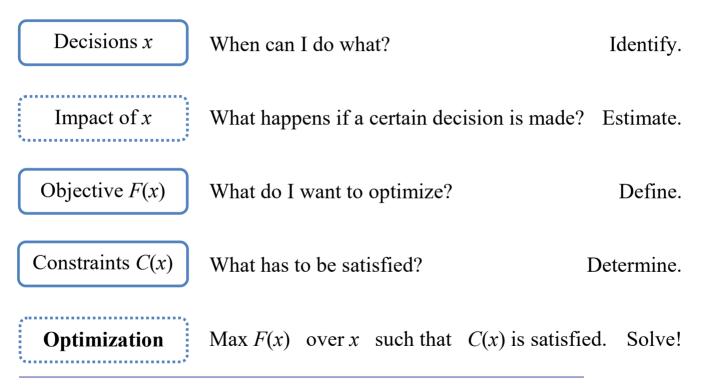
Rainer Schlosser

Hasso Plattner Institute (EPIC)

April 27, 2020




The World is Full of Decision Problems


What Constitutes a Decision Problem?

How to Approach Decision Problems?

Agenda

- Introduction \checkmark
- Personal Background
- Goals of the Course & Grading
- Outlook: Solution Techniques and Problem Examples

HPI

Personal Background

- Ph.D. Operations Research (2014), Humboldt-University of Berlin
- Hasso Plattner Institute, EPIC, since 2015
- Field of Research
 - Data-driven decision support
 - Focus on stochastic dynamic models
- Current Areas of Applications
 - Operations management (e.g., dynamic pricing, ordering, advertising)
 - Database configuration (e.g., data placement problems, index selection)

Agenda

- Introduction \checkmark
- Personal background \checkmark
- Goals of the Course & Grading
- Outlook: Solution Techniques and Problem Examples

Technical Information

- Credits? 4 SWS (V/Ü), 6 ECTS (graded)
- When? Monday 13.30 15.00 VL (lecture) Thursday 11.00 - 12.30 UE (exercise/questions) Start: April 27, 2020, End: July 16, 2020
- Where? currently via Zoom (maybe later Room D-E. 9/10)
- Who? Rainer Schlosser, <u>rainer.schlosser@hpi.de</u>
- Slides? EPIC, Teaching, Summer 2020

Structure of the Course

- April/May: Lectures on "Optimization Techniques":
 - (i) Linear Programming
 - (ii) Integer Linear Programming
 - (iii) Linear + Logistic Regression
 - (iv) Dynamic Programming
 - (v) Robust + Nonlinear Optimization
- June/July: Choose Projects, Apply/Extend Suitable Techniques, Work in Teams, Input/Support will be given
- July/Aug: Documentation of Projects Results

Overview

Week	Dates	Торіс	
1	April 27 /30	Introduction + Linear Programming	
2	May 4/7	Integer Linear Programming	
3	May 11/14	Linear + Logistic Regression	
4	May 18	Exercise Implementations	(Thu May 21 "Himmelfahrt")
5	May 25/28	Dynamic Programming	(Mon June 1 "Pfingstmontag")
6	June 4	Dynamic Pricing Competition	
7	June 8/11	Project Assignments	
8	June 15/18	Robust + Nonlinear Optimization	
9	June 22/25	Work on Projects: Input/Support	
10	June 29/2	Work on Projects: Input/Support	
11	July 6/9	Work on Projects: Input/Support	
12	July 13/16	Work on Projects: Input/Support	
13	July/Aug	Finish Documentation (Deadline: Aug 31)	

Goals of the Course & Grading

- Goal: Develop models to compute optimized decisions for different problems & applications
- Learn: Optimization techniques
- Do: Apply & extend different optimization approaches
- Grading: 30% Project results
 - 70% Documentation ("Projektarbeit")

Prerequisites

• Programming

Parameters, Data Preparation Loops, Recursions, Simulations

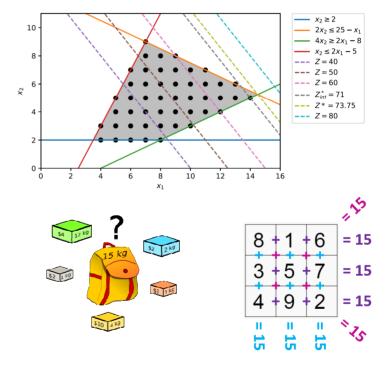
Basic Mathematical Background

Sets, Vectors Probabilities, Random Variables, Expected Values

• More does not harm

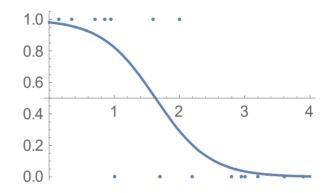
Regression Analysis Experience with Solvers Game Theory

Agenda


- Introduction \checkmark
- Personal Background \checkmark
- Goals of the Course & Grading \checkmark
- Outlook: Solution Techniques and Problem Examples

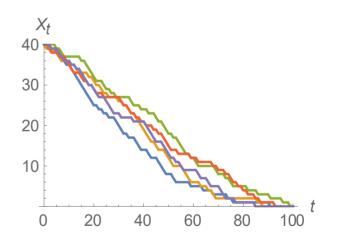
Week 2-3 – Linear (Integer) Programming

• $\max_{x_1, x_2 \ge 0} \vec{c} \cdot \vec{x} \quad \text{s.t.} \quad A \cdot \vec{x} \le \vec{b}$


- Knapsack Problem
- Matrix Inversion
- Assignment Problems
- Data placement problems

Week 4 – Linear / Logistic Regression

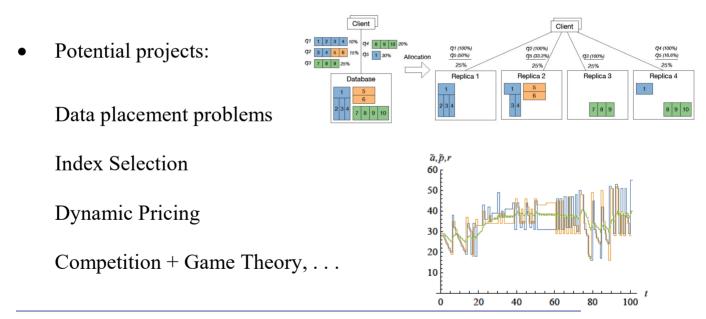
- Least squares
- Maximum Likelihood



- Estimation of Conditional Probabilities
- Demand Learning on Online Marketplaces

Week 5-6 – Dynamic Programming

- How to control processes over time
- Plan decisions over time
- Consider state transitions


- Inventory Management
- Dynamic Pricing Competition

Week 7 – Choose Your Project

• Form teams of 2-3 students

HPI

Overview

Week	Dates	Торіс	
1	April 27/30	Introduction + Linear Programming	
2	May 4 /7	Integer Linear Programming	
3	May 11/14	Linear + Logistic Regression	
4	May 18	Exercise Implementations	(Thu May 21 "Himmelfahrt")
5	May 25/28	Dynamic Programming	(Mon June 1 "Pfingstmontag")
6	June 4	Dynamic Pricing Competition	
7	June 8/11	Project Assignments	
8	June 15/18	Robust + Nonlinear Optimization	
9	June 22/25	Work on Projects: Input/Support	
10	June 29/2	Work on Projects: Input/Support	
11	July 6/9	Work on Projects: Input/Support	
12	July 13/16	Work on Projects: Input/Support	
13	July/Aug	Finish Documentation (Deadline: Aug 31)	