Dynamic Programming and Reinforcement Learning

Introduction (Week 1)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

April 21, 2022

1

The World is Full of Decision Problems

How to Approach Decision Problems?

Types of Decision Problems

Solution Methods

Optimal vs.

- (Exhaustive Search)
- Dynamic Programming

Heuristic Solutions

- Approximate Dynamic Programming
- Reinforcement Learning
 - Q-Learning
 - Deep Q-Learning
 - Policy Gradient Algorithms

Agenda

- Introduction \checkmark
- Personal Background
- Structure of the Course & Grading

Personal Background (Rainer)

- Ph.D. Operations Research (2014), Humboldt-University of Berlin
- Hasso Plattner Institute (EPIC) since 2015
- Field of Research
 - Data-driven decision support
 - Focus on stochastic models & Dynamic Programming (DP)
- Current Areas of Applications
 - Revenue management (e.g., dynamic pricing, ordering, advertising, risk)
 - Database configuration (e.g., data placement problems, index selection)

Personal Background (Alex)

- Master Computer Science (2020), HPI
- Hasso Plattner Institute (EPIC), PhD Candidate
- Field of Research
 - Data-driven decision support
 - Focus on Reinforcement Learning (RL)
- Current Areas of Applications
 - Revenue management
 - RL methods

HP

What about you?

- Background?
- Interests?
- Expectations?
- Questions?
- Online vs. Offline?

HPI

Agenda

- Introduction \checkmark
- Personal background \checkmark
- Structure of the Course & Grading

Technical Information

- Credits? 4 SWS (V/Ü), 6 ECTS (graded)
- When? Monday 15.15 16.45 VL/UE (lecture/exercise) Thursday 13.30 – 15.00 VL/UE (lecture/exercise) Start: April 21, 2022 End: July 25, 2022
- Where? currently via Zoom (Room: 7271364393, Password: 256757)
- Who? Rainer Schlosser, <u>rainer.schlosser@hpi.de</u>
 Alexander Kastius, <u>alexander.kastius@hpi.de</u>
- Slides? EPIC, Teaching, Summer 2022

Structure of the Course

- April/May: Lectures on models & methods:
 - (i) Markov Decision Processes (MDPs)
 - (ii) Dynamic Programming (DP)
 - (iii) Reinforcement Learning (RL)
- June/July: Choose projects, apply/extend suitable techniques Work in teams, input/support will be given
- July/Aug: Documentation of projects results

HP

Goals of the Course & Grading

- Goal: Develop models to compute optimized decisions for different problems & applications
- Learn: Optimization techniques
- Do: Apply & extend different optimization approaches
- Grading: (i) Presentation of project results (~July)
 - (ii) Documentation ("Projektarbeit")Deadline Sep 15 (~10-20 pages)

Prerequisites

• Programming

Parameters, Data preparation Loops, Recursions, Simulations

• Basic Mathematical Background

Sets, Vectors Probabilities, Random variables, Expected values

• More does not harm

Regression analysis NNs Deep learning Game theory

Overview

Week	Dates	Торіс		
1	April 21	Introduction		
2	April 25/28	Finite + Infinite Time MDPs		
3	May 2/5	Dynamic Programming (DP) Exercise		
4	May 9/12	Approximate Dynamic Programming (A	DP) + Q-Learning (QL)	
5	May 16/19	Deep Q-Networks (DQN)		
6	May 23	DQN Extensions	(Thu May 26 "Himmelfahrt")	
7	May 30/June 2	Policy Gradient Algorithms		
8	June 9	Project Assignments (Mon June 6 "Pfingstmontag")		
9	June 13/16	Work on Projects: Input/Support		
10	June 20/23	Work on Projects: Input/Support		
11	June 27/30	Work on Projects: Input/Support		
12	July 4/7	Work on Projects: Input/Support		
13	July 11/14	Work on Projects: Input/Support		
14	July 18/21 Sep 15	Final Presentations Finish Documentation		

What are Dynamic Optimization Problems?

- How to control a dynamic system over time?
- Instead of a single static decision we have a *sequence* of decisions
- The system evolves over time according to a certain dynamic
- The decisions are supposed to be chosen such that a certain objective/quantity/criteria is optimized
- Find the right balance between short and long-term effects

Examples Please!

Examples

- Inventory Replenishment
- Selling Airline Tickets
- Drinking at a Party
- Exam Preparation
- Brand Advertising
- Used Cars
- Eating Cake

Task: Describe & Classify

- Goal/Objective
- State of the System
- Actions
- Dynamic of the System
- Revenues/Costs (Rewards)
- Finite/Infinite Horizon
- Stochastic Components

Example	Objective	State	Action	Rewards	Dynamic
Inventory Mgmt.	min costs	#items	#order	order/holding	entry-sales

Example	Objective	State	Action	Rewards	Dynamic
Inventory Mgmt.	min costs	#items	#order	order/holding	entry-sales
Airline Tickets					
Drinking at Party					
Exam Preparation					
Advertising					
Used Cars					
Eating Cake					

Example	Objective	State	Action	Rewards	Dynamic
Inventory Mgmt.	min costs	#items	#order	order/holding	entry-sales
Airline Tickets	max revenue	#tickets	#price	sales	current-sold
Drinking at Party	max fun	‰	#beer	fun/money	impact-rehab

Example	Objective	State	Action	Rewards	Dynamic
Inventory Mgmt.	min costs	#items	#order	order/holding	entry-sales
Airline Tickets	max revenue	#tickets	#price	sales	current-sold
Drinking at Party	max fun	‰ 0	#beer	fun/money	impact-rehab
Exam Preparation	max mark/effort	#learned	#learn	effort, mark	learn-forget
Advertising	max profits	image	#advertise	campaigns	effect-forget

Example	Objective	State	Action	Rewards	Dynamic
Inventory Mgmt.	min costs	#items	#order	order/holding	entry-sales
Airline Tickets*	max revenue	#tickets	#price	sales	current-sold
Drinking at Party*	max fun	‰ 0	#beer	fun/money	impact-rehab
Exam Preparation*	max mark/effort	#learned	#learn	effort, mark	learn-forget
Advertising	max profits	image	#advertise	campaigns	effect-forget
Used Cars	min costs	age	replace(y/n)	buy/repair	aging/faults
Eating Cake*	max utility	%cake	#eat	utility	outflow
* Einita hanizan					

* Finite horizon

General Problem Components

- What do you want to optimize (e.g., expected rewards) (Objective)
- Define the state of your system (State)
- Define the set of possible actions (state dependent) (Actions)
- Quantify event probabilities (state+action dependent) (Dynamics) (!)
- Define rewards (state+action+event dependent) (Rewards)
- Define state transitions (state+action+event dependent) (Transitions)
- What happens at the end (of the time horizon)? (Final Rewards)

HP

Recall - Questions?

- Finite/Infinite Time Horizon
- States
- Actions
- Events & Rewards
- Dynamics & State Transitions
- Deterministic/Stochastic
- Discrete/Continuous

Overview

Week	Dates	Торіс		
1	April 21	Introduction		
2	April 25/28	Finite + Infinite Time MDPs		
3	May 2/5	Dynamic Programming (DP) Exercise		
4	May 9/12	Approximate Dynamic Programming (A	DP) + Q-Learning (QL)	
5	May 16/19	Deep Q-Networks (DQN)		
6	May 23	DQN Extensions (Thu May 26 "Himmelfahrt")		
7	May 30/June 2	Policy Gradient Algorithms		
8	June 9	Project Assignments (Mon June 6 "Pfingstmontag")		
9	June 13/16	Work on Projects: Input/Support		
10	June 20/23	Work on Projects: Input/Support		
11	June 27/30	Work on Projects: Input/Support		
12	July 4/7	Work on Projects: Input/Support		
13	July 11/14	Work on Projects: Input/Support		
14	July 18/21 Sep 15	Final Presentations Finish Documentation		