Data-Driven Decision-Making In Enterprise Applications

Linear Programming

Rainer Schlosser

Hasso Plattner Institute (EPIC)

April 30, 2020

Decision-Making Using Linear Programming

Decision-Making Using Linear Programming

Linear Programming & Focus

- \bullet **What is a Linear Program?**
- Theoretical Foundations
- Standard Solution Algorithms
- **Tricks to formulate decision problems as LP**
- **Examples, Examples, Examples, . . .**

What is a Linear Program?

Decision variables $x_1, x_2, ...$

The controls to be determined.

Constraints via $\leq,=\geq$

Expressed linearly in x_1, x_2, \dots .

One objective: max or min

Expressed linearly in x_1, x_2, \dots .

What is a Linear Program?

Decision variables $x_1, x_2, ...$

Constraints via $\leq, =, \geq$

The controls to be determined.

Expressed linearly in x_1, x_2, \dots .

One objective: max or min

Expressed linearly in x_1, x_2, \dots .

- Does the solver help you to define the right LP?
- How to formulate a given problem as an LP?
- What does "expressed linearly" means?

Which Terms are Linear in the Variables x_1, x_2, \dots ?

$$
3x_1 - 2x_2, \quad x_1^{-3}, \quad a \cdot \ln(x_1), \quad \ln(a) \cdot x_1
$$
\n
$$
a \cdot x_1, \quad a \cdot b \cdot x_1, \quad a \cdot x_1^2, \quad \sqrt{\ln(a)} \cdot \frac{x_1 + x_2}{b} \cdot \sin(a^2)
$$
\n
$$
|x_1|, \quad \max(x_1, 5), \quad x_1^{2}/x_1, \quad (x_1 - 3) \cdot (x_2 + 3), \quad a^2 \cdot x_1,
$$
\n
$$
x_1 \cdot x_2, \quad x_1/x_2, \quad 1_{\{x_1 = 5\}} := \text{if } x_1 = 5 \text{ then 1 else 0}
$$

$$
\begin{array}{ccc}\n\begin{bmatrix}\n3x_1 - 2x_2 & x_1^{-3}, & a \cdot \ln(x_1), & \ln(a) \cdot x_1\n\end{bmatrix} \\
a \cdot x_1, & a \cdot b \cdot x_1, & a \cdot x_1^2, & \sqrt{\ln(a)} \cdot \frac{x_1 + x_2}{b} \cdot \sin(a^2) \\
|x_1|, & \max(x_1, 5), & x_1^{2}/x_1, & (x_1 - 3) \cdot (x_2 + 3), & a^2 \cdot x_1, \\
x_1 \cdot x_2, & x_1 / x_2, & 1_{\{x_1 = 5\}} := \text{if } x_1 = 5 \text{ then 1 else 0}\n\end{array}\n\end{array}
$$

Example of a Linear Program

Objective:

$$
\max_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + 3 \cdot x_2
$$

HPI

Constraints: $0.5 \cdot x_1 \leq 4 - x_2$,

$$
0 \le x_1 \le 3, \quad x_2 \ge 0
$$

Example of a Linear Program

Objective: $\max_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + 3 \cdot x_2$ $\frac{1}{k} \sum \cdot x_1 + 3 \cdot x$

Constraints: $0.5 \times x_1 \leq 4 - x_2$

$$
0 \le x_1 \le 3, \quad x_2 \ge 0
$$

- Only use linear expressions
- Only use \leq , $=$, \geq in the constraints (\lt , \neq , \gt are not allowed!)
- Is such an LP understandable for all solvers?

Example of a Linear Program in Standard Form

Objective: $\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2$ ≥ $\cdot x_1 + 3 \cdot x$

subject to $0.5 \cdot x_1 + 1 \cdot x_2 \le 4$

$$
1 \cdot x_1 + 0 \cdot x_2 \le 3
$$

Standard form:

- Linear combinations of (*non-negative*) variables
- \bullet Use \leq (or $=$) in all constraints
- No variables on the "*right-hand side*" of the constraints

Example of a Linear Program in Standard Form

Objective: $\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2$ ≥ $\cdot x_1 + 3 \cdot x$ s.t. $0.5 \cdot x_1 + 1 \cdot x_2 \le 4$ $1 \cdot x_1 + 0 \cdot x_2 \leq 3$

$$
\begin{aligned}\n\max_{x_1, x_2 \ge 0} \vec{c} \, ' \vec{x} \quad \text{s.t.} \quad A \cdot \vec{x} \le \vec{b} \\
\text{with } \vec{c} := (2, 3), \quad \vec{b} := (4, 3), \\
A := \begin{pmatrix} 0.5 & 1 \\ 1 & 0 \end{pmatrix}\n\end{aligned}
$$

Example of a Linear Program in Standard Form

Objective:

\n
$$
\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2
$$
\n
$$
0.5 \cdot x_1 + 1 \cdot x_2 \le 4
$$
\n
$$
1 \cdot x_1 + 0 \cdot x_2 \le 3
$$
\nwith $\vec{c} := (2, 3), \quad \vec{b} := (4, 3),$

\n
$$
A := \begin{pmatrix} 0.5 & 1 \\ 1 & 0 \end{pmatrix}
$$

Optimal Solution: Computed by solvers using standard algorithms For further reading see: Simplex Algorithm, Convex Polyeder Theory, etc.

Graphical Solutions (Continuous LP)

0 **Continuous LP:** One corner of the feasible space is always optimal!

Graphical Solutions (Integer LP)

Example: $\max_{x_1=0,1,2,...} 4 \cdot x_1 + 3 \cdot x_2$ s.t. $2 \cdot x_2 \le 25 - x_1$, $4 \cdot x_2 \ge 2x_1 - 8$, $x_2 \le 2x_1 - 5$ $x_2 = 2, 3, 4, \dots$ $\cdot x_1 + 3 \cdot x$

 \bullet **Integer LP**: Use discrete variables $x_1, x_2, ... \in \{0,1\}$ or $\in \{0,1,2,...\}$ **Optimal** solutions via **integer** solvers (see "Branch & Bound")

Examples, Examples, Examples

HPI

- I Knapsack Problem
- II Magic Square
- III Matrix Inversion
- IV Project Assignment Problems
- V Mixed Equilibria (Game Theory)

I Knapsack Problem

Given parameters:

- *N* Number of potential items
- u_i *^u* Utility of packing item *i*, *i=*1,...,*N*
- S_i S_i Space of item *i*, *i*=1,...,*N*
- *C* Capacity of the knapsack
- Problem: Decide which items to take to maximize total utility, while not exceeding the knapsack's capacity

HPI

I LP Model for the Knapsack Problem

Variables: x_i *^x* binary variable whether to pack item *i*, *i*=1,...,*N*

LP:
$$
\max_{x_1,...,x_N \in \{0,1\}} \sum_{i=1,...,N} u_i \cdot x_i
$$

maximize total utility

HPI

I LP Model for the Knapsack Problem

Variables: \mathcal{X}_i *^x* binary variable whether to pack item *i*, *i*=1,...,*N*

LP:
$$
\max_{x_1,...,x_N \in \{0,1\}} \sum_{i=1,...,N} u_i \cdot x_i
$$

maximize total utility

$$
\text{s.t.} \qquad \sum_{i=1,\dots,N} S_i \cdot x_i \le C
$$

satisfy budget constraint

Let the solver do the rest!

Done.

I Implementation of the Knapsack LP (AMPL)

II Magic Square

 $N=n^2$ $N = n^2$ Numbers *i*=1,...,*N* to be filled in a square of size $n \times n$, $n \ge 3$

Problem: Assign the numbers *i=*1,...,*N* to the cells of a square such that the sum of each row and each column is the same.

Task: For $n=3$ the sum is 15. What is the magic number for $n=4$?

II Magic Square

 $N=n^2$ $N = n^2$ Numbers *i*=1,...,*N* to be filled in a square of size $n \times n$, $n \ge 3$

Problem: Assign the numbers *i=*1,...,*N* to the cells of a square such that the sum of each row and each column is the same.

Note: The magic number is $=15$ 2 4*n* $= 34$ $C := N \cdot (N+1) / 2 / n = n \cdot (n^2+1) / 2$

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

3*n*

HPI

II LP Model for the Magic Square

Variables: $x_{i,j,k}$ $x_{i,j,k}$ binary variable whether number $k, k=1,...,N$ is assigned to row *i* and column *j*, *i*,*j*=1,...,*n*

II LP Model for the Magic Square

Variables: $x_{i,j,k}$ $x_{i,j,k}$ binary variable whether number $k, k=1,...,N$ is assigned to row *i* and column *j*, *i*,*j*=1,...,*n*

LP:

\n
$$
\max_{x_{i,j,k} \in \{0,1\}^{N \times n \times n}} \sum_{i=1,\dots,n, j=1,\dots,n, k=1,\dots,N} x_{i,j,k}
$$
 (no objective is needed!)\ns.t.

\n
$$
\sum_{i=1,\dots,n, k=1,\dots,N} k \cdot x_{i,j,k} = C
$$
\nfor all $j=1,\dots,n$

\nfor all $i=1,\dots,n$

II LP Model for the Magic Square

HPI

Variables: $x_{i,j,k}$ $x_{i,j,k}$ binary variable whether number $k, k=1,...,N$ is assigned to row *i* and column *j*, *i*,*j*=1,...,*n*

LP:

\n
$$
\max_{x_{i,j,k} \in \{0,1\}^{N \times n \times n}} \sum_{i=1,\dots,n, j=1,\dots,n, k=1,\dots,N} x_{i,j,k}
$$
 (no objective is needed!)\ns.t.

\n
$$
\sum_{i=1,\dots,n, k=1,\dots,N} k \cdot x_{i,j,k} = C
$$
\nfor all $j=1,\dots,n$ (column sums)

\n
$$
\sum_{j=1,\dots,n, k=1,\dots,N} x_{i,j,k} = 1
$$
\nfor all $i,j=1,\dots,n$ (unique cell)

\n
$$
\sum_{i=1,\dots,N} x_{i,j,k} = 1
$$
\nfor all $k=1,\dots,N$ (each k once)

Hints

HPI

- At first: **Think**! Do not start to implement too early
- Do not hope that the LP/solver thinks in your favour!
- Remember: You have to **force** the solver to do the right thing
- Try as hard as you can to formulate the problem **linearly**
- Do not hesitate to use many variables and constraints
- 95% of the work is setting up the LP, 5% is implementation!

III Matrix Inversion

Problem: Find the **inverse matrix** A^{-1} of matrix A determined by its coefficients $x_{i,j}$, $i,j=1,...,n$.

Note: The inverse A^{-1} is uniquely determined by satisfying:

$$
A^{-1} \times A = A \times A^{-1} = I := \begin{pmatrix} 1 & 0 \\ 0 & \cdots \\ 0 & 1 \end{pmatrix}
$$

III LP Model for Matrix Inversions

Variables: $x_{i,j}$ continuous variable for the coefficient of row *i* and column *j* of the inverse matrix A^{-1} , $i,j=1,...,n$

 $LP:$

HPI

III LP Model for Matrix Inversions

Variables: *ⁱ ^j* , $x_{i,i}$ continuous variable for the coefficient of row *i* and column *j* of the inverse matrix A^{-1} , $i,j=1,...,n$ LP: $i,j \in \mathbb{R}^{n \times n}$ $i,j=1,...,n$ $\max_{x_{i,j} \in \mathbb{R}^{n \times n}} \sum_{i,j=1,...,n} x_{i,j}$ $\max_{i \in \mathbb{R}^{n \times n}} \sum_{i,j=1,...,n} x$ (objective is optional!) S.t. $\sum_{k=1,...,n} a_{i,k} \Delta_{k,j} - 1_{\{i=j\}}$ 1 $i, k \sim k, j \sim 1$
{ $i=j$ } $k=1,\ldots,n$ $a_{i,k} \cdot x_{k}$ \sum_{-1} \sum_{n} \sum_{k} \sum_{k} \sum_{l} $\sum_{$ \sum $\sum_{i=1,\dots,n} a_{i,k} \cdot x_{k,j} = 1_{\{i=j\}}$ for all $i,j=1,\dots,$ *n* $A \cdot X = I$

III Implementation of the Matrix Inversion LP

Variables: $\mathcal{X}_{i,j}$ *^x* continuous variable for the coefficient of row *i* and column *j* of the inverse matrix A^{-1} , $i,j=1,...,n$ LP: $i,j \in \mathbb{R}^{n \times n}$ $i,j=1,...,n$ $\max_{x_{i,j} \in \mathbb{R}^{n \times n}} \sum_{i,j=1,...,n} x_{i,j}$ $\max_{i \in \mathbb{R}^{n \times n}} \sum_{i,j=1,...,n} x$ (objective is optional!) s.t. $\sum_{i=1}^{\infty} a_{i,k} \cdot x_{k,j} = 1_{\{i=j\}}$ 1,..., $a_{i,k} \cdot x_{k,j} = 1_{\{i=j\}}$ $k=1,\ldots,n$ $\sum a_{i,k} \cdot x_{k,j} = 1_{\{i=1}^n}$ for all $i,j=1,...,n$ $(A \cdot X = I)$ **param n := 5;** \qquad **# size of A param a {i in 1..n,j in 1..n} := Uniform(-1,1); # coeff. of A var x {i in 1..n,j in 1..n}; # coeff. of A^-1 subject to NB{i in 1..n,j in 1..n}: # identity sum{k in 1..n} a[i,k]*x[k,j] = if i=j then 1 else 0; solve; display x;** $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \text{solution output}$

IV Project Assignment Problem

Given parameters:

- *N* Number of workers/projects
- $W_{i,j}$ Willingness of worker *i*=1,...,*N* to take project *j=*1,...,*N*

Problem: Decide how to distribute all projects

in order to maximize total welfare,

while assigning one project to each worker

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

НP

IV LP Model for the Project Assignment Problem

Variables: $x_{i,j}$ binary variable whether project *i*, $i=1,...,N$ is assigned to worker *j*, *j*=1,...,*N*

LP:

IV LP Model for the Project Assignment Problem

Variables: $x_{i,j}$ binary variable whether project *i*, $i=1,...,N$ is assigned to worker *j*, *j*=1,...,*N*

LP:

\n
$$
\max_{x_{i,j} \in \{0,1\}^{N \times N}} \sum_{i=1,\dots,N, j=1,\dots,N} w_{i,j} \cdot x_{i,j}
$$
\ns.t.

\n
$$
\sum_{i=1,\dots,N} x_{i,j} = 1 \quad \text{for all } j=1,\dots,N \quad \text{(each worker gets 1 project)}
$$
\n
$$
\sum_{j=1,\dots,N} x_{i,j} = 1 \quad \text{for all } i=1,\dots,N \quad \text{(each project is assigned)}
$$

Next Week

Homework: Check out AMPL's student version

https://ampl.com/try-ampl/download-a-free-demo/

Review the Examples

Outlook:

- More Examples, e.g., Mixed Strategy Equilibria (Game Theory)
- Tricks to linearize Nonlinearities
- Implementations and Solvers
- Multi-objective/Penalty Approaches

Overview

