# Data-Driven Decision-Making In Enterprise Applications

Linear Programming

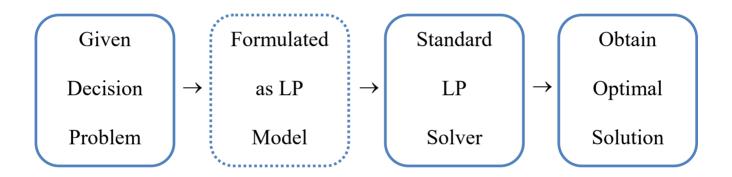
Rainer Schlosser

Hasso Plattner Institute (EPIC)

April 30, 2020

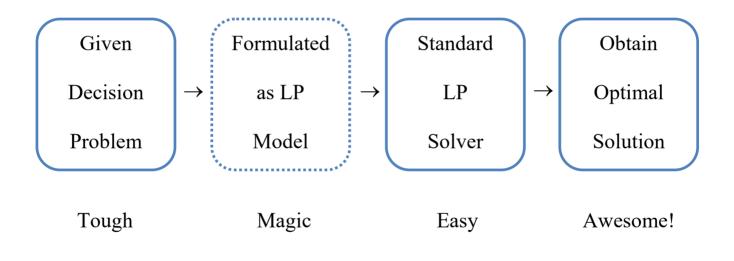


# Decision-Making Using Linear Programming





# Decision-Making Using Linear Programming



### Linear Programming & Focus

- What is a Linear Program?
- Theoretical Foundations
- Standard Solution Algorithms
- Tricks to formulate decision problems as LP
- Examples, Examples, Examples, . . .

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

HPI

#### What is a Linear Program?

Decision variables  $x_1, x_2, \dots$ 

The controls to be determined.

Constraints via ≤,=,≥

Expressed linearly in  $x_1, x_2, \dots$ .

One objective: max or min

Expressed linearly in  $x_1, x_2, \dots$ .

#### What is a Linear Program?

Decision variables  $x_1, x_2, \dots$ 

Constraints via ≤,=,≥

The controls to be determined.

Expressed linearly in  $x_1, x_2, \dots$ .

One objective: max or min

Expressed linearly in  $x_1, x_2, \dots$ .

- Does the solver help you to define the right LP?
- How to formulate a given problem as an LP?
- What does "expressed linearly" means?



# Which Terms are Linear in the Variables $x_1, x_2, ... ?$

$$3x_{1} - 2x_{2}, \quad x_{1}^{-3}, \quad a \cdot \ln(x_{1}), \quad \ln(a) \cdot x_{1}$$

$$a \cdot x_{1}, \quad a \cdot b \cdot x_{1}, \quad a \cdot x_{1}^{2}, \quad \sqrt{\ln(a)} \cdot \frac{x_{1} + x_{2}}{b} \cdot \sin(a^{2})$$

$$|x_{1}|, \quad \max(x_{1}, 5), \quad x_{1}^{2} / x_{1}, \quad (x_{1} - 3) \cdot (x_{2} + 3), \quad a^{2} \cdot x_{1},$$

$$x_{1} \cdot x_{2}, \quad x_{1} / x_{2}, \quad 1_{\{x_{1} = 5\}} := \text{ if } x_{1} = 5 \text{ then } 1 \text{ else } 0$$



$$3x_{1} - 2x_{2}, \quad x_{1}^{-3}, \quad a \cdot \ln(x_{1}), \quad \ln(a) \cdot x_{1}$$

$$a \cdot x_{1}, \quad a \cdot b \cdot x_{1}, \quad a \cdot x_{1}^{2}, \quad \sqrt{\ln(a)} \cdot \frac{x_{1} + x_{2}}{b} \cdot \sin(a^{2})$$

$$|x_{1}|, \quad \max(x_{1}, 5), \quad x_{1}^{2} / x_{1}, \quad (x_{1} - 3) \cdot (x_{2} + 3), \quad a^{2} \cdot x_{1},$$

$$x_{1} \cdot x_{2}, \quad x_{1} / x_{2}, \quad 1_{\{x_{1} = 5\}} := \text{ if } x_{1} = 5 \text{ then } 1 \text{ else } 0$$

#### Example of a Linear Program

Objective:

$$\max_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + 3 \cdot x_2$$

HPI

Constraints:  $0.5 \cdot x_1 \le 4 - x_2$ ,

$$0 \le x_1 \le 3, \quad x_2 \ge 0$$

#### Example of a Linear Program

Objective:  $\max_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + 3 \cdot x_2$ 

Constraints:  $0.5 \cdot x_1 \le 4 - x_2$ ,

$$0 \le x_1 \le 3, \quad x_2 \ge 0$$

- Only use linear expressions
- Only use  $\leq$ , =,  $\geq$  in the constraints (<,  $\neq$ , > are not allowed!)
- Is such an LP understandable for all solvers?



# Example of a Linear Program in Standard Form

Objective:  $\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2$ 

subject to  $0.5 \cdot x_1 + 1 \cdot x_2 \le 4$ 

$$1 \cdot x_1 + 0 \cdot x_2 \le 3$$

Standard form:

- Linear combinations of (*non-negative*) variables
- Use  $\leq$  (or =) in all constraints
- No variables on the "*right-hand side*" of the constraints



#### Example of a Linear Program in Standard Form

Objective: $\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2$ s.t. $0.5 \cdot x_1 + 1 \cdot x_2 \le 4$ 

$$\max_{x_1, x_2 \ge 0} \vec{c} \cdot \vec{x} \quad \text{s.t.} \quad A \cdot \vec{x} \le \vec{b}$$
  
with  $\vec{c} \coloneqq (2,3), \quad \vec{b} \coloneqq (4,3),$ 
$$A \coloneqq \begin{pmatrix} 0.5 & 1\\ 1 & 0 \end{pmatrix}$$

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

 $1 \cdot x_1 + 0 \cdot x_2 \le 3$ 



#### Example of a Linear Program in Standard Form

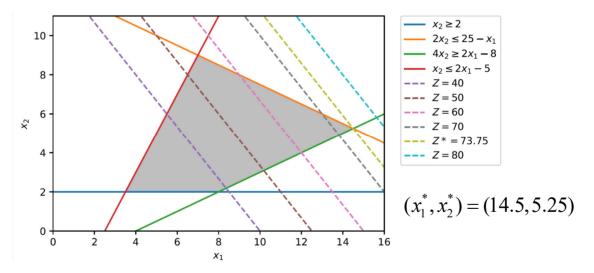
Objective: 
$$\max_{x_1, x_2 \ge 0} 2 \cdot x_1 + 3 \cdot x_2$$
$$\max_{x_1, x_2 \ge 0} \vec{c} \cdot \vec{x} \quad \text{s.t.} \quad A \cdot \vec{x} \le \vec{b}$$
with  $\vec{c} \coloneqq (2,3), \quad \vec{b} \coloneqq (4,3),$ 
$$1 \cdot x_1 + 0 \cdot x_2 \le 3$$
$$A \coloneqq \begin{pmatrix} 0.5 & 1 \\ 1 & 0 \end{pmatrix}$$

**Optimal Solution**: Computed by solvers using standard algorithms For further reading see: Simplex Algorithm, Convex Polyeder Theory, etc.

#### Graphical Solutions (Continuous LP)

Example:

$$\max_{x_1 \ge 0, x_2 \ge 2} 4 \cdot x_1 + 3 \cdot x_2 \quad \text{s.t.} \quad 2 \cdot x_2 \le 25 - x_1, \ 4 \cdot x_2 \ge 2x_1 - 8, \ x_2 \le 2x_1 - 5$$

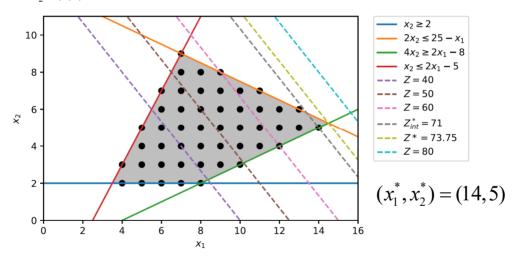


• Continuous LP: One corner of the feasible space is always optimal!

# Graphical Solutions (Integer LP)

Example:

 $\max_{\substack{x_1=0,1,2,\dots\\x_2=2,3,4,\dots}} 4 \cdot x_1 + 3 \cdot x_2 \quad \text{s.t.} \quad 2 \cdot x_2 \le 25 - x_1, \ 4 \cdot x_2 \ge 2x_1 - 8, \ x_2 \le 2x_1 - 5$ 



• Integer LP: Use discrete variables  $x_1, x_2, ... \in \{0,1\}$  or  $\in \{0,1,2,...\}$ Optimal solutions via integer solvers (see "Branch & Bound")

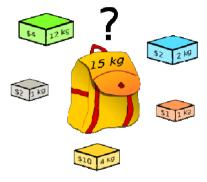
# Examples, Examples, Examples

- I Knapsack Problem
- II Magic Square
- III Matrix Inversion
- IV Project Assignment Problems
- V Mixed Equilibria (Game Theory)

### I Knapsack Problem

Given parameters:

- *N* Number of potential items
- $u_i$  Utility of packing item *i*, *i*=1,...,*N*
- $S_i$  Space of item *i*, *i*=1,...,*N*
- *C* Capacity of the knapsack
- Problem: Decide which items to take to maximize total utility, while not exceeding the knapsack's capacity





# HPI

# I LP Model for the Knapsack Problem

Variables:  $x_i$  binary variable whether to pack item *i*, *i*=1,...,N

LP: 
$$\max_{x_1,...,x_N \in \{0,1\}} \sum_{i=1,...,N} u_i \cdot x_i$$

maximize total utility

# HPI

# I LP Model for the Knapsack Problem

< C

Variables:  $x_i$  binary variable whether to pack item *i*, *i*=1,...,N

LP: 
$$\max_{x_1,...,x_N \in \{0,1\}} \sum_{i=1,...,N} u_i \cdot x_i$$

maximize total utility

s.t. 
$$\sum_{i=1,\dots,N} s_i \cdot x_i$$

satisfy budget constraint

Let the solver do the rest!

#### Done.



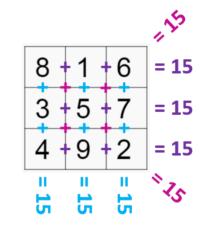
# I Implementation of the Knapsack LP (AMPL)

| $\max_{x_1,,x_N \in \{0,1\}} \sum_{i=1,,N} u_i \cdot x_i \qquad \text{s.t.} \qquad \sum_{i=1,,N} s_i$ | • 7 | $x_i \leq C$      |
|-------------------------------------------------------------------------------------------------------|-----|-------------------|
| reset;                                                                                                |     |                   |
| <pre>param C := Uniform(50,100);</pre>                                                                | #   | capacity          |
| <pre>param N := Uniform(100,200);</pre>                                                               | #   | number of items   |
| <pre>param u {i in 1N} := Uniform(3,8)</pre>                                                          | #   | utility of item i |
| <pre>param s {i in 1N} := Uniform(1,2)</pre>                                                          | #   | space of item i   |
| <pre>var x {i in 1N} binary;</pre>                                                                    | #   | binary variables  |
| <pre>maximize LP: sum{i in 1N} u[i]*x[i];</pre>                                                       | #   | objective         |
| <pre>subject to NB: sum{i in 1N} s[i]*x[i] &lt;</pre>                                                 | <=  | C; # budget con.  |
| solve; display x;                                                                                     | #   | obtain solution   |

#### II Magic Square

 $N = n^2$  Numbers i=1,...,N to be filled in a square of size  $n \times n$ ,  $n \ge 3$ 

Problem: Assign the numbers i=1,...,Nto the cells of a square such that the sum of each row and each column is the same.

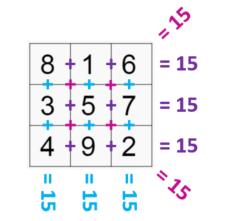


Task: For n=3 the sum is 15. What is the magic number for n=4?

#### II Magic Square

 $N = n^2$  Numbers i=1,...,N to be filled in a square of size  $n \times n$ ,  $n \ge 3$ 

Problem: Assign the numbers i=1,...,Nto the cells of a square such that the sum of each row and each column is the same.



Note: The magic number is  $C := N \cdot (N+1) / 2 / n = n \cdot (n^2 + 1) / 2 = 15$ = 34

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

n=3

# II LP Model for the Magic Square

Variables:  $x_{i,j,k}$  binary variable whether number k, k=1,...,Nis assigned to row i and column j, i,j=1,...,n HPI

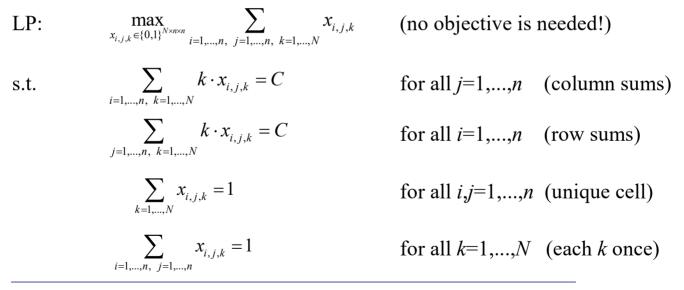
### II LP Model for the Magic Square

Variables:  $X_{i,j,k}$  binary variable whether number k, k=1,...,Nis assigned to row *i* and column *j*, *i,j*=1,...,*n* 

LP: 
$$\max_{x_{i,j,k} \in \{0,1\}^{N \times n \times n}} \sum_{i=1,\dots,n, j=1,\dots,N} x_{i,j,k} \quad \text{(no objective is needed!)}$$
  
s.t. 
$$\sum_{i=1,\dots,n, k=1,\dots,N} k \cdot x_{i,j,k} = C \quad \text{for all } j=1,\dots,n$$
$$\sum_{j=1,\dots,n, k=1,\dots,N} k \cdot x_{i,j,k} = C \quad \text{for all } i=1,\dots,n$$

# II LP Model for the Magic Square

Variables:  $x_{i,j,k}$  binary variable whether number k, k=1,...,Nis assigned to row i and column j, i,j=1,...,n

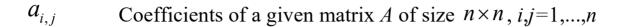


# Hints

HPI

- At first: **Think**! Do not start to implement too early
- Do not hope that the LP/solver thinks in your favour!
- Remember: You have to **force** the solver to do the right thing
- Try as hard as you can to formulate the problem **linearly**
- Do not hesitate to use many variables and constraints
- 95% of the work is setting up the LP, 5% is implementation!

#### **III** Matrix Inversion



Problem: Find the **inverse matrix**  $A^{-1}$  of matrix Adetermined by its coefficients  $x_{i,j}$ , i,j=1,...,n.

Note: The inverse  $A^{-1}$  is uniquely determined by satisfying:

$$A^{-1} \times A = A \times A^{-1} = I \coloneqq \begin{bmatrix} 1 & 0 \\ & \dots \\ 0 & 1 \end{bmatrix}$$



# III LP Model for Matrix Inversions

Variables:  $x_{i,j}$  continuous variable for the coefficient of row *i* and column *j* of the inverse matrix  $A^{-1}$ , *i,j*=1,...,*n* 

LP:

#### III LP Model for Matrix Inversions

Variables: $X_{i,j}$ continuous variable for the coefficient of<br/>row *i* and column *j* of the inverse matrix  $A^{-1}$ , i,j=1,...,nLP: $\max_{x_{i,j} \in \mathbb{R}^{n \times n}} \sum_{i,j=1,...,n} x_{i,j}$ (objective is optional!)s.t. $\sum_{k=1,...,n} a_{i,k} \cdot x_{k,j} = 1_{\{i=j\}}$ for all i,j=1,...,n $(A \cdot X = I)$ 

### III Implementation of the Matrix Inversion LP

Variables:  $X_{i,i}$ continuous variable for the coefficient of row *i* and column *j* of the inverse matrix  $A^{-1}$ , *i*,*j*=1,...,*n*  $\max_{x_{i,j} \in \mathbb{R}^{n \times n}} \sum_{i, j=1,\dots,n} x_{i,j}$ LP: (objective is optional!)  $\sum a_{i,k} \cdot x_{k,j} = \mathbf{1}_{\{i=j\}}$ for all i, j=1, ..., n  $(A \cdot X = I)$ s.t. param n := 5;# size of A param a {i in 1..n,j in 1..n} := Uniform(-1,1); # coeff. of A # coeff. of  $A^{-1}$ x {i in 1..., j in 1..., }; var subject to NB{i in 1..n,j in 1..n}: # identity  $sum\{k \text{ in } 1..n\} a[i,k]*x[k,j] = if i=j \text{ then } 1 \text{ else } 0;$ solve; display x; # solution output

# IV Project Assignment Problem

Given parameters:

- N Number of workers/projects
- $W_{i,j}$  Willingness of worker i=1,...,N

to take project j=1,...,N



Problem: Decide how to distribute all projects

in order to maximize total welfare,

while assigning one project to each worker

Data-Driven Decision-Making in Enterprise Applications – Linear Programming

HPI

# IV LP Model for the Project Assignment Problem

Variables:  $x_{i,j}$  binary variable whether project *i*, *i*=1,...,*N* is assigned to worker *j*, *j*=1,...,*N* 

LP:

# IV LP Model for the Project Assignment Problem

Variables:  $x_{i,j}$  binary variable whether project *i*, *i*=1,...,*N* is assigned to worker *j*, *j*=1,...,*N* 

LP: 
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}} \sum_{i=1,...,N} w_{i,j} \cdot x_{i,j}$$
  
s.t. 
$$\sum_{i=1,...,N} x_{i,j} = 1 \quad \text{for all } j=1,...,N \quad \text{(each worker gets 1 project)}$$
$$\sum_{j=1,...,N} x_{i,j} = 1 \quad \text{for all } i=1,...,N \quad \text{(each project is assigned)}$$

Next Week



Homework: Check out AMPL's student version

https://ampl.com/try-ampl/download-a-free-demo/

Review the Examples

Outlook:

- More Examples, e.g., Mixed Strategy Equilibria (Game Theory)
- Tricks to linearize Nonlinearities
- Implementations and Solvers
- Multi-objective/Penalty Approaches

#### Overview

| Week | Dates              | Торіс                              |                              |
|------|--------------------|------------------------------------|------------------------------|
| 1    | April 27/30        | Introduction + Linear Programming  |                              |
| 2    | <b>May 4</b> / (7) | Linear Programming II              |                              |
| 3    | May 11/14          | Exercise Implementations           |                              |
| 4    | May 18             | Linear + Logistic Regression       | (Thu May 21 "Himmelfahrt")   |
| 5    | May 25/28          | Dynamic Programming                | (Mon June 1 "Pfingstmontag") |
| 6    | June 4             | Dynamic Pricing Competition        |                              |
| 7    | June 8/11          | Project Assignments                |                              |
| 8    | June 15/18         | Robust + Nonlinear Optimization    |                              |
| 9    | June 22/25         | Work on Projects: Input/Support    |                              |
| 10   | June 29/2          | Work on Projects: Input/Support    |                              |
| 11   | July 6/9           | Work on Projects: Input/Support    |                              |
| 12   | July 13/16         | Work on Projects: Input/Support    |                              |
| 13   | July/Aug           | Finish Documentation (Deadline: Au | ug 31)                       |