Dynamic Programming and Reinforcement Learning

Finite Time Markov Decision Processes (Week 2a)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

April 25, 2022

Outline

• Questions?

• Today: Getting familiar with MDPs

Finite Horizon Problems

Dynamic Programming

Bellman Equation & Value Function

HPI

Goals for Today

- Understand: States, Actions, Rewards, State Transitions
- Learn: Finite Horizon MDPs
- Learn: Concept of Expected Future Rewards
- Evaluate: Policies and their Performance
- Learn: Solve Problems using Dynamic Programming (Backward Induction)

What are Finite Horizon MDP Problems?

- We seek to control a dynamic system over a finite time
- We consider a finite *sequence* of decisions
- The system evolves according to a certain (time-dependent) dynamic
- The decisions are supposed to be chosen such that a certain objective is optimized (expected rewards)
- Find the right balance between short and long-term effects

Example Decision Problems with Finite Horizon

Examples with Finite Horizon

- Selling Airline Tickets
- Drinking at a Party
- Exam Preparation
- Eating Cake
- Selling Christmas Trees
- Accommodation Services
- Perishable Products, Fashion, etc.

Task: Describe & Classify

- Goal/Objective
- State of the System
- Actions
- Dynamic of the System
- Revenues/Costs
- Finite/Infinite Horizon
- Stochastic Components

Classification (Finite Horizon Problems)

Example	Objective	State	Action	Dynamic	Payments
Airline Tickets	max revenue	#tickets	price	tickets sold	sales rewards
Drinking at Party	max fun	‰	#beer	impact-rehab	fun/money
Exam Preparation	max mark/effort	#learned	#learn	learn-forget	effort, mark
Eating Cake	max utility	%cake	#eat	outflow	utility
Christmas Trees					
A 1					

Accommodation ...

Fashion Items ...

HPI

General Problem Components (Finite Horizon)

- What do you want to optimize (e.g., expected rewards) (Objective)
- Define the state of your system (State)
- Define the set of possible actions (time+state dependent) (Actions)
- Quantify event probabilities (time+state+action dep.) (Dynamics)
- Define rewards (time+state+action+event dep.) (Rewards)
- Define state transitions (time+state+action+event dep.) (Transitions)
- What happens at the end of the time horizon? (state dep.) (Final Rewards)

HPI ming

Solving Finite Horizon MDPs via Dynamic Programming

- **Continuous** Time Problems & Control Theory (not in focus)
 - Hamilton-Jacobi-Bellman equation
 - Solve (partial) differential equations
 - Allows for structural and analytical results
 - See also: Pontryagin's maximum principle / Hamiltonian
 - See also: Differential games & stochastic extensions
- **Discrete** Time Problems (our focus)
 - Bellman equation, backward induction
 - Optimal numerical solutions

Basic Notation (Discrete Time Models)

- Framework: t = 0, 1, 2, ..., T Discrete time periods
- State: $s_t \in S$ One- or multi-dimensional
- Actions: $a_t \in A$ One- or multi-dimensional
- Events: $i_t \in I$, $P_t(i, a, s)$

, $P_t(i,a,s)$ Probability of event *i* in (t,t+1) under *a* in *s*

- Rewards: $r_t = r_t(i, a, s)$ Realized reward in (t, t+1) for i, a in s
- New State: $s_t \rightarrow s_{t+1} = \Gamma_t(i, a, s)$ State transition (forr *i*, *a* in *s*)
- Initial State: $s_0 \in S$ State in t=0

Sequence of Events (Finite Horizon)

t=0 start in state S_0 at the beginning of period (0,1) choose/play action a_0 for period (0,1) observe realized reward r_0 of period (0,1)

. . .

- *t*=1 observe realized new state S_1 after period (0,1) / the beginning of period (1,2) choose/play action a_1 for period (1,2) observe realized reward r_1 of period (1,2)
- *t*=*T* observe realized new state S_T after period (T-1,T) / end of time horizon no further action observe realized terminal reward $r_T(S_T)$ (cf. state-dependent salvage value)

$$=> \begin{array}{c} s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_{T}, r_{T} \\ 0 & 1 & 2 & 3 & T-1 & T \end{array} time$$

Markov Property

- The distribution of rewards and state transitions do only depend on the current state and action not the history to get there.
- This can formally be expressed as:

$$P(s_{t+1}|s_0,...,s_t,a_0,...,a_t) = P(s_{t+1}|s_t,a_t) \quad \forall t = 0,1,...,T-1$$

$$P(r_{t+1}|s_0,...,s_t,a_0,...,a_t) = P(r_{t+1}|s_t,a_t) \quad \forall t = 0,1,...,T-1$$

Policies

- A non-anticipating (Markov) policy $\pi_t(s_t)$ determines an action a_t to be chosen/played in state s_t at time t, for all $s_t \in S$, t = 0, ..., T 1.
- A policy is usually **deterministic**, i.e., a unique action is chosen.
- A policy can also be *randomized* (mixed), i.e., an action is chosen according to a certain probability distribution within the set *A*.
- Note, already the number of potential det. policies is **large**, cf. $|A|^{T \cdot |S|}$!

Check: Could You Simulate Test Examples?

- Finite Horizon Problems
 - Eating cake (e.g., with deterministic utility)
 - Selling Airline Tickets (stochastic demand)
- Describe: Horizon, states, actions, dynamics, rewards, transitions
- Evaluate rewards and state realizations of a certain (Markov) policy (which contains "*what to do in which state at which point in time*")
- Simulate multiple runs (and policies) & evaluate average total rewards

Example Problem (Selling Airline Tickets)

Example Problem (Selling Airline Tickets)

- Problem context: Sell items (N tickets) over time
- Time Horizon: Finite (*T*)
- Action: Offer price (*p*)
- Demand: Stochastic (Price and Time-dependent)
- Rewards: Sales revenues (*r*) & final rewards (salvage value)
- Goal: Maximize expected total profits
- How to find an optimal pricing policy?

Example MDP (Selling Airline Tickets)

•	Framework:	$t = 0, 1, 2, \dots, T$	Time periods
•	State:	$s_t \in S \coloneqq \{0, 1,, N\}$	Items left
•	Actions:	$a_t \in A := \{5, 10,, 400\}$	Price
•	Events:	$i_t \in I := \{0, 1\}$ with probabilities	Demand
		$P_t(1, a, s) := (1 - a / 400) \cdot (1 + t) / T$ P_t	$P(0, a, s) = 1 - P_t(1, a, s)$
•	Rewards:	$r_t = r(i, a, s) \coloneqq a \cdot \min(i, s)$	Revenue
•	New state:	$s_t \rightarrow s_{t+1} = \Gamma(i_t, a_t, s_t) \coloneqq \max(0, s_t - i_t)$	Old – sold
•	Initial state:	$s_0 \in S$	Initial items N
•	Final reward:	$r_T(s) \coloneqq f \cdot s$ with $f = 10$	Weight for freight

HPI

Simulation of a Given Policy

• Assume (dynamic) pricing strategy $\pi_t(s) = 250$ (e.g., static price)

• Parameters:
$$T = 200$$
, $N = 50$, $f = 10$

time	state	action	sales	reward	accum.	new
				(revenue)	revenue	state
0	50	250	0	0	0	50
1	50	250	1	250	250	49
2	49	250	0	0	250	49
3	49	250	1	250	500	48
200	5	/	/	50	11,300	/

• Expected performance of $\pi(s)$?

• What is the best possible performance? What is an optimal policy??

Problem Formulation (Finite Horizon)

• Find a *Markov policy* $\pi = \pi_t(s)$ that maximizes

the total expected future rewards, i.e.,

$$\max_{\pi} E\left[\sum_{t=0}^{T} \left(\sum_{\substack{i_t \in I_t \\ \text{probability for event } i_t \\ under \ action \ a_t \ in \ state \ s_t}} \underbrace{P_t(i_t, a_t, s_t)}_{\text{reward for event } i_t} \cdot \underbrace{P_t(i_t, a_t, s_t)}_{under \ action \ a_t \ in \ state \ s_t}}\right) \left| \underbrace{s_0}_{initial \ state} \right],$$

where states evolve according to $s_t \rightarrow s_{t+1} = \Gamma_t(i_t, a_t, s_t)$

• How to solve such problems?

Answer: Dynamic Programming

Expected Future Rewards (Finite Horizon)

- Assume a given policy $\pi = \pi_t(s_t)$
- *Random* reward stream: $r_0, r_1, r_2, r_3, r_4, \dots, r_{T-1}, r_T$ (finite horizon)
- Expected future rewards . . .

... from time t=0 on:
$$V_0^{(\pi)}(s) = E\left(\sum_{t=0,...,T} r_t \middle| s_0 = s, a_t = \pi_t(s_t)\right)$$

... from time t=3 on:

Expected Future Rewards (Finite Horizon)

- Assume a given policy $\pi = \pi_t(s_t)$
- *Random* reward stream: $r_0, r_1, r_2, r_3, r_4, \dots, r_{T-1}, r_T$ (finite horizon)
- Expected future rewards . . .

... from time
$$t=0$$
 on: $V_0^{(\pi)}(s) = E\left(\sum_{t=0,...,T} r_t \middle| s_0 = s, a_t = \pi_t(s_t)\right)$
... from time $t=3$ on: $V_3^{(\pi)}(s) = E\left(\sum_{t=3,...,T} r_t \middle| s_3 = s, a_t = \pi_t(s_t)\right)$

• $V_t^{(\pi)}(s)$ describes "the value of being in a certain state s at time t" for a given policy π , $s \in S$, t = 0, ..., T.

Recursion for Expected Future Rewards (Finite T)

- *Random* reward stream: $r_0, r_1, r_2, r_3, r_4, \dots, r_{T-1}, r_T$ (finite horizon)
- Recursion for expected future rewards from time t on, $s \in S$:

$$V_{t}^{(\pi)}(s) = E\left(\sum_{k=t,...,T} r_{k} \left| s_{t} = s, \pi \right. \right) = E\left(r_{t} + \sum_{k=t+1,...,T} r_{k} \left| s_{t} = s, \pi \right. \right)$$
$$= E\left(r_{t} + E\left(\sum_{k=t+1,...,T} r_{k} \left| s_{t+1} = s', \pi \right. \right) \left| s_{t} = s, \pi \right. \right)$$

Recursion for Expected Future Rewards (Finite T)

- *Random* reward stream: $r_0, r_1, r_2, r_3, r_4, \dots, r_{T-1}, r_T$ (finite horizon)
- Recursion for expected future rewards from time t on, $s \in S$:

$$V_{t}^{(\pi)}(s) = E\left(\sum_{k=t,...,T} r_{k} \left| s_{t} = s, \pi \right. \right) = E\left(r_{t} + \sum_{k=t+1,...,T} r_{k} \left| s_{t} = s, \pi \right. \right)$$
$$= E\left(r_{t} + E\left(\sum_{k=t+1,...,T} r_{k} \left| s_{t+1} = s', \pi \right. \right) \left| s_{t} = s, \pi \right. \right)$$
$$= E\left(r_{t} + V_{t+1}^{(\pi)}(s_{t+1}) \left| s_{t} = s, \pi \right. \right) \text{ sum of rewards now + from } t+1$$

on

Solution Approach (Dynamic Programming)

• What is the **best expected value** of having the chance to . . .

"sell items from time t on being in state s"?

• Answer: That's easy $V_t(s)$! ?????

Solution Approach (Dynamic Programming)

• What is the **best expected value** of having the chance to . . .

"sell items from time t on being in state s"?

- Answer: That's easy $V_t(s)$! ?????
- We have renamed the problem. Awesome. But that's a solution approach!
- We don't know the "Value Function V", but V has to satisfy the relation:

Value (*state today*) = *Best expected* (*profit today* + *Value* (*state tomorrow*))

Solution Approach (Dynamic Programming)

- Value (state today) = Best expected (profit today + Value (state tomorrow))
- Idea: Consider potential events & transitions within one period.
 What can happen during one time interval (under action *a*)?

state in <i>t</i>	event	reward	state in <i>t</i> +1	probability
	0	r(0,a,s)	$\Gamma(0,a,s)$	$P_t(0,a,s)$
S	1	r(1,a,s)	$\Gamma(1, a, s)$	$P_t(1,a,s)$
	2	r(2, a, s)	$\Gamma(2, a, s)$	$P_t(2, a, s)$

• What does that mean for the value of state s at time t, i.e., $V_t(s)$?

Balancing Potential Short- and Long-Term Rewards

Bellman Equation (Finite Horizon)

• We obtain the *Bellman Equation*, which **determines** the Value Function:

$$V_{t}(s) = \max_{\substack{a \in A \\ potential \\ actions}} \left\{ \sum_{i \in I} \underbrace{P_{t}(i, a, s)}_{probability} \cdot \left(\underbrace{r(i, a, s)}_{today's \ reward} + \underbrace{\gamma \cdot V_{t+1}(\Gamma(i, a, s))}_{best \ disc. \ exp. future \ rewards \ of \ new \ state} \right) \right\}$$

• Ok, but why is that interesting?

HPI

Value Function & Optimal Policy

• We obtain the *Bellman Equation*, which **determines** the Value Function:

$$V_{t}(s) = \max_{\substack{a \in A \\ potential \\ actions}} \left\{ \sum_{i \in I} \underbrace{P_{t}(i, a, s)}_{probability} \cdot \left(\underbrace{r(i, a, s)}_{today's \ reward} + \underbrace{\gamma \cdot V_{t+1}(\Gamma(i, a, s))}_{best \ disc. \ exp. future \ rewards \ of \ new \ state} \right) \right\}$$

- Ok, but why is that interesting?
- Answer: Because $a_t^*(s) = \underset{a \in A}{\operatorname{arg\,max}} \{...\}$ is the *optimal policy*.
- Ok! Now, we just need to compute the Value Function!

HP

Value Function & Optimal Policy (Illustration)

HPI

Backward Induction for Discrete Finite Horizon MDPs

• Starting with the **terminal condition** $V_T(s) \coloneqq r_T(s)$ at the horizon Twe can compute the value function *recursively* $\forall s \in S_t, t = 0, 1, ..., T - 1$:

 $V_{t}(s) = \max_{\substack{a \in A_{t}(s) \\ potential \\ actions}} \left\{ \sum_{i \in I_{t}} \underbrace{P_{t}(i, a, s)}_{probability} \cdot \left(\underbrace{r_{t}(i, a, s)}_{today's \ reward} + \underbrace{\gamma \cdot V_{t+1}\left(\Gamma_{t}(i, a, s)\right)}_{best \ disc. \ exp. future \ rewards \ of \ new \ state} \right) \right\}$

• The optimal strategy $a_t^*(s)$, t = 0, 1, ..., T-1, $s \in S$,

is determined by the arg max of the value function $V_t(s)$

• The approach is general applicable & *optimal* for finite horizon problems The numerical complexity increases with *T*, |*S*|, |*A*|, and |*I*|

	time / periods					
	0	1		T - 2	T - 1	Т
<i>s</i> = 4	$V_0(4), a_0^*(4)$	$V_1(4), a_1^*(4)$		$V_{T-2}(4), a_{T-2}^{*}(4)$	$V_{T-1}(4),$ $a_{T-1}^{*}(4)$	$V_T(4) = r_T(4) = 0$
all $s=3$	$V_0(3), a_0^*(3)$	$V_1(3), a_1^*(3)$		$V_{T-2}(3),$ $a_{T-2}^{*}(3)$	$V_{T-1}(3),$ $a_{T-1}^{*}(3)$	$V_T(3) = r_T(3) = 0$
states $s \in S$ $s = 2$	$V_0(2), a_0^*(2)$	$V_1(2), a_1^*(2)$		$V_{T-2}(2),\ a^*_{T-2}(2)$	$V_{T-1}(2),\ a^*_{T-1}(2)$	$V_T(2) = r_T(2) = 0$
<i>s</i> = 1	$V_0(1), a_0^*(1)$	$V_1(1), a_1^*(1)$		$V_{T-2}(1), a_{T-2}^{*}(1)$	$V_{T-1}(1),\ a^*_{T-1}(1)$	$V_T(1) = r_T(1) = 0$
<i>s</i> = 0	$V_0(0), a_0^*(0)$	$V_1(0), a_1^*(0)$		$V_{T-2}(0), a^*_{T-2}(0)$	$V_{T-1}(0), a_{T-1}^{*}(0)$	$V_T(0) = r_T(0) = 0$

HPI Summary (Solving Discrete Time Finite Horizon MDPs)

Backward Induction

- (+) provides optimal solutions for finite horizon MDPs
- (+) allows for time-dependent frameworks
- (+) general applicable
- (+) numerically simple, no solver needed
- (-) full information required (cf. event & transition probabilities)
- (-) only for medium size state spaces, does not scale (curse of dimensionality)

Recall - Questions?

- Markov Policies
- Recursive Concept for Future Rewards
- The Value of "being in a certain state"
- Bellman Equation & Recursive Problem Decomposition
- Backward Induction Solution Approach

HPI

Overview

Week	Dates	Торіс			
1	April 21	Introduction			
2	April 25/28	Finite + Infinite Time MDPs			
3	May 2/5	Dynamic Programming (DP) Exercise			
4	May 9/12	Approximate Dynamic Programming (ADP) + Q-Learning (QL)			
5	May 16/19	Deep Q-Networks (DQN)			
6	May 23	DQN Extensions	(Thu May 26 "Himmelfahrt")		
7	May 30/June 2	Policy Gradient Algorithms			
8	June 9	Project Assignments	(Mon June 6 "Pfingstmontag")		
9	June 13/16	Work on Projects: Input/Support			
10	June 20/23	Work on Projects: Input/Support			
11	June 27/30	Work on Projects: Input/Support			
12	July 4/7	Work on Projects: Input/Support			
13	July 11/14	Work on Projects: Input/Support			
14	July 18/21 Sep 15	Final Presentations Finish Documentation			

HPI

Exercise (Bonus) Dynamic Programming / Backward Induction

We want to sell event tickets using Dynamic Programming. We seek to find a pricing policy that optimizes expected profits. We have *N*=50 tickets and *T*=200 periods of time. Tickets cannot be sold after *T*. We do not use a discount factor and there is no salvage value for unsold items. We consider the following demand probabilities, i.e., $P_t(1,a) := (1 - a/400) \cdot (1 + t)/T$ and

 $P_t(0,a) := 1 - P_t(1,a), \ a \in A := \{5,10,...,400\}, \ t = 0,1,...,T-1.$

- (a) Formulate a general model to sell tickets under given N, T, and demand probabilities P_t .
- (b) Solve the given example and output the solution in an appropriate way.
- (c) Simulate 1000 runs of applying the optimal policy over *T* periods. Show the distribution of realized total profits of these 1000 runs. Compare the mean with the value function.

HP