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Outline 
 

 Questions? 

 Today: Getting familiar with MDPs 

  Finite Horizon Problems 

  Dynamic Programming 

  Bellman Equation & Value Function 
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Goals for Today 
 

 Understand: States, Actions, Rewards, State Transitions 

 Learn: Finite Horizon MDPs 

 Learn: Concept of Expected Future Rewards 

 Evaluate: Policies and their Performance 

 Learn:  Solve Problems using Dynamic Programming (Backward Induction) 
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What are Finite Horizon MDP Problems? 
 

 We seek to control a dynamic system over a finite time 

 We consider a finite sequence of decisions 

 The system evolves according to a certain (time-dependent) dynamic 

 The decisions are supposed to be chosen such that 

 a certain objective is optimized (expected rewards) 

 Find the right balance between short and long-term effects 
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Example Decision Problems with Finite Horizon 
 

Examples with Finite Horizon  Task: Describe & Classify 

 Selling Airline Tickets  Goal/Objective 

 Drinking at a Party  State of the System 

 Exam Preparation  Actions 

 Eating Cake  Dynamic of the System 

 Selling Christmas Trees  Revenues/Costs 

 Accommodation Services  Finite/Infinite Horizon 

 Perishable Products, Fashion, etc.  Stochastic Components 
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Classification (Finite Horizon Problems) 
 

Example Objective State Action Dynamic Payments 

Airline Tickets max revenue #tickets price tickets sold sales rewards 

Drinking at Party max fun ‰ #beer impact-rehab fun/money 

Exam Preparation max mark/effort #learned #learn learn-forget effort, mark 

Eating Cake max utility %cake #eat outflow utility 

Christmas Trees . . . 

Accommodation . . .  

Fashion Items . . . 
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General Problem Components (Finite Horizon) 
 

 What do you want to optimize (e.g., expected rewards) (Objective) 

 Define the state of your system (State) 

 Define the set of possible actions (time+state dependent) (Actions) 

 Quantify event probabilities       (time+state+action dep.) (Dynamics) 

 Define rewards                 (time+state+action+event dep.) (Rewards) 

 Define state transitions    (time+state+action+event dep.) (Transitions) 

 What happens at the end of the time horizon? (state dep.) (Final Rewards) 
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Solving Finite Horizon MDPs via Dynamic Programming 
 

 Continuous Time Problems & Control Theory (not in focus) 

 – Hamilton-Jacobi-Bellman equation 

 – Solve (partial) differential equations 

 – Allows for structural and analytical results 

 – See also: Pontryagin's maximum principle / Hamiltonian 

 – See also: Differential games & stochastic extensions 

 

 Discrete Time Problems (our focus) 

 – Bellman equation, backward induction 

 – Optimal numerical solutions 
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Basic Notation (Discrete Time Models) 
 

 Framework: 0,1,2,...,t T  Discrete time periods 
 

 State: ts S  One- or multi-dimensional 
 

 Actions: ta A  One- or multi-dimensional 
 

 Events: ti I , ( , , )tP i a s  Probability of event i in (t,t+1) under a in s 
 

 Rewards: ( , , )t tr r i a s  Realized reward in (t,t+1) for i, a in s 
 

 New State: 1 ( , , )t t ts s i a s    State transition (forr i, a in s) 
 

 Initial State: 0s S  State in t=0 
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Sequence of Events (Finite Horizon) 
 

t=0 start in state 0s  at the beginning of period (0,1) 

 choose/play action 0a  for period (0,1) 

 observe realized reward 0r  of period (0,1) 

t=1 observe realized new state 1s  after period (0,1) / the beginning of period (1,2) 

 choose/play action 1a  for period (1,2) 

 observe realized reward 1r  of period (1,2) 

. . .  

t=T observe realized new state Ts  after period (T-1,T) / end of time horizon 

 no further action 

 observe realized terminal reward ( )T Tr s  (cf. state-dependent salvage value) 
 

=> 0 0 0 1 1 1 2 2 2 1 1 1, , , , , , , , , . . . , , , , ,T T T T Ts a r s a r s a r s a r s r    
 

  

time0 1 32 1T  T
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Markov Property 
 

 The distribution of rewards and state transitions do only depend on the 

current state and action – not the history to get there. 

 

 This can formally be expressed as: 

 

    1 0 0 1,..., , ,..., ,t t t t t tP s s s a a P s s a   0,1,..., 1t T    

 

    1 0 0 1, ..., , ,..., ,t t t t t tP r s s a a P r s a   0,1,..., 1t T    
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Policies 
 

 A non-anticipating (Markov) policy ( )t ts  determines an action ta  to be 

chosen/played in state ts  at time t, for all ,ts S  0,..., 1t T  . 

 

 A policy is usually deterministic, i.e., a unique action is chosen. 

 

 A policy can also be randomized (mixed), i.e., an action is chosen 

according to a certain probability distribution within the set A. 

 

 Note, already the number of potential det. policies is large, cf. 
| || |T SA 

! 
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Check: Could You Simulate Test Examples? 
 

 Finite Horizon Problems 

 – Eating cake (e.g., with deterministic utility) 

 – Selling Airline Tickets (stochastic demand) 

 

 Describe: Horizon, states, actions, dynamics, rewards, transitions 

 Evaluate rewards and state realizations of a certain (Markov) policy 

 (which contains “what to do in which state at which point in time”) 

 Simulate multiple runs (and policies) & evaluate average total rewards 
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Example Problem (Selling Airline Tickets) 
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Example Problem (Selling Airline Tickets) 
 

 Problem context: Sell items (N tickets) over time 
 

 Time Horizon: Finite (T) 

 

 Action: Offer price (p) 
 

 Demand: Stochastic (Price and Time-dependent) 
 

 Rewards: Sales revenues (r) & final rewards (salvage value) 
 

 Goal: Maximize expected total profits 
 

 

 How to find an optimal pricing policy? 
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Example MDP (Selling Airline Tickets) 
 

 Framework: 0,1,2,...,t T  Time periods 
 

 State: : {0,1,..., }ts S N   Items left 
 

 Actions: : {5,10,..., 400}ta A   Price 
 

 Events: : {0,1}ti I   with probabilities Demand 

  (1, , ) : (1 / 400) (1 ) /tP a s a t T          (0, , ) 1 (1, , )t tP a s P a s   
 

 Rewards: ( , , ) : min( , )tr r i a s a i s    Revenue 
 

 New state: 1 ( , , ) : max(0, )t t t t t t ts s i a s s i      Old – sold 
 

 Initial state: 0s S  Initial items N 
 

 Final reward: ( ) :Tr s f s    with 10f   Weight for freight 
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Simulation of a Given Policy 
 

 Assume (dynamic) pricing strategy ( ) 250t s     (e.g., static price) 
 

 Parameters: 200, 50, 10T N f    
 

time state action sales reward 

(revenue) 

accum. 

revenue 

new 

state 

0 50 250 0 0 0 50 

1 50 250 1 250 250 49 

2 49 250 0 0 250 49 

3 49 250 1 250 500 48 

...       

200 5 / / 50 11,300 / 
 

 Expected performance of ( )s ? 

 What is the best possible performance? What is an optimal policy?? 
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Problem Formulation (Finite Horizon) 
 

 Find a Markov policy ( )t s   that maximizes 

 the total expected future rewards, i.e., 

 
  �0

0

max , , ( , , )
t t

tt

t tt t

T

t t t t t t t t

t i I initial statereward for event iprobability for event i
under action a in state sunder action a in state s

E P i a s r i a s s


 

  
  

  
      

  ���������� , 

 where states evolve according to 1 ( , , )t t t t t ts s i a s    

 How to solve such problems? Answer: Dynamic Programming 
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Expected Future Rewards (Finite Horizon) 
 

 Assume a given policy ( )t ts   

 Random reward stream: 0 1 2 3 4 1, , , , ,..., ,T Tr r r r r r r     (finite horizon) 
 

 Expected future rewards . . .  

 . . . from time t=0 on: 
( )

0 0

0,...,

( ) , ( )t t t t

t T

V s E r s s a s 


 
    

 
  

 . . . from time t=3 on:  
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Expected Future Rewards (Finite Horizon) 
 

 Assume a given policy ( )t ts   

 Random reward stream: 0 1 2 3 4 1, , , , ,..., ,T Tr r r r r r r     (finite horizon) 
 

 Expected future rewards . . .  

 . . . from time t=0 on: 
( )

0 0

0,...,

( ) , ( )t t t t

t T

V s E r s s a s 


 
    

 
  

 . . . from time t=3 on: 
( )

3 3

3,...,

( ) , ( )t t t t

t T

V s E r s s a s 


 
    

 
  

 

 
( ) ( )tV s

 describes “the value of being in a certain state s at time t”  

  for a given policy  , ,s S  0,...,t T . 
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Recursion for Expected Future Rewards (Finite T) 
 

 Random reward stream: 0 1 2 3 4 1, , , , ,..., ,T Tr r r r r r r    (finite horizon) 

 Recursion for expected future rewards from time t on, s S : 

 
( )

,...,

( ) ,t k t

k t T

V s E r s s 


 
   

 


1,...,

,t k t

k t T

E r r s s 
 

 
    

 
  

 
1

1,...,

?

, ,t k t t

k t T

E r E r s s s s 
 

 
  
        
 
 


�����������
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Recursion for Expected Future Rewards (Finite T) 
 

 Random reward stream: 0 1 2 3 4 1, , , , ,..., ,T Tr r r r r r r    (finite horizon) 

 Recursion for expected future rewards from time t on, s S : 

 
( )

,...,

( ) ,t k t

k t T

V s E r s s 


 
   

 


1,...,

,t k t

k t T

E r r s s 
 

 
    

 
  

 
1

1,...,

?

, ,t k t t

k t T

E r E r s s s s 
 

 
  
        
 
 


�����������

 

  ( )

1 1( ) ,t t t tE r V s s s          sum of rewards now + from t+1 on 
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Solution Approach  (Dynamic Programming) 
 

 What is the best expected value of having the chance to . . . 
 

 “sell items from time t on being in state s”? 

 

 Answer:   That’s easy  ( )tV s !     ????? 
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Solution Approach  (Dynamic Programming) 
 

 What is the best expected value of having the chance to . . . 
 

 “sell items from time t on being in state s”? 

 

 Answer:   That’s easy  ( )tV s !     ????? 

 

 We have renamed the problem. Awesome.  But - that’s a solution approach! 

 

 We don’t know the “Value Function V”, but V has to satisfy the relation: 
 

 Value (state today) = Best expected  (profit today + Value (state tomorrow)) 
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Solution Approach  (Dynamic Programming) 
 

 Value (state today) = Best expected  (profit today + Value (state tomorrow)) 
 

 Idea: Consider potential events & transitions within one period. 

  What can happen during one time interval (under action a)? 
 

 state in t event reward state in t+1 probability 
 

  0  (0, , )r a s  (0, , )a s  (0, , )tP a s  
 

     s   1 (1, , )r a s  (1, , )a s  (1, , )tP a s  
 

  2  (2, , )r a s  (2, , )a s  (2, , )tP a s  
 

 What does that mean for the value of state s  at time t, i.e., ( )tV s ? 
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Balancing Potential Short- and Long-Term Rewards 
 

 state in t event reward state in t+1 probability 
 

  0  (0, , )r a s  (0, , )a s  (0, , )tP a s  
 

     s   1 (1, , )r a s  (1, , )a s  (1, , )tP a s  
 

  2  (2, , )r a s  (2, , )a s  (2, , )tP a s  
 

 �
 1

'( , 1) . .

( ) max (0, , ) (0, , ) (0, , )
t t t

a A

periods s rewardprobability not to sell in t t best disc exp future rewardspotential
actions

V s P a s r a s V a s 




  
          

���������� �������  

    
 1

'1 ( , 1) . .

(1, , ) (1, , ) (1, , ) ...t t

period s rewardprobability of sale in t t best disc exp future rewards

P a s r a s V a s 



 
           

���������� �������  
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Bellman Equation (Finite Horizon) 
 

 We obtain the Bellman Equation, which determines the Value Function: 

 �
 1

' . .

( ) max ( , , ) ( , , ) ( , , )
t t t

a A
i I

today s rewardprobability best disc exp future rewards of new statepotential
actions

V s P i a s r i a s V i a s 




  
           
 ���������� �������  

 

 Ok, but why is that interesting? 
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Value Function & Optimal Policy 
 

 We obtain the Bellman Equation, which determines the Value Function: 

 �
 1

' . .

( ) max ( , , ) ( , , ) ( , , )
t t t

a A
i I

today s rewardprobability best disc exp future rewards of new statepotential
actions

V s P i a s r i a s V i a s 




  
           
 ���������� �������  

 

 Ok, but why is that interesting? 

 

 Answer: Because  is the optimal policy. 

 Ok! Now, we just need to compute the Value Function! 
  

 *( ) arg max ...t
a A

a s
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Value Function & Optimal Policy (Illustration) 
 

 

 Value Function Pricing Policy 

 

   
 

 

 

  

0.2 0.4 0.6 0.8 1.0
t

0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

n

*( )ta s( )tV s

0 0T T

1s 

2s 

10s 

10s 

1s 
2s 

example of one

application

ւ
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Backward Induction for Discrete Finite Horizon MDPs 
 

 Starting with the terminal condition ( ) : ( )T TV s r s  at the horizon T 
 

 we can compute the value function recursively , 0,1,..., 1ts S t T    : 

 �
 1

( )

' . .

( ) max ( , , ) ( , , ) ( , , )
t

t

t t t t t
a A s

i I
probability today s reward best disc exp future rewards of new state

potential
actions

V s P i a s r i a s V i a s 




  
           
����� ����� �������  

 

 The optimal strategy 
*( )ta s , 0,1,..., 1t T  , s S , 

 

 is determined by the arg max of the value function ( )tV s  

 

 The approach is general applicable & optimal for finite horizon problems 

 The numerical complexity increases with T, |S|, |A|, and |I|  
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Backward Induction Tabular Schema (Airline Example) 

 

      

      

      

      

      

 

  

( 0)T f 

(4) (4) 0T TV r 

/time periods

all

states

s S

0 1T 

(3) (3) 0T TV r 

(2) (2) 0T TV r 

(1) (1) 0T TV r 

(0) (0) 0T TV r 

4s 

3s 

2s 

0s 

1s 
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Backward Induction Tabular Schema (Airline Example) 

 

      

      

      

      

      

 

  

T

(4) (4) 0T TV r 

/time periods

all

states

s S

0 1T 

1(0, , 4)TP a

1(1, , 4)TP a

(3) (3) 0T TV r 

(2) (2) 0T TV r 

(1) (1) 0T TV r 

(0) (0) 0T TV r 

4s 

3s 

2s 

0s 

1s 

 1 1(0, , 4) (0, , 4) (4)T T TP a r a V   

 1 1(1, , 4) (1, , 4) (3)T T TP a r a V    
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Backward Induction Tabular Schema (Airline Example) 

 

      

      

      

      

      

 

  

T

(4) (4) 0T TV r 

/time periods

all

states

s S

0 1T 

*

1(0, , 4)TP a
*

1(1, , 4)TP a

(3) (3) 0T TV r 

(2) (2) 0T TV r 

(1) (1) 0T TV r 

(0) (0) 0T TV r 

4s 

3s 

2s 

0s 

1s 
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Backward Induction Tabular Schema (Airline Example) 

 

      

      

      

      

      

 

  

T

(4) (4) 0T TV r 

/time periods

all

states

s S

0 1T 

(3) (3) 0T TV r 

(2) (2) 0T TV r 

(1) (1) 0T TV r 

(0) (0) 0T TV r 

4s 

3s 

2s 

0s 

1s 

1

*

1

(4),

(4)

T

T

V

a
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Backward Induction Tabular Schema (Airline Example) 

 

      

      

      

      

      

 

  

T

(4) (4) 0T TV r 

/time periods

all

states

s S

0 1T 

1(0, ,3)TP a

1(1, ,3)TP a

(3) (3) 0T TV r 

(2) (2) 0T TV r 

(1) (1) 0T TV r 

(0) (0) 0T TV r 

4s 

3s 

2s 

0s 

1s 

1

*

1

(4),

(4)

T

T

V

a
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Backward Induction Tabular Schema (Airline Example) 

 

      

      

      

      

      

 

  

T

(4) (4) 0T TV r 

/time periods

all

states

s S

0 1T 

(3) (3) 0T TV r 

(2) (2) 0T TV r 

(1) (1) 0T TV r 

(0) (0) 0T TV r 

4s 

3s 

2s 

0s 

1s 

1

*

1

(4),

(4)

T

T

V

a





1

*

1

(3),

(3)

T

T

V

a
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Backward Induction Tabular Schema (Airline Example) 

 

      

      

      

      

      

 

  

T

(4) (4) 0T TV r 

/time periods

all

states

s S

0 1T 

(3) (3) 0T TV r 

(2) (2) 0T TV r 

(1) (1) 0T TV r 

(0) (0) 0T TV r 

4s 

3s 

2s 

0s 

1s 

1

*

1

(4),

(4)

T

T

V

a





1

*

1

(3),

(3)

T

T

V

a





1

*

1

(2),

(2)

T

T

V

a





1

*

1

(1),

(1)

T

T

V

a





1

*

1

(0),

(0)

T

T

V

a





2T 



 

37 

 

 

Backward Induction Tabular Schema (Airline Example) 

 

  

. . . 

   

  

. . . 

   

  

. . . 

   

  

. . . 

   

  

. . . 

   

 

  

T

(4) (4) 0T TV r 

/time periods

0 1T 

4s 
1

*

1

(4),

(4)

T

T

V

a





2

*

2

(4),

(4)

T

T

V

a





2T 

all

states

s S

(3) (3) 0T TV r 3s 
1

*

1

(3),

(3)

T

T

V

a





2

*

2

(3),

(3)

T

T

V

a





(2) (2) 0T TV r 2s 
1

*

1

(2),

(2)

T

T

V

a





2

*

2

(2),

(2)

T

T

V

a





(1) (1) 0T TV r 1s 
1

*

1

(1),

(1)

T

T

V

a





2

*

2

(1),

(1)

T

T

V

a





(0) (0) 0T TV r 0s 
1

*

1

(0),

(0)

T

T

V

a





2

*

2

(0),

(0)

T

T

V

a





1
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Backward Induction Tabular Schema (Airline Example) 
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2

*
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T
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T
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2
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Summary (Solving Discrete Time Finite Horizon MDPs) 
 

Backward Induction 

(+) provides optimal solutions for finite horizon MDPs 

(+) allows for time-dependent frameworks 

(+) general applicable 

(+) numerically simple, no solver needed 

 

(–) full information required (cf. event & transition probabilities) 

(–) only for medium size state spaces,  

 does not scale (curse of dimensionality) 
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Recall - Questions? 
 

 Markov Policies 

 Recursive Concept for Future Rewards 

 The Value of “being in a certain state” 

 Bellman Equation & Recursive Problem Decomposition 

 Backward Induction Solution Approach 
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Overview 
 

Week Dates Topic 

1 April 21 Introduction 
 

2 April 25/28 Finite + Infinite Time MDPs 
 

3 May 2/5 Dynamic Programming (DP) Exercise  
 

4 May 9/12 Approximate Dynamic Programming (ADP) + Q-Learning (QL) 
 

5 May 16/19 Deep Q-Networks (DQN) 
 

6 May 23 DQN Extensions (Thu May 26 “Himmelfahrt”) 
 

7 May 30/June 2 Policy Gradient Algorithms 
 

8 June 9 Project Assignments (Mon June 6 “Pfingstmontag”) 
 

9 June 13/16 Work on Projects: Input/Support 
 

10 June 20/23 Work on Projects: Input/Support 
 

11 June 27/30 Work on Projects: Input/Support 
 

12 July 4/7 Work on Projects: Input/Support 
 

13 July 11/14 Work on Projects: Input/Support 
 

14 July 18/21 Final Presentations 

 Sep 15 Finish Documentation 
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Exercise (Bonus) Dynamic Programming / Backward Induction 
 
We want to sell event tickets using Dynamic Programming. We seek to find a pricing policy that 

optimizes expected profits. We have N=50 tickets and T=200 periods of time. Tickets cannot be 

sold after T. We do not use a discount factor and there is no salvage value for unsold items. We 

consider the following demand probabilities, i.e., (1, ) : (1 / 400) (1 ) /tP a a t T     and 

(0, ) : 1 (1, )t tP a P a  , aA:={5,10,...,400}, 0,1,..., 1t T  . 

 

(a) Formulate a general model to sell tickets under given N, T, and demand probabilities 
tP . 

 
(b) Solve the given example and output the solution in an appropriate way. 
 
(c) Simulate 1000 runs of applying the optimal policy over T periods. Show the distribution of 

realized total profits of these 1000 runs. Compare the mean with the value function. 

 


