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Outline

e  Questions?

e Today: Getting familiar with MDPs
Finite Horizon Problems
Dynamic Programming

Bellman Equation & Value Function



Goals for Today ﬂ

Understand: States, Actions, Rewards, State Transitions

e [earn: Finite Horizon MDPs

e Learn: Concept of Expected Future Rewards

e Evaluate: Policies and their Performance

e Learn: Solve Problems using Dynamic Programming (Backward Induction)



What are Finite Horizon MDP Problems? H

e We seek to control a dynamic system over a finite time
e  We consider a finite sequence of decisions
e The system evolves according to a certain (time-dependent) dynamic

e The decisions are supposed to be chosen such that

a certain objective is optimized (expected rewards)

e Find the right balance between short and long-term effects



Example Decision Problems with Finite Horizon ﬂ

Examples with Finite Horizon

e Selling Airline Tickets
e Drinking at a Party

e Exam Preparation

e Eating Cake

e Selling Christmas Trees

e Accommodation Services

e Perishable Products, Fashion, etc.

Task: Describe & Classify

Goal/Objective

State of the System
Actions

Dynamic of the System
Revenues/Costs
Finite/Infinite Horizon

Stochastic Components



Classification (Finite Horizon Problems)

Example Objective State Action  Dynamic Payments
Airline Tickets = max revenue  #tickets price tickets sold sales rewards
Drinking at Party max fun %00 #beer impact-rehab  fun/money
Exam Preparation max mark/effort #learned #learn learn-forget effort, mark
Eating Cake max utility %cake #Heat outflow utility

Christmas Trees

Accommodation

Fashion Items



General Problem Components (Finite Horizon) ﬂ

e What do you want to optimize (e.g., expected rewards) (Objective)
e Define the state of your system (State)

e Define the set of possible actions (time+state dependent)  (Actions)

e Quantify event probabilities  (time+state+action dep.) (Dynamics)
e Define rewards (time+state+action+event dep.) (Rewards)

e Define state transitions (time+state+action+event dep.) (Transitions)

e What happens at the end of the time horizon? (state dep.) (Final Rewards)



Solving Finite Horizon MDPs via Dynamic Programﬂ

o Continuous Time Problems & Control Theory (not in focus)
— Hamilton-Jacobi-Bellman equation
— Solve (partial) differential equations
— Allows for structural and analytical results
— See also: Pontryagin's maximum principle / Hamiltonian

— See also: Differential games & stochastic extensions

o Discrete Time Problems (our focus)
— Bellman equation, backward induction

— Optimal numerical solutions



Basic Notation (Discrete Time Models) H

e Framework: 1=0,12,..,T

e State: s, s

e Actions: a, € A4

e Events: i, el F(i,a,s)
e Rewards: 7, =r(,a,s)

e New State: S, =S, :Fz(i,a,S)

e Initial State: S, €S

Discrete time periods

One- or multi-dimensional

One- or multi-dimensional

Probability of event i in (¢,¢+1) under a in s
Realized reward in (¢,/+1) fori,ain s

State transition (forr i, a in s)

State in =0



Sequence of Events (Finite Horizon) ﬂ

t=0 startin state S, at the beginning of period (0,1)
choose/play action 4, for period (0,1)

observe realized reward 7, of period (0,1)

t=1 observe realized new state §; after period (0,1) / the beginning of period (1,2)
choose/play action @, for period (1,2)

observe realized reward 7} of period (1,2)

t=T observe realized new state S after period (7-1,7) / end of time horizon
no further action

observe realized terminal reward 7 (S7) (cf. state-dependent salvage value)
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Markov Property ﬂ

o The distribution of rewards and state transitions do only depend on the
current state and action — not the history to get there.

o This can formally be expressed as:
P(SHI ‘SO,...,St,aO,...,at):P( S ‘St, t) Vt=0,1,..,7T-1

P(rm‘SO,...,St,aO,...,aZ):P( T ‘St, t) Vt=0,1,..,7T-1
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Policies H

e A non-anticipating (Markov) policy 7,(s,) determines an action 4, to be

chosen/played in state S, attime ¢, forall s, €S, t=0,..,7—1.
e A policy is usually deterministic, i.e., a unique action is chosen.

e A policy can also be randomized (mixed), i.e., an action is chosen

according to a certain probability distribution within the set 4.

e Note, already the number of potential det. policies is large, cf. | 4 sl
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Check: Could You Simulate Test Examples? H

e  Finite Horizon Problems
— Eating cake (e.g., with deterministic utility)

— Selling Airline Tickets (stochastic demand)

° Describe: Horizon, states, actions, dynamics, rewards, transitions

o Evaluate rewards and state realizations of a certain (Markov) policy

(which contains “what to do in which state at which point in time”)

o Simulate multiple runs (and policies) & evaluate average total rewards

12



Example Problem (Selling Airline Tickets)
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Example Problem (Selling Airline Tickets) H

e Problem context: Sell items (N tickets) over time

e Time Horizon: Finite (7)

e Action: Offer price (p)

e Demand: Stochastic (Price and Time-dependent)

e Rewards: Sales revenues () & final rewards (salvage value)
e Goal: Maximize expected total profits

e How to find an optimal pricing policy?
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Example MDP (Selling Airline Tickets) ﬂ

e Framework:
e State:
e Actions:

e FEvents:

e Rewards:
e New state:

e Initial state:

e Final reward:

t=0,1,2,..,T Time periods
s, €8:={0,1,..,N} Items left

a, € A:={5,10,...,400} Price

i, € [ :={0,1} with probabilities Demand

P(l,a,s)=(1-a/400)-(1+¢)/T P(0,a,s)=1-P(,a,s)

1, =r(i,a,s):=a-min(,s) Revenue
s, =>s,.,=IG,a,s)=max(0,s, —i) OId - sold

S, €8 Initial items N

r.(s)=f-s with f=10 Weight for freight
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Simulation of a Given Policy ﬂ

e Assume (dynamic) pricing strategy 7,(s) =250 (e.g., static price)
e  Parameters: 7 =200, N =50, /=10

time state action sales reward accum.  new
(revenue) revenue state

0 50 250 0 0 0 50

1 50 250 1 250 250 49

2 49 250 0 0 250 49

3 49 250 1 250 500 48

200 5 / / 50 11,300 /

e  Expected performance of 7(s)?

o What is the best possible performance? What 1s an optimal policy??
16



Problem Formulation (Finite Horizon) ﬂ

e Find a Markov policy 7@ =7,(s) that maximizes

the total expected future rewards, i.c.,

T

max E Z Z B (i.a,s,) - r(,a,s, So

=0 | iel, ——— ——— e b
probability for event i, reward for event i, initial state
under action a, in state s, under action a, in state s,

where states evolve according to S, = 5., =I',(i,,q,,s

e How to solve such problems? Answer: Dynamic Programming
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Expected Future Rewards (Finite Horizon) ﬂ

e Assume a given policy 7 =7,(s,)
e Random reward stream: TosNstys B35 lysesIr 15y (finite horizon)

e Expected future rewards . . .

t=0,...,.T

.. . from time =0 on: VO(”)(S) B E[ Ti|So = 5> 4 = ﬂ.t(St))

... from time =3 on:
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Expected Future Rewards (Finite Horizon) ﬂ

e Assume a given policy 7 =7,(s,)
e Random reward stream: TosNstys B35 lysesIr 15y (finite horizon)
e Expected future rewards . . .

(7) _ _ _
. from time =0 on: VWo(s)=E n|Sy =s,a, =7,(s,)

. from time =3 on: K(”)(S):E Z ns; =s,a, =7,(s,)

o V,(”)(S) describes “the value of being in a certain state s at time t’

for a given policy =, s€S, t=0,...,T
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Recursion for Expected Future Rewards (Finite 7) H

° Random reward stream: TosNstys B35 lyses Ir 15 (finite horizon)

e  Recursion for expected future rewards from time £ on, s € S :

Vo(s)=E Z 7 StZS,ﬂ'JIE(Vt+ Z 7 StZS,ﬂ']
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Recursion for Expected Future Rewards (Finite 7) ﬂ

° Random reward stream: TosNstys B35 lyses Ir 15 (finite horizon)

e  Recursion for expected future rewards from time £ on, s € S :

Vo (s)=E Z 7, st:S,ﬂ]zE(rt+ Z 7, St=S,7T]

t+1

= E(rt + V(”) (St+1)

S, =S8, ) sum of rewards now + from 7+1 on
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Solution Approach (Dynamic Programming) ﬂ

e What is the best expected value of having the chance to . . .

“sell items from time t on being in state s”’?

e Answer: That’seasy V,(s)! 27972
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Solution Approach (Dynamic Programming) ﬂ

What is the best expected value of having the chance to . . .

“sell items from time t on being in state s”’?

e Answer: That’seasy V,(s)! 27979

e We have renamed the problem. Awesome. But - that’s a solution approach!

e We don’t know the “Value Function /", but J has to satisfy the relation:

Value (state today) = Best expected (profit today + Value (state tomorrow))
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Solution Approach (Dynamic Programming) H

e Value (state today) = Best expected (profit today + Value (state tomorrow))

e Idea: Consider potential events & transitions within one period.

What can happen during one time interval (under action a)?

stateinf  event reward state in #+1 probability
0 r(0,a,s) I'0,a,s) P(0,a,s)

S 1 r(l,a,s) I'(,a,s) P(,a,s)

2 r(2,a,s) I'2,a,s) P(2,a,s)

e What does that mean for the value of state s at time ¢, i.e., V,(s) ?
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Balancing Potential Short- and Long-Term Rewards H

statein¢  event reward state in #+1 probability
0 r(0,a,s) I'(0,a,s) P(0,a,s)
s 1 r(as)  T(as) P(,a,s)
2 r(2,a,s) I'(2,a,s) P(2,a,s)
V.(s) = max P(0,a,s) 1 r(0,a,s) +y-V,, (F(O,a,s))
acd B / — “ -~ >
potential probability not to sell in (t,t+1) \ periods's reward  pest disc. exp. future rewards

actions

+ P,a,s) 1 rLa,s) + y-V, (TLa,s)) | +..
— - ~ e

probability of 1 sale in (t,t+1) \ period's reward  pest disc. exp. future rewards
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Bellman Equation (Finite Horizon) ﬂ

e We obtain the Bellman Equation, which determines the Value Function:

V.(s)= max ZE(z,a,s)- r(i,a,s) + y-K+1(F(z,a,s))
ac iel T | S~ 5 ~ /
potential probability today's reward  pest disc. exp. future rewards of new state

actions

e Ok, but why is that interesting?
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Value Function & Optimal Policy H

e We obtain the Bellman Equation, which determines the Value Function:

V.(s) = max ZE(i,a,S)- r(i,a,s) + Z/°I/t+1(r(i,a,S))

acA

iel .7, [ . N
potential probability today's reward  pest disc. exp. future rewards of new state
actions

e Ok, but why is that interesting?

e Answer: Because a, (s)=argmax {} is the optimal policy.
acA

o Ok! Now, we just need to compute the Value Function!
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Value Function & Optimal Policy (Illustration) H

Value Function Pricing Policy

Vi(s) a, (s)
, example of one

application

4
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Backward Induction for Discrete Finite Horizon MDH

e Starting with the terminal condition V; (s) :=7;(s) at the horizon T

we can compute the value function recursively Vs €S,,t=0,1,...,T —1:

V.(s) = max ZB(i,a,S)- r(i,a,s) + Z/-Vt+1 (Ft(i,a,s))

ac4, (s)
[S———

potential ' probability today's reward  best disc. exp.future rewards of new state

actions
e The optimal strategy ¢, (s), t=0,1,...,T—1 se§,
is determined by the arg max of the value function V,(s)

e The approach is general applicable & optimal for finite horizon problems

The numerical complexity increases with 7, |S|, |4|, and |/|
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Backward Induction Tabular Schema (Airline Examn

time/ periods
0 T-1 T (f =0)

s=4 V.(4)=r,(4)=0
all  s=3 Vr(3)=1,(3)=0
sStates
SES S:2 VT(‘?‘):rT(‘?‘):O

s=1 V.)=r(1)=0

s=0 V,(0)=r(0)=0
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Backward Induction Tabular Schema (Airline Examn

time/ periods
0 T-1 T
%
s=4 Fa@ad) y @)=r =0
P (1,a,4
P 1(0,a,4)(17,(0,0,4)+ 7] V() S

all - s=3 +B 00, A) (L )+ 7)) ==t
states
SES S:2 V:(2)=r(2)=0

s=1 V() =r,(1)=0

s=0 7 (0)=7(0) =0
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Backward Induction Tabular Schema (Airline Examn

time/ periods
0 T-1 T
——
s=4 Faa-9) y@y=r#=0
P, (l,a",4
N

all s=3 V,(3)=1,(3)=0
states
SES S:2 VT(2)=rT(2)=O

s=1 V,()=r(1)=0

$=0 V,(0)=r.(0)=0
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Backward Induction Tabular Schema (Airline Examn

time/ periods

0 T-1 T
Via(4),

s = 4 a;71(4) VT(4)=rT(4)=0
all s=3 V,(3)=1,(3)=0
States
SES S:2 VT(2)=rT(2)=0

s=1 V.)=r,(1)=0

s=0 V,(0)=r(0)=0
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Backward Induction Tabular Schema (Airline Examn

time/ periods
0 T-1 T
VT—1(4)7
s = 4 a;71(4) VT(4)=rT(4)=0
P (0 3)%
r1\U, 4, _ _
all s=3 P Lag TO=RG)=0
states N
SES S:2 VT(2)=rT(2)=O
s=1 V,(1)=r(1)=0
s=0 7 (0)=7(0) =0
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Backward Induction Tabular Schema (Airline Examn

time/ periods
0 T-1 T
VT—1(4)7
S = 4 a;71(4) VT(4)=rT(4)=0
VT—1(3)7
all s=3 i@ | H®=r@=0
sStates -
SES S:2 VT(2)=rT(2)=O
™
s=1 7V (0)=r(1)=0
Ny
s=0 V,(0)=r(0)=0
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Backward Induction Tabular Schema (Airline Examn

time/ periods

all s=3
States
se§ 5=2

-2 T-1 T
Vea(4),
T a;71(4) VT (4) = (4) =0
N VT—I (3),
_— a;,l (3) V:(3)=r03)=0
> @0
) +(2)=r(2)=
~> V), D= r () =0
Py | HO=RO-
S VL, (0), 3 3
—_— 0;71 (0) VT (0) - rT (0) =0
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Backward Induction Tabular Schema (Airline Examn

s=4
all s=3
States
sesS §=2

s=1

s=0

time/ periods
r-2 T-1 T
Vra(4), v, (4),
a;_,(4) @ | HO=n@=0
Vi 3), V. .(3),
ar_,(3) i@ | Vr®=r®=0
Via(2), V. (2), o
i@ | a. | T@=T@=0
VT—Z (1)7 VT—l (1)’
ar_,(1) a, (1) Vi) =r1)=0
Vi (0), V., (0), i ]
a;_(0) o |7O=r0=0
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Backward Induction Tabular Schema (Airline Examn

time/ periods

0 1 T-2  T-1 T
4| e V), Vo,@, | V),
5= o (4) ol (4) QL@ | d,@ | Tr@=r@=0
7,0, v,03), VoG | Va0,
all  s=31 43 4 (3) 2@ | a,@ | FO==e=0
states Lo, | K. @, | V@ |
ses 5=2 a;(2) a,(2) a;,(2) a; ,(2) ADSECY=
v, (1), V), VoM, | 7.0, N
S = 1 a;(l) al*(l) Cl;fZ(l) a;fl(l) VT( )— rT( )_
_o| hO V,(0), VL0, | 7,0,
§= a;(0) 0) a0 | a0 |7O=10=0
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Summary (Solving Discrete Time Finite Horizon ME

Backward Induction

(+) provides optimal solutions for finite horizon MDPs
(+) allows for time-dependent frameworks
(+) general applicable

(+) numerically simple, no solver needed

(=) full information required (cf. event & transition probabilities)

(=) only for medium size state spaces,
does not scale (curse of dimensionality)
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Recall - Questions?

e Markov Policies

Recursive Concept for Future Rewards

The Value of “being in a certain state”

Bellman Equation & Recursive Problem Decomposition

Backward Induction Solution Approach
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Overview

Week Dates

April 21

April 25/28
May 2/5

May 9/12
May 16/19
May 23

May 30/June 2

[

June 9
June 13/16
June 20/23
June 27/30
July 4/7
July 11/14

July 18/21
Sep 15

O 0 9 N W K=~ W N

e e e e
B W NN = O

Topic

Introduction

Finite + Infinite Time MDPs

Dynamic Programming (DP) Exercise

Approximate Dynamic Programming (ADP) + Q-Learning (QL)

Deep Q-Networks (DQN)

DQN Extensions (Thu May 26 “Himmelfahrt™)
Policy Gradient Algorithms

Project Assignments (Mon June 6 “Pfingstmontag”)
Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Final Presentations
Finish Documentation
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Exercise (Bonus) Dynamic Programming / Backward Induction

We want to sell event tickets using Dynamic Programming. We seek to find a pricing policy that
optimizes expected profits. We have N=50 tickets and T=200 periods of time. Tickets cannot be
sold after T. We do not use a discount factor and there is no salvage value for unsold items. We

consider the following demand probabilities, i.e., P(l,a):=(1—a/400)-(1+¢)/T and

P(0,a)=1-P(,a), aeA:={5,10,..,400}, t=0,1,...,7 —1.
(@) Formulate a general model to sell tickets under given N, T, and demand probabilities P.

(b)  Solve the given example and output the solution in an appropriate way.

(c)  Simulate 1000 runs of applying the optimal policy over T periods. Show the distribution of

realized total profits of these 1000 runs. Compare the mean with the value function.
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