Dynamic Programming and Reinforcement Learning

Infinite Time Markov Decision Processes (Week 2b)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

April 28, 2022

Outline

- Questions?
- Today: Infinite Horizon Problems

Problem Examples

Value Iteration

Policy Iteration

1

HPI

Recap: Last Week

- Markov Policies in Finite Horizon MDPs
- Recursive Concept for Future Rewards
- The Value of "being in a certain state"
- Bellman Equation & Recursive Problem Decomposition
- Backward Induction Solution Approach

HPI

Solving MDP Problems

- Continuous Time Problems & Control Theory (not in focus)
- Discrete Time MDP Problems with **Finite Horizon** (last meeting)
	- *Time-dependent* Framework, Terminal Condition/Reward
	- Bellman Equation
	- Optimal numerical solutions via Backward induction
- 0 Discrete Time MDP Problems with **Infinite Horizon** (today)
	- *Time-independent* Framework, Bellman Equation
	- Optimal numerical solutions via Value & Policy Iteration
	- Basis for **Reinforcement Learning**

Classification (Infinite Horizon Problems)

Agriculture/Forestry

Durable Products

Chess/Go/Tetris

Circular Economy

Example Problem (Inventory Management)

Example Problem (Inventory Management)

- Problem context: Sell and order items over time
- Time Horizon: Infinite
- Demand: Stochastic (where price is fixed)
- Action: Replenish your inventory from time to time
- Rewards: Order cost vs. inventory holding costs
- Goal: Maximize expected discounted future profits
- How to find an optimal order policy?

Example MDP (Inventory Management)

• Framework:
$$
t = 0, 1, 2, \ldots, \infty
$$

- State: $s \in S$ Number of items left
-
-
- - $:= p \cdot \min(i, s) c \cdot a$ ${a>0}$ 1 $-h \cdot s - 1_{\{a>0\}} \cdot f$ >

Discrete time periods

Actions: $a \in A$ Number of ordered items (replenish)

Events: $i \in I$, $P(i, a, s)$ Demand i (e.g., 0,1,2,3 with prob. 1/4 each)

- Rewards: $r = r(i, a, s)$ Revenue Order Cost Holding Cost *p*, variable order cost *c*, $\langle v_0, v_1 \rangle$ holding *h*, and fixed order costs *f*
- New State: $s \rightarrow s' = \Gamma(i, a, s)$ Old Sold + Replenish (end of period)
- Initial State: $s_0 \in S$

Initial number of items in $t=0$

Sequence of Events (Infinite Horizon)

 $t=0$ start in state S_0 at the beginning of period $(0,1)$ choose/play action a_0 for period $(0,1)$ observe realized reward r_0 of period $(0,1)$

. . .

t=1 observe realized new state S_1 after period $(0,1)$ / the beginning of period $(1,2)$ choose/play action a_1 for period (1,2) observe realized reward r_1 of period (1,2)

$$
\begin{array}{ccccccc}\n & S_0, a_0, r_0, & S_1, a_1, r_1, & S_2, a_2, r_2, & \dots \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
\end{array}
$$

Simulation of a Given Policy

- Assume a (stationary/time-indep.) order strategy: $\pi(s) = if s < 5$ then 12 else 0
- Parameters: $p = 10, c = 2, h = 0.5, f = 20$ Demand: $P(i) = 1/4, i = 0,1,2,3$

What is the tong-term performance of $\pi(s)$?

Discounting

 \bullet **Idea**: If delayed rewards are worth less, we use a penalty factor $\gamma < 1$ for each period to measure the value they have for us "now"

 b *eing in* $t = 0$? *value of future rewards when*

Discounting

0 **Idea**: If delayed rewards are worth less, we use a penalty factor $\gamma < 1$ for each period to measure the value they have for us "now"

Expected Discounted Future Rewards (Infinite Horizon)

- 0 • Random discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots$ with $\gamma \in [0,1)$
- Exp. disc. future rewards from time *^t* on **(discounted on** *current* **time** *^t***)**:

$$
V_t^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, \pi \right)
$$

Exp. disc. future rewards from time *t* on (discounted on *t=*0):

$$
\tilde{V}_t^{(\pi)}(s) = \gamma^t \cdot V_t^{(\pi)}(s)
$$

HPI

Recursion for Future Rewards (Infinite Horizon)

- 0 • Random discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots$ with $\gamma \in [0,1)$
- 0 **Recursion** for expected future rewards from time *t* on, $s \in S$:

$$
V_t^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, \pi\right) = E\left(\gamma^{t-t} \cdot r_t + \sum_{k=t+1}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, \pi\right)
$$

=
$$
E\left(r_t + \gamma \cdot \sum_{k=t+1}^{\infty} \gamma^{k-t-1} \cdot r_k \middle| s_t = s, \pi\right)
$$
 rewards now + from t+1 on?

Recursion for Future Rewards (Infinite Horizon)

- 0 • Random discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots$ with $\gamma \in [0,1)$
- 0 **Recursion** for expected future rewards from time *t* on, $s \in S$:

$$
V_t^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, \pi\right) = E\left(\gamma^{t-t} \cdot r_t + \sum_{k=t+1}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, \pi\right)
$$

\n
$$
= E\left(r_t + \gamma \cdot \sum_{k=t+1}^{\infty} \gamma^{k-t-1} \cdot r_k \middle| s_t = s, \pi\right) \text{ rewards now + from t+1 on?}
$$

\n
$$
= E\left(r_t + \gamma \cdot \underbrace{E\left(\sum_{k=t+1}^{\infty} \gamma^{k-(t+1)} \cdot r_k \middle| s_{t+1} = s'\right)}_{=V_{t+1}^{(\pi)}(s')} \middle| s_t = s, \pi\right) \text{ yes :-)}
$$

14

HPI Time Independence of Future Rewards (Infinite Horizon)

- Assume a given *policy* $\pi_t(s_t) = \pi(s_t)$, which does not depend on time
- Random discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, ...$ with $\gamma \in [0,1)$
- Expected future rewards from time *t* on (discounted on *t*), $s \in S$:

$$
V_0^{(\pi)}(s) = E\left(\sum_{k=0}^{\infty} \gamma^k \cdot r_k \middle| s_0 = s, a_k = \pi(s_k)\right)
$$

 $\binom{(\pi)}{S} = V_0^{(\pi)}$ $V_t^{(\pi)}(s) = V_0^{(\pi)}(s)$? for all $t = 0, 1, 2, ...$?

Time Independence of Future Rewards (Infinite Horizon)

- Assume a given *policy* $\pi_t(s_t) = \pi(s_t)$, which does not depend on time
- Random discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, ...$ with $\gamma \in [0,1)$
- Expected future rewards from time *t* on (discounted on *t*), $s \in S$:

$$
V_0^{(\pi)}(s) = E\left(\sum_{k=0}^{\infty} \gamma^k \cdot r_k \middle| s_0 = s, a_k = \pi(s_k) \right)
$$

$$
V_t^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, a_k = \pi(s_k) \right) = V_0^{(\pi)}(s) \text{ for all } t = 0, 1, 2, ...
$$

- Same state, same actions, same expected reward stream, same discounting:
- \Rightarrow The value of "*being in a certain state*" is **time-independent** (cf. $V^{(\pi)}(s)$).

HPI

Problem Formulation (Infinite Horizon)

Find a (**stationary**) *Markov policy* $\pi = \pi(s)$ that maximizes total expected (discounted) future rewards, $0 \le \gamma < 1$:

$$
\max_{\pi} E\left[\sum_{t=0}^{\infty} \underbrace{\gamma^{t}}_{discount} \cdot \left(\sum_{i_t \in I} \underbrace{P(i_t, a_t, s_t)}_{probability\ for\ event\ i_t} \cdot \underbrace{r(i_t, a_t, s_t)}_{number\ action\ a_t\ in\ state\ s_t} \cdot \underbrace{r(i_t, a_t, s_t)}_{under\ action\ a_t\ in\ state\ s_t}\right)\right] \cdot \underbrace{S_0}_{initial\ state},
$$

where states evolve (time-independently) according to $s \rightarrow s' = \Gamma(i, a, s)$.

- How to solve such problems?
- Will the *value function* or the *optimal policy* be **time-dependent**?

Solution Approach (Dynamic Programming)

What is the **best expected value** of having the chance to . . .

 "sell items (from any time t on, disc. on t) *starting in state s"?*

• Answer: That's easy $V(s)$!

Solution Approach (Dynamic Programming)

What is the **best expected value** of having the chance to . . .

 "sell items (from any time t on, disc. on t) *starting in state s"?*

- Answer: That's easy $V(s)$!
- We can assume *V* is independent of time and satisfies the Bellman equation!
- We don't know the "Value Function *V*", but *V* is determined by:

 Value (*state today*) *= Best expected* (*profit today + Value* (*state tomorrow*))

Solution Approach (Dynamic Programming)

- 0 *Value* (*state today*) *= Best expected* (*profit today + Value* (*state tomorrow*))
- Idea: Consider potential events & transition dynamics within one period. What can happen during one time interval (under action *a*)?

• What does that mean for the **value of state** s (at any time t), i.e., $V(s)$?

Balancing Potential Short- and Long-Term Rewards

HPI

Bellman Equation (Infinite Horizon)

We obtain the Bellman Equation, which **determines** the Value Function:

$$
V(s) = \max_{\substack{a \in A \\ potential \\ actions}} \left\{ \sum_{i \in I} \underbrace{P(i, a, s)}_{\text{probability}} \cdot \left(\underbrace{r(i, a, s)}_{\text{today's reward}} + \underbrace{\gamma \cdot V(\Gamma(i, a, s))}_{\text{best disc. exp.future rewards of new state}} \right) \right\}
$$

• Does it reveal optimal policies?

Value Function & Optimal Policy

We obtain the Bellman Equation, which **determines** the Value Function:

$$
V(s) = \max_{\substack{a \in A \\ potential \\ actions}} \left\{ \sum_{i \in I} \underbrace{P(i, a, s)}_{probability} \cdot \left(\underbrace{r(i, a, s)}_{today's reward} + \underbrace{\gamma \cdot V(\Gamma(i, a, s))}_{best disc. exp. future rewards of new state} \right) \right\}
$$

• Does it reveal optimal policies?

• Yes,
$$
a^*(s) = \arg \max_{a \in A} \{...\}
$$
 is the *optimal policy*.

But, how can we compute the Value Function? By *backward induction*?

HPI

- We want to determine the values $V^*(s)$ that solve the equation system $V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}$ ∈ ∈ $=\max\left\{\sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^*(\Gamma(i, a, s)))\right\}$ $\left\{\sum_{i\in I} P(i,a,s)\cdot (r(i,a,s)+\gamma\cdot V^*\big(\Gamma(i,a,s)\big)\big)\right\}$
- 0 **Value Iteration**: Use the "Finite horizon" *backward induction* approach: $V_t(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1}(\Gamma(i, a, s))) \right\},$ ϵA $\left| \sum_{i \in I} f(x, x, y, z) \right|$ $\left| \sum_{i \in I} f(x, x, y, z) \right|$ $=$ max $\left\{\sum p(i \mid a \mid s) \cdot (r(i \mid a \mid s) + \gamma \cdot V \cdot (r(i \mid a \mid s)))\right\}$ $\left\{\sum_{i\in I} P(i,a,s)\cdot (r(i,a,s)+\gamma\cdot V_{t+1}(\Gamma(i,a,s)))\right\}$ $\sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1}(\Gamma(i, a, s)))$, $V_T(s) = r_T(s) = 0$

- We want to determine the values $V^*(s)$ that solve the equation system $V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}$ $\in A$ $\Big\downarrow$ $=\max\left\{\sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^*(\Gamma(i, a, s)))\right\}$ $\left\{\sum_{i\in I} P(i,a,s)\cdot (r(i,a,s)+\gamma\cdot V^*\big(\Gamma(i,a,s)\big)\big)\right\}$
- 0 **Value Iteration**: Use the "Finite horizon" *backward induction* approac^h

$$
V_t(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1} (\Gamma(i, a, s))) \right\}, V_T(s) = r_T(s) = 0
$$

$$
\gamma^T \cdot \sum_{k=0}^{\infty} \gamma^k \cdot r_{T+k}
$$

$$
V_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots, \gamma^{999} \cdot r_{999} \overline{\gamma^{1000} \cdot r_{1000}}, \gamma^{1001} \cdot r_{1001}, \gamma^{1002} \cdot r_{1002}, \dots
$$

$$
T = 1000
$$

- We want to determine the values $V^*(s)$ that solve the equation system $V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}$ $\in A$ $\Big\downarrow$ $=\max\left\{\sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^*(\Gamma(i, a, s)))\right\}$ $\left\{\sum_{i\in I} P(i,a,s)\cdot (r(i,a,s)+\gamma\cdot V^*\big(\Gamma(i,a,s)\big)\big)\right\}$
- 0 **Value Iteration**: Use the "Finite horizon" *backward induction* approac^h

$$
V_{t}(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1} \left(\Gamma(i, a, s) \right)) \right\}, V_{T}(s) = r_{T}(s) = 0
$$
\n
$$
\gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{T+k}
$$
\n
$$
r_{0}, \gamma \cdot r_{1}, \gamma^{2} \cdot r_{2}, \gamma^{3} \cdot r_{3}, \dots, \gamma^{999} \cdot r_{999} \overline{\gamma^{1000} \cdot r_{1000}}, \gamma^{1001} \cdot r_{1001}, \gamma^{1002} \cdot r_{1002}, \dots
$$
\n
$$
T = 1000
$$
\n
$$
\leq \gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{\max} = ???
$$
\n
$$
\leq 27
$$

- We want to determine the values $V^*(s)$ that solve the equation system $V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}$ $\in A$ $\Big\downarrow$ $=\max\left\{\sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^*(\Gamma(i, a, s)))\right\}$ $\left\{\sum_{i\in I} P(i,a,s)\cdot (r(i,a,s)+\gamma\cdot V^*\big(\Gamma(i,a,s)\big)\big)\right\}$
- 0 **Value Iteration**: Use the "Finite horizon" *backward induction* approac^h

$$
V_{t}(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1} (\Gamma(i, a, s))) \right\}, V_{T}(s) = r_{T}(s) = 0
$$
\n
$$
\gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{T+k}
$$
\n
$$
r_{0}, \gamma \cdot r_{1}, \gamma^{2} \cdot r_{2}, \gamma^{3} \cdot r_{3}, \dots, \gamma^{999} \cdot r_{999} \overline{\gamma^{1000} \cdot r_{1000}}, \gamma^{1001} \cdot r_{1001}, \gamma^{1002} \cdot r_{1002}, \dots
$$
\n
$$
T = 1000
$$
\n
$$
\leq \gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{\max} = \gamma^{T} \cdot r_{\max} \cdot \frac{1}{1 - \gamma_{28}}
$$

- We want to determine the values $V^*(s)$ that solve the equation system $V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}$ ∈ ∈ $=\max\left\{\sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^*(\Gamma(i, a, s)))\right\}$ $\left\{\sum_{i\in I} P(i,a,s)\cdot (r(i,a,s)+\gamma\cdot V^*\big(\Gamma(i,a,s)\big)\big)\right\}$
- 0 **Value Iteration**: Use the "Finite horizon" *backward induction* approac^h $V_t(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1}(\Gamma(i, a, s))) \right\},$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (1, 0, 0, 0) (1, 0, 0, 0) (1, 1, 1) $t +$ ∈ $=$ max $\left\{\sum p(i \mid a \mid s) \cdot (r(i \mid a \mid s) + \gamma \cdot V \cdot (r(i \mid a \mid s)))\right\}$ $\left\{\sum_{i\in I} P(i,a,s)\cdot (r(i,a,s)+\gamma\cdot V_{t+1}(\Gamma(i,a,s)))\right\}$ $\sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1}(\Gamma(i, a, s)))$, $V_T(s) = r_T(s) = 0$
- For "large" *T* and for any initial $V_T(s)$ the values $V_0(s)$ converge to the exact values $V^*(s)$ with $|V_0(s) - V^*|$ $\left| \mathcal{L}_0(s) - V^*(s) \right| \leq \frac{1}{1 - \gamma} \cdot r_{\text{max}} \xrightarrow{1 \to \infty} 0$ $|V_0(s) - V^*(s)| \le \frac{\gamma^T}{1 - \gamma} \cdot r_{\max} - \frac{r}{1 - \gamma}$ γ $-V^*(s) \leq \frac{V}{1-\gamma} \cdot r_{\text{max}} \xrightarrow{1-\infty}$
- The optimal policy $a^*(s)$, $s \in S$, is determined $a^r(s)$, $s \in S$, is determined by the *arg max* of the **last iteration step**, i.e., $a_0(p)$

Value Iteration Tabular Schema (Inventory Example)

Value Iteration Tabular Schema (Inventory Example)

try different

Value Iteration Tabular Schema (Inventory Example)

- We want to determine the values $V^*(s)$ that solve the system above
- 0 **Policy iteration**: Subsequently *evaluate & improve* a policy:
	- (1)
	- (2)

- We want to determine the values $V^*(s)$ that solve the system above
- 0 **Policy iteration**: Subsequently *evaluate & improve* a policy:
- (1) Choose any starting policy $\pi(s)$, $s \in S$
- (2) **Evaluate** the policy $\pi(s)$ by solving the linear system $\forall s \in S$

HPI

Policy Iteration for Infinite Horizon MDPs

- We want to determine the values $V^*(s)$ that solve the system above
- 0 **Policy iteration**: Subsequently *evaluate & improve* a policy:
- (1) Choose any starting policy $\pi(s)$, $s \in S$
- (2) **Evaluate** the policy $\pi(s)$ by solving the linear system $\forall s \in S$ $f^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot (r(i, \pi(s), s) + \gamma \cdot V^{(\pi)}(\Gamma(i, \pi(s), s)))$ $V^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot (r(i, \pi(s), s) + \gamma \cdot V^{(\pi)}(\Gamma(i, \pi(s), s))$ e.g., using a simplified Value Iteration (*without max* !) or via LP $=\sum P(i,\pi(s),s)\cdot (r(i,\pi(s),s)+\gamma\cdot V^{(\pi)}\big(\Gamma(s))$

(3)

HPI

- We want to determine the values $V^*(s)$ that solve the system above
- 0 **Policy iteration**: Subsequently *evaluate & improve* a policy:
- (1) Choose any starting policy $\pi(s)$, $s \in S$
- (2) **Evaluate** the policy $\pi(s)$ by solving the linear system $\forall s \in S$ $f^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot (r(i, \pi(s), s) + \gamma \cdot V^{(\pi)}(\Gamma(i, \pi(s), s)))$ $V^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot (r(i, \pi(s), s) + \gamma \cdot V^{(\pi)}(\Gamma(i, \pi(s), s))$ e.g., using a simplified Value Iteration (*without max* !) or via LP $=\sum P(i,\pi(s),s)\cdot (r(i,\pi(s),s)+\gamma\cdot V^{(\pi)}\big(\Gamma(s))$

(3) Update
$$
\pi(s)
$$
 $\left\{\sum_{a \in A} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^{(\pi)}(\Gamma(i, a, s)))\right\}$
Repeat Step (2) & (3) $\forall s$ until no improvement (=> optimal solution!)

Policy Iteration Schema (Inventory Example)

Choose a starting policy $\pi^{(0)}(s)$, $s \in S$, cf. Step (1).

(i) Compute the value function $V^{(\pi^{(0)})}(s)$ of policy $\pi^{(0)}(s)$, cf. Step (2). Use $V^{(\pi^{(0)})}(s)$ to improve policy $\pi^{(0)}(s)$ to a new policy $\pi^{(1)}(s)$, cf. Step (3).

(ii) Compute the value function $V^{(\pi^{(1)})}(s)$ of policy $\pi^{(1)}(s)$, cf. Step (2). Use $V^{(\pi^{(1)})}(s)$ to improve policy $\pi^{(1)}(s)$ to a new policy $\pi^{(2)}(s)$, cf. Step (3).

Stop if after an iteration *k* we have $\pi^{(k)}(s) = \pi^{(k-1)}(s)$ for all $s \in S$.

. . .

Policy Iteration Step (2) via "Value Iteration"

- Assume the current policy $\pi(s)$, $s \in S$
- We want to determine the values $V^{(\pi)}(s)$ that solve the system, cf. Step (2)

$$
V^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot (r(i, \pi(s), s) + \gamma \cdot V^{(\pi)}(\Gamma(i, \pi(s), s)))
$$
, $\forall s \in S$

 \bullet • **Iterative solution** (value iteration **with fixed** *a*) starting with $V_T^{(\pi)}(s) = 0$:

$$
V_t^{(\pi)}(s) = \max_{a \in A:} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V_{t+1}^{(\pi)} (\Gamma(i, a, s))) \right\}
$$

Policy Iteration Step (2) via "Value Iteration"

- Assume the current policy $\pi(s)$, $s \in S$
- We want to determine the values $V^{(\pi)}(s)$ that solve the system, cf. Step (2),

$$
V^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot (r(i, \pi(s), s) + \gamma \cdot V^{(\pi)}(\Gamma(i, \pi(s), s)))
$$
, $\forall s \in S$

• **Iterative solution** (value iteration **with fixed** *a*) starting with $V_T^{(\pi)}(s) = 0$:

$$
V_t^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot \left(r(i, \pi(s), s) + \gamma \cdot V_{t+1}^{(\pi)} \left(\Gamma(i, \pi(s), s) \right) \right)
$$

• For "large" *T* and for any initial $V_T^{(\pi)}(s)$ the values $V_0^{(\pi)}(s)$ converge to the exact values $V^{(\pi)}(s)$ with $|V_0^{(\pi)}(s) - V^{(\pi)}(s)| \xrightarrow{T \to \infty} 0$

Policy Iteration Step (2) via Linear Programming

- Assume a step *k*'s current policy $\pi(s)$, $s \in S$
- We want to determine the values $V^{(\pi)}(s)$ that solve the system, cf. Step (2),

$$
V^{(\pi)}(s) = \sum_{i \in I} \underbrace{P(i, \pi(s), s)}_{\text{probability}} \cdot \left(\underbrace{r(i, \pi(s), s)}_{\text{period's reward}} + \underbrace{\gamma \cdot V^{(\pi)} \left(\underbrace{\Gamma(i, \pi(s), s)}_{s'} \right)}_{\text{disc. exp. future profits of new state}} \right), \forall s \in S
$$

- We have to solve a system of $|S|$ linear equations! (*not in focus*)
- Standard LP solvers can be applied, e.g., Gurobi, Cplex, etc.

Summary (Solving Discrete Time Infinite Horizon MDPs)

Policy Iteration

- (+) provides optimal solutions for infinite horizon MDPs
- (+) fast convergence (stop if no improvement is possible)
- $(-)$ full information required (cf. events & transitions)
- (–) only for smaller state spaces

Value Iteration

- (+) provides near-optimal solutions for infinite horizon MDPs
- (+) numerically simple
- (+) fast convergence (if the discount factor is not close to 1)
- $(-)$ full information required (cf. events & transitions)
- (–) for medium size state spaces, does not scale (curse of dimensionality)

Recall - Questions?

- States, Action, Rewards, Transitions
- Discounted Future Rewards
- Value Function
- Bellman Equation
- Backward Induction
- Value Iteration
- Policy Iteration

HPI

Could You Solve Different Test Problems?

- Finite Horizon (*use Backward Induction*)
	- Eating cake (deterministic utility)
	- Selling Airline Tickets (stochastic demand)
- Infinite Horizon (*use Value & Policy Iteration*)
	- Car replacement problem (deterministic costs)
	- Inventory management (stochastic demand)

Overview

 \mathbb{H}^{PI}

Exercise Value Iteration & Policy Iteration

Consider the inventory management example. Maximize expected discounted rewards. Find an optimal ordering policy. Items ordered at the beginning of a period are delivered at the beginning of the same period; holding cost only occur for items left at the beginning of the period. If demand exceeds the inventory (at the beginning of the period) then sales are lost, cf. $r(i, a, s) = p \cdot min(i, s) - c \cdot a - h \cdot s - 1_{\{a > 0\}} \cdot f$, where $p = 10, c = 2, h = 0.5, f = 20$. Demand probabilities are $P(i, a, s) = P(i) = 1/4$, $i = 0, 1, ..., 3$. Consider the state space $s \in S = \{0, 1, ..., 50\}$. probabilities are $P(i,a,s)$ = $P(i)$:=1/4, $\,i$ = 0,1,...,3. Consider the state space $\,s$ \in S ={0,1,...,50}.
Feasible ordering decisions are $\,a$ \in $\,A$:={0,1,...,50}. The discount factor is $\,\gamma$ = 0.95. The in state is 10 items.

- (a) Solve the problem using value iteration.
- (b) Solve the problem using policy iteration.
- (c) Simulate the optimal policy $\pi(s)$ over runs of 100 periods and accumulate total rewards discounted on *t*=0. Compare the mean with the value function for the initial state (Bonus).

HPI

Problem Embedding (Finite as Infinite Horizon MDP)

- Finite Horizon (time-dependent) with discount $\gamma \leq 1$
- $r_{t} = r_{t}(i, a, s)$ with probabilities $P_{t}(i, a, s)$, $s \in S$, $t = 0, 1, 2, ..., T$ θ_t θ _{t+1} $S_t \to S_{t+1} = \Gamma_t(i, a, s)$ with $i \in I_t(a, s)$, $a \in A_t(s)$
- Infinite Horizon Value It. Embedding (time-independent) with same $\gamma \leq 1$

$$
-\tilde{s}_{0} := (0, s_{0}), \ \tilde{s} := (t, s), \ s \in S, \ t = 0, 1, 2, ..., T
$$
\n
$$
-\tilde{r} = \tilde{r}(i, a, \tilde{s}) = \tilde{r}(i, a, t, s) := if \ t < T \ then \ r_{t}(i, a, s) \ else \ r_{T}(s)
$$
\n
$$
-\tilde{P}(i, a, \tilde{s}) := P_{t}(i, a, s), \ a \in \tilde{A}(\tilde{s}) := A_{t}(s), \ i \in \tilde{I}(a, \tilde{s}) := I_{t}(a, s)
$$
\n
$$
-\tilde{s} \rightarrow \tilde{s}' = \tilde{\Gamma}(i, a, \tilde{s}) = \tilde{\Gamma}(i, a, t, s) := (t + 1, \ if \ t < T \ then \ \Gamma_{t}(i, a, s) \ else \ s)
$$
\n
$$
-\frac{V_{k}(t, s)}{a \in \tilde{A}} = \max_{a \in \tilde{A}} \left\{ \sum_{i \in \tilde{I}} \tilde{P}(i, a, t, s) \cdot (\tilde{r}(i, a, t, s) + \gamma \cdot 1_{\{t < T\}} \cdot V_{k+1}(\tilde{\Gamma}(i, a, t, s))) \right\}, \ i.e. \ V_{k}(t, s) = 0 \ \forall t > T
$$