Dynamic Programming and Reinforcement Learning

Infinite Time Markov Decision Processes (Week 2b)

Rainer Schlosser, Alexander Kastius
Hasso Plattner Institute (EPIC)

April 28, 2022

Outline

e Questions?

e Today: Infinite Horizon Problems
Problem Examples
Value Iteration

Policy Iteration

Recap: Last Week

e Markov Policies in Finite Horizon MDPs

e Recursive Concept for Future Rewards

e The Value of “being in a certain state™

e Bellman Equation & Recursive Problem Decomposition

e Backward Induction Solution Approach

Solving MDP Problems “

e Continuous Time Problems & Control Theory (not in focus)

o Discrete Time MDP Problems with Finite Horizon (last meeting)
— Time-dependent Framework, Terminal Condition/Reward
— Bellman Equation

— Optimal numerical solutions via Backward induction

o Discrete Time MDP Problems with Infinite Horizon (today)
— Time-independent Framework, Bellman Equation
— Optimal numerical solutions via Value & Policy Iteration

— Basis for Reinforcement Learning

Classification (Infinite Horizon Problems) H

Example Objective State Action Dynamic Payments
Inventory Mgmt. min costs #items #order order/holding entry-sales
Advertising max profits image #advertise = campaigns effect-forget
Used Cars min costs age replace(y/n) buy/repair aging/faults
Agriculture/Forestry

Durable Products

Chess/Go/Tetris

Circular Economy

Example Problem (Inventory Management)

Reorder Level

D e) mm— s m— o s

Inventory Level

Example Problem (Inventory Management) H

e Problem context: Sell and order items over time

e Time Horizon: Infinite

e Demand: Stochastic (where price is fixed)

e Action: Replenish your inventory from time to time
e Rewards: Order cost vs. inventory holding costs

e Goal: Maximize expected discounted future profits

e How to find an optimal order policy?

Example MDP (Inventory Management) ﬂ

e Framework: £=0,1,2,...,00 Discrete time periods

e State: sesS Number of items left

e Actions: ae A Number of ordered items (replenish)

e Events: iel, P(i,a,s) Demand i (e.g., 0,1,2,3 with prob. 1/4 each)
e Rewards: 7r=r(,a,s) Revenue — Order Cost — Holding Cost

= p-min(i,s)—c-a e.g., for given price p, variable order cost c,
—h-s— 1{a>0} f holding /4, and fixed order costs f

e New State: s —>s'=I(i,a,s) Old — Sold + Replenish (end of period)

o [Initial State: s, €S Initial number of items in =0

Sequence of Events (Infinite Horizon) “

t=0 startin state S, at the beginning of period (0,1)
choose/play action 4, for period (0,1)

observe realized reward 7, of period (0,1)

t=1 observe realized new state S| after period (0,1) / the beginning of period (1,2)
choose/play action @, for period (1,2)

observe realized reward 7; of period (1,2)

|
|
3 time

Simulation of a Given Policy ﬂ

e Assume a (stationary/time-indep.) order strategy: 7(s) =if s <5 then 12 else 0

e Parameters: p=10,c=2,h=0.5,f =20 Demand: P(i)=1/4, i=0,1,2,3

period state action demand sales order holding reward new
(event) revenue cost costs state

0 5 0 1 10 0 -2.5 7.5 4

1 4 12 0 0 -24-20 -2 -46 16

2 16 0 2 20 0 -8 12 14

3 14 0 1 10 0 -7 -7 13

e What is the tong-term performance of 7(s)?

Discounting ﬂ

e Idea: If delayed rewards are worth less, we use a penalty factor 7 <1

for each period to measure the value they have for us “now”

value of future
rewards when

being int=07?

Iv I//’/I/”/i time

10

Discounting

e Idea: If delayed rewards are worth less, we use a penalty factor y <1

for each period to measure the value they have for us “now”

value of future value of future
rewards when rewards when
being int=07? being int =27
To ’Iﬂl Ilﬂ 2 7|”3 7
! |
| | ! ! -
"o
Ty h n
3 5
Ty oh +y° 7,

11

Expected Discounted Future Rewards (Infinite Horizﬂ

e Random discounted reward stream: 7’0,7'7’1,72 '7’2,73 ‘13,... with 7 6[0,1)

e Exp. disc. future rewards from time ¢ on (discounted on current time f):

V7 (s) = E(Z Y nls, = S,ﬂ)

k=t
e Exp. disc. future rewards from time ¢ on (discounted on 7=0):

Vo (s)=y" -V (s)

12

Recursion for Future Rewards (Infinite Horizon) ﬂ

e Random discounted reward stream: 7”0,7/'7”1,7/2 '7”2,7/3 ‘13,... with ¥V € [0,1)

e Recursion for expected future rewards from time on, s€ S :

V7 s) = E

=F

k—t

Yook

M

k=t+1

s, =S,7Z')

S =S8,] rewards now + from t+1 on?

b
1l

t

k—t-1
’?+7/'Z7/ T

k=t+1

13

Recursion for Future Rewards (Infinite Horizon) H

e Random discounted reward stream: 7”0,7/'7”1,7/2 '7”2,7/3 ‘13,... with ¥V € [0,1)

s, =S,7Z')

S =S8,] rewards now + from t+1 on?

e Recursion for expected future rewards from time on, s€ S :

k=t+1

k—t

Yook

M

V7 s) = E

b
1l

t

=E|n+y-) 7

k=t+1

k—(t+1
=F I/'t-i-}/E[ZQ/ ().rk Sles'jst:S’ﬂ'
k=t+1

(. J

g
=V (s

t+1

yes :-)

14

Time Independence of Future Rewards (Infinite Hori“

e Assume a given policy 7,(s,) = 7(s,), which does not depend on time

e Random discounted reward stream: %,} - 7’1,7/2 '7’2,7/3 “¥y,...with ¥ € [0,1)

e Expected future rewards from time ¢ on (discounted on #), s € S :

Vi (s) = E(Z yEen

k=0

So = 8,4, = ”(Sk))

Vt(”)(S) = VO(”)(S)? forall £=0,1,2,... 2

15

Time Independence of Future Rewards (Infinite Horiﬂ

=>

Assume a given policy 7,(s,) = 7(s,) , which does not depend on time

Random discounted reward stream: %,7 "% 7/2 1, 7/3 “¥y,...with ¥ € [O, 1)

Expected future rewards from time # on (discounted on), s € S :

V()(”)(S) =k Z7k TS0 = 5,4 :”(Sk))
k=0

ViO(s)=E| D 7" nls, =54 :ﬂ(sk)):VO(”)(S) forall £=0,1,2,...
k=t

Same state, same actions, same expected reward stream, same discounting:

The value of “being in a certain state” is time-independent (cf. V'™ (s)).
16

Problem Formulation (Infinite Horizon) ﬂ

e Find a (stationary) Markov policy 7 =7(s) that maximizes
total expected (discounted) future rewards, 0 <y <1:

o0

t . .
max F E V4 : E P(ll,at,SZ) : l"(lt,at,St SO
T =0 =~ iel — — ~— —~ .
~ discount ! probability for event i, reward for event i, initial state
Jactor under action a, in state s, under action a, in state s,

where states evolve (time-independently) according to s = s' =I'(i,a,s) .

e How to solve such problems?

e Will the value function or the optimal policy be time-dependent?

17

Solution Approach (Dynamic Programming) ﬂ

e What is the best expected value of having the chance to . . .

“sell items (from any time t on, disc. on t) starting in state s”’?

e Answer: That’s easy V(s)!

18

Solution Approach (Dynamic Programming) ﬂ

What is the best expected value of having the chance to . . .

“sell items (from any time t on, disc. on t) starting in state s”’?

e Answer: That’s easy V(s)!

e We can assume V' is independent of time and satisfies the Bellman equation!

e We don’t know the “Value Function /”’, but V is determined by:

Value (state today) = Best expected (profit today + Value (state tomorrow))

19

Solution Approach (Dynamic Programming) H

e Value (state today) = Best expected (profit today + Value (state tomorrow))

e [dea: Consider potential events & transition dynamics within one period.

What can happen during one time interval (under action a)?

statein¢f event reward state in #+1 probability
0 r(0,a,s) I'0,a,s) P(0,a,s)

S 1 r(l,a,s) I'(l,a,s) P(,a,s)

2 r(2,a,s) I'(2,a,s) P(2,a,s)

e What does that mean for the value of state s (at any time 7), i.e., V' (5)?

20

Balancing Potential Short- and Long-Term Rewards H

stateinf event reward state in #+1 probability
0 r(0,a,s) I'0,a,s) P(0,a,s)
S 1 r(1,a,s) I'(l,a,s) P(,a,s)
2 r(2,a,s) I'(2,a,s) P(2,a,s)
Vi(s)= max P0,a,s) - M + g/-V(F(O,a,S))

— N , "'
potential probability not to sell today's reward pest disc. exp. future rewards

actions

+ P(l,a,s) | r(l,a,s) + y-V(F(l,a,s)) +...
— . , v

probability of demand=1 \ today's reward pest disc. exp. future rewards

21

Bellman Equation (Infinite Horizon) ﬂ

e We obtain the Bellman Equation, which determines the Value Function:

V(s)= max ZP(i,a,s)- r(i,a,s) + y - V(F(i,a,s))
A N | N . /
potential probability today's reward pest disc. exp. future rewards of new state

actions

e Does it reveal optimal policies?

22

Value Function & Optimal Policy H

e We obtain the Bellman Equation, which determines the Value Function:

V(s)= max ZP(i,a,s)- r(i,a,s) + y - V(F(i,a,s))
A N | N . /
potential probability today's reward pest disc. exp. future rewards of new state

actions

e Does it reveal optimal policies?

e Yes, a (s)=argmax {} is the optimal policy.
acA

e But, how can we compute the Value Function? By backward induction?

23

Value Iteration for Infinite Horizon MDPs

24

Value Iteration for Infinite Horizon MDPs “

e We want to determine the values ¥ (s) that solve the equation system

Vi(s)= max {ZP(i,a,S)-(r(i,a,S) +yV (F(i,a,s)))}

e Value Iteration: Use the “Finite horizon” backward induction approach:

Vi(s)= rilgx{ZP(i, a,s)-(r(i, a,s)+y-V,_, (F(i, a,s)))} V() =r(s)=0

2 3
o VNS YV h, VN,
|

1)

25

Value Iteration for Infinite Horizon MDPs ﬂ

e We want to determine the values ¥ (s) that solve the equation system

Vi(s)= max {ZP(i,a,S)-(r(i,a,S) +yV (F(i,a,s)))}

e Value Iteration: Use the “Finite horizon” backward induction approach
V.(s)= n}gx{;P(i, a,s)-(r(i, a,s)+y-V,, (F(i, a,s)))} Vo(s)=1.(s)=0

T k
Y 27/ Tk
k=0

r N\

3 999 1000 1001 1002
"Nooo>? “hoot»V T

2
Tos VN Vs Vs s) Ty Y

N

26

10025 * *

Value Iteration for Infinite Horizon MDPs ﬂ

e We want to determine the values ¥ (s) that solve the equation system

Vi(s)= max {ZP(i,a,S)-(r(i,a,S) +y Ve (F(i,a,s)))}

e Value Iteration: Use the “Finite horizon” backward induction approach
V.(s)= r?&x{;P(i, a,s)-(r(i, a,s)+y-V,, (F(i, a,s)))} Vo(s)=1.(s)=0

T k
Y 27/ Tk
k=0

r N\

3 999 1000 1001 1002
"Nooos?” “Noor»? 1

2
Bos Vohis 7V "hhs YV "l ooo s ¥ " Hygg Y

i i
Ow//T:IOOO

T k
<y Y =272
k=0

27

10025 * *

Value Iteration for Infinite Horizon MDPs ﬂ

e We want to determine the values ¥ (s) that solve the equation system

Vi(s)= max {ZP(i,a,S)-(r(i,a,S) +y Ve (F(i,a,s)))}

e Value Iteration: Use the “Finite horizon” backward induction approach
V.(s)= r?&x{;P(i, a,s)-(r(i, a,s)+y-V,, (F(i, a,s)))} Vo(s)=1.(s)=0

T k
Y 27/ Tk
k=0

r N\

3 999 1000 1001 1002

2
Tos VN Vs Y s e Y ey Y T Tige0s Y 100157 “Too2s- - -
| |

© M 1
T k T
<y =Y
k=0 -y

28

Value Iteration for Infinite Horizon MDPs ﬂ

e We want to determine the values ¥ (s) that solve the equation system

Vi(s)= max {ZP(i,a,S)-(r(i,a,S) +y Ve (F(i,a,s)))}

e Value Iteration: Use the “Finite horizon” backward induction approach

V(s)= r?gx{ZP(i, a,s)-(ri,a,s)+y-V,, (TG, a,s)))} VY (s)=r,(s)=0

e For “large” T and for any initial V;(s) the values ¥, (s) converge
* . * 7/ —00
to the exact values V' (s) with ‘Vo(S) -V (S)‘ < E'rmax —=0

e The optimal policy @ (s), s €S, is determined by
the arg max of the last iteration step, i.e., @,(p)
29

Value Iteration Tabular Schema (Inventory Exampleﬂ

time/ periods | iterations (choose a suitable T)

0 1 T-2 T-1 T Starting values
s=4 V.(4)=r(4)=0 /
all s=3 V,(3)=1,(3)=0
sStates
seg $=2 V(2)=r,(2)=0
s=1 V.)=r,(1)=0
s=0 V,(0)=r(0)=0

30

Value Iteration Tabular Schema (Inventory Exampleﬂ

time/ periods | iterations (choose a suitable T)

0 1 T-2 T -1 T Starting values
Ve (4),
S = 4 (a*_ (4)) VT(4)=I’T(4)=0 /
VT—1(3)7
all s=3 (a,@) | FO=5G)=0
sStates P(0,a,2) g
ge§ $=2 PLa2)| Vi@=r@)=0
s=1 P (2’“%19(1):4(1):0
N
s=0 N (0) =7, (0)=0

31

Value Iteration Tabular Schema (Inventory Exampleﬂ

result | policy

N

s=4
all s=3
States
se§ 5=2

s=1

s=0

try different

T Sstarting values

time/ periods / iterations
0 1 T-2 T-1
Vy(4), vi(4), Vs, | V(@)
a(4) g (4) L@ | a,@ | Tr@=r®=0
v,03), 46 V.3 | V)
@ 3) a; (3) a,(3) a3 | "®P=r@=0
V. (2), ,
I/())k(2)> 1() VZ_Z (2)7 VZ_I (2) VT (2) _ },.T (2) _ 0
a,(2) a; (2) @, | 4.,
(D), Vi), AN AN
a; (1) al* (1) a;72 (1) a;% (1) VT (1) =r (1) =0
7,(0), 7,(0), V,,0. | %00,
a;(0) a; (0) i, | a0 |7O=m0=0

4

32

Policy Iteration for Infinite Horizon MDPs

33

Policy Iteration for Infinite Horizon MDPs “

e We want to determine the values ¥ (s) that solve the system above

e Policy iteration: Subsequently evaluate & improve a policy:

(D)
2)

3)

34

Policy Iteration for Infinite Horizon MDPs ﬂ

e We want to determine the values ¥ (s) that solve the system above

e Policy iteration: Subsequently evaluate & improve a policy:

(1) Choose any starting policy 7(s), s€ S

(2) Evaluate the policy 7(s) by solving the linear system Vs € S

3)

35

Policy Iteration for Infinite Horizon MDPs H

e We want to determine the values ¥ (s) that solve the system above

e Policy iteration: Subsequently evaluate & improve a policy:

(1) Choose any starting policy 7(s), s€ S

(2) Evaluate the policy 7(s) by solving the linear system Vs € S
VO(s) =3 Pl a(s),s) - (r(im(s),9) +7 V7 (T 7(s),9)))

iel

e.g., using a simplified Value Iteration (without max !) or via LP

)

36

Policy Iteration for Infinite Horizon MDPs ﬂ

e We want to determine the values ¥ (s) that solve the system above

e Policy iteration: Subsequently evaluate & improve a policy:

(1) Choose any starting policy 7(s), s€ S

(2) Evaluate the policy 7(s) by solving the linear system Vs € S
VO(s) =3 Pli,a(s),s)-(r(i.(s),) +7 V' (DG 2(s),9))

iel

e.g., using a simplified Value Iteration (without max !) or via LP

(3) Update 7(s) < arg max{z P(i,a,s)- (r(i, a,s)+y-vVr (F(i,a,s)))}

acA iel

Repeat Step (2) & (3) Vs until no improvement (=> optimal solution!)
37

Policy Iteration Schema (Inventory Example) H

Choose a starting policy 7" (s), s € S, cf. Step (1).

(i) Compute the value function V(s) of policy 7'V (s), cf. Step (2).
Use V() to improve policy 7 (s) to a new policy 7" (s), cf. Step (3).

(i)) Compute the value function V(s) of policy 7" (s), cf. Step (2).
Use V7" (s) to improve policy 7" (s) to a new policy 77 (s), cf. Step (3).

Stop if after an iteration k we have 7 (s) = 7% (s) forall s S .

38

Policy Iteration Step (2) via “Value Iteration” ﬂ

e Assume the current policy 7(s), se S

e We want to determine the values ¥ (s) that solve the system, cf. Step (2)

VO (s) =3 P(i, 7(s),5)-(r(i, (),) +7 V" (TG 2(5),9))) ws e §

iel

e [terative solution (value iteration with fixed a) starting with VT(”) (5)=0:

V™ (s) = max {Z P(i,a,s)-(r(i,a,s)+y -V} (F(i,a,s)))}

eA: :
> a=n(s) V¥

39

Policy Iteration Step (2) via “Value Iteration” H

e Assume the current policy 7(s), se S

e We want to determine the values V' (s) that solve the system, cf. Step (2),

V@ (s)= 3 PA,m(s),s)(r@m(s)s) +y V' (DG (9),9))) s e s

iel
e [terative solution (value iteration with fixed a) starting with VT(”) (5)=0:

VO(s) =Y Pli,a(s),s)-(r(i.(s),) + 7 V7 (TG (), 9))

iel
e For “large” T and for any initial Vi?(s) the values ¥, ™ (s) converge
to the exact values V(”)(S) with ‘VO(”) (s)— V(”)(s)‘ 2= s

40

Policy Iteration Step (2) via Linear Programming H

e Assume a step k’s current policy 7(s), se S

e We want to determine the values V'™ (s) that solve the system, cf. Step (2),

,VseS

iel f

452 (5) = Z{)(Z’ ”(S)’Sz . ((Z’ 7[(,5'),,5'2 + y-) (F(i,ﬂ'(S),S)J

~
probability period's reward s

/

Vv
disc. exp. future profits of new state

e We have to solve a system of | S| linear equations! (not in focus)

e Standard LP solvers can be applied, e.g., Gurobi, Cplex, etc.

41

Summary (Solving Discrete Time Infinite Horizon MDPS)W

Policy Iteration

(+) provides optimal solutions for infinite horizon MDPs
(+) fast convergence (stop if no improvement is possible)
(=) full information required (cf. events & transitions)
(=) only for smaller state spaces

Value Iteration

(+) provides near-optimal solutions for infinite horizon MDPs

(+) numerically simple

(+) fast convergence (if the discount factor is not close to 1)

(=) full information required (cf. events & transitions)

(=) for medium size state spaces, does not scale (curse of dimensionality)

42

Recall - Questions?

e States, Action, Rewards, Transitions
e Discounted Future Rewards

e Value Function

e Bellman Equation

e Backward Induction

e Value Iteration

e Policy Iteration

43

Could You Solve Different Test Problems? H

e Finite Horizon (use Backward Induction)

— Eating cake (deterministic utility)

— Selling Airline Tickets (stochastic demand)

o Infinite Horizon (use Value & Policy Iteration)

— Car replacement problem (deterministic costs)

— Inventory management (stochastic demand)

44

Overview

Week Dates

April 21

April 25/28
May 2/5

May 9/12
May 16/19
May 23

May 30/June 2

[

June 9
June 13/16
June 20/23
June 27/30
July 4/7
July 11/14

July 18/21
Sep 15

O 0 9 N W B~ W N

e e e e
B W NN = O

Topic

Introduction

Finite + Infinite Time MDPs

Approximate Dynamic Programming (ADP) + Exercise

Q-Learning (QL)

Deep Q-Networks (DQN)

DQN Extensions (Thu May 26 “Himmelfahrt™)
Policy Gradient Algorithms

Project Assignments (Mon June 6 “Pfingstmontag”)
Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Final Presentations
Finish Documentation

45

Exercise Value lteration & Policy Iteration

Consider the inventory management example. Maximize expected discounted rewards.
an optimal ordering policy. Items ordered at the beginning of a period are delivered at the
beginning of the same period; holding cost only occur for items left at the beginning of the
period. If demand exceeds the inventory (at the beginning of the period) then sales are lost,
cf. r(i,a,s)= p-min(i,s)~c-a—h-s—1,, - f, where p=10,c=2,h=0.5, f=20. Demand
probabilities are P(i,a,s)=P(i):=1/4, i=0,1,...,3. Consider the state space s € $={0.,1,...,50}.
Feasible ordering decisions are a € 4:={0,1,...,50}. The discount factor is y =0.95. The initial

state is 10 items.
(a) Solve the problem using value iteration.

(b) Solve the problem using policy iteration.

() Simulate the optimal policy 7z (s) over runs of 100 periods and accumulate total rewards

discounted on =0. Compare the mean with the value function for the initial state (Bonus).

46

Problem Embedding (Finite as Infinite Horizon MDP) ﬂ

e Finite Horizon (time-dependent) with discount 7 <1

— 1, =r,(i,a,s) with probabilities £,(i,a,s), seS, t=0,1,2,..,T
—s,—>s,,=I,0G,a,s) with i €1,(a,s), ae A(s)

e Infinite Horizon Value It. Embedding (time-independent) with same 7 <1

—5,=(0,5,), s=(t,s5),seS,t=0,12,..,T
—r=r(@i,a,5)=r(,a,t,s)=if t <T'thenr,(i,a,s) else r,(s)

_ P(i,a,5):=P(i,a,s), ac A$)=A/(s), icl(a,5)=1(a,s)
_§-5§=TG,a3)=T3G,a,t,s)= (t+1, if t <Tthen T (i,a,s) else S)

— Vk(t,s):%&X{;P(i,a,t,s)-(F(i,a,t,s)+;/-1{Z<T} Ve (F(i,a,t,s)))}, 1.e. V. (t,s)=0 Vt>T

47

