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Outline 
 

 Questions? 

 Today: Infinite Horizon Problems 

  Problem Examples 

  Value Iteration 

  Policy Iteration 
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Recap: Last Week 
 

 Markov Policies in Finite Horizon MDPs 

 Recursive Concept for Future Rewards 

 The Value of “being in a certain state” 

 Bellman Equation & Recursive Problem Decomposition 

 Backward Induction Solution Approach 
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Solving MDP Problems 
 

 Continuous Time Problems & Control Theory (not in focus) 

 Discrete Time MDP Problems with Finite Horizon (last meeting) 

 – Time-dependent Framework, Terminal Condition/Reward 

 – Bellman Equation 

 – Optimal numerical solutions via Backward induction 

 

 Discrete Time MDP Problems with Infinite Horizon (today) 

 – Time-independent Framework, Bellman Equation 

 – Optimal numerical solutions via Value & Policy Iteration 

 – Basis for Reinforcement Learning  
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Classification (Infinite Horizon Problems) 
 

Example Objective State Action Dynamic Payments 

Inventory Mgmt. min costs #items #order order/holding entry-sales 

Advertising max profits image #advertise campaigns effect-forget 

Used Cars min costs age replace(y/n) buy/repair aging/faults 

Agriculture/Forestry 

Durable Products 

Chess/Go/Tetris 

Circular Economy 
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Example Problem (Inventory Management) 
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Example Problem (Inventory Management) 
 

 Problem context: Sell and order items over time 
 

 Time Horizon: Infinite  
 

 Demand: Stochastic (where price is fixed) 
 

 Action: Replenish your inventory from time to time 
 

 Rewards: Order cost vs. inventory holding costs 
 

 Goal: Maximize expected discounted future profits 
 

 

 How to find an optimal order policy? 
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Example MDP (Inventory Management) 
 

 Framework: 0,1,2,...,t    Discrete time periods 
 

 State: s S  Number of items left 
 

 Actions: a A  Number of ordered items (replenish) 
 

 Events: i I , ( , , )P i a s  Demand i (e.g., 0,1,2,3 with prob. 1/4 each) 
 

 Rewards: ( , , )r r i a s  Revenue – Order Cost – Holding Cost 

  : min( , )p i s c a     e.g., for given price p, variable order cost c, 

      { 0}1 ah s f     holding h, and fixed order costs f 
 

 New State: ( , , )s s i a s    Old – Sold + Replenish (end of period) 
 

 Initial State: 0s S  Initial number of items in t=0 
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Sequence of Events (Infinite Horizon) 
 

t=0 start in state 0s  at the beginning of period (0,1) 

 choose/play action 0a  for period (0,1) 

 observe realized reward 0r  of period (0,1) 

t=1 observe realized new state 1s  after period (0,1) / the beginning of period (1,2) 

 choose/play action 1a  for period (1,2) 

 observe realized reward 1r  of period (1,2) 

. . .  
 

=> 0 0 0 1 1 1 2 2 2, , , , , , , , , . . .s a r s a r s a r  
 

  

time0 1 2 3
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Simulation of a Given Policy 
 
 Assume a (stationary/time-indep.) order strategy: ( ) 5 12 0s if s then else    
 

 Parameters: 10, 2, 0.5, 20p c h f     Demand: ( ) 1/ 4, 0,1, 2,3P i i   

 

period state action demand 

(event) 

sales 

revenue 

order 

cost 

holding 

costs 

reward new 

state 

0 5 0 1 10 0 -2.5 7.5 4 

1 4 12 0 0 -24-20 -2 -46 16 

2 16 0 2 20 0 -8 12 14 

3 14 0 1 10 0 -7 -7 13 

...         

 

 What is the tong-term performance of ( )s ? 
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Discounting 
 

 Idea: If delayed rewards are worth less, we use a penalty factor 1   

  for each period to measure the value they have for us “now” 
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Discounting 
 

 Idea: If delayed rewards are worth less, we use a penalty factor 1   

  for each period to measure the value they have for us “now” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0r 3r

1r 

1r 2r 4r

time

2

2r 
3

3r 
4

4r 

3r 

0r

2

4r 

2r

0?

value of future

rewards when

being in t  2?

value of future

rewards when

being in t 



 

12 

 

 

Expected Discounted Future Rewards (Infinite Horizon) 
 

 Random discounted reward stream: 
2 3

0 1 2 3, , , ,...r r r r       with  0,1   

 Exp. disc. future rewards from time t on (discounted on current time t): 

  
( ) ( ) ,k t

t k t

k t

V s E r s s  






 
   

 
  

 Exp. disc. future rewards from time t on (discounted on t=0): 

  
( ) ( )( ) ( )t

t tV s V s  ɶ  
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Recursion for Future Rewards (Infinite Horizon) 
 

 Random discounted reward stream: 
2 3

0 1 2 3, , , ,...r r r r       with  0,1   

 Recursion for expected future rewards from time t on, s S : 

 
( ) ( ) ,k t

t k t

k t

V s E r s s  






 
   

 


1

,t t k t

t k t

k t

E r r s s  


 

 

 
     

 
  

 
1

1

,k t

t k t

k t

E r r s s  


 

 

 
     

 
     rewards now + from t+1 on? 
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Recursion for Future Rewards (Infinite Horizon) 
 

 Random discounted reward stream: 
2 3

0 1 2 3, , , ,...r r r r       with  0,1   

 Recursion for expected future rewards from time t on, s S : 

 
( ) ( ) ,k t

t k t

k t

V s E r s s  






 
   

 


1

,t t k t

t k t

k t

E r r s s  


 

 

 
     

 
  

 
1

1

,k t

t k t

k t

E r r s s  


 

 

 
     

 
     rewards now + from t+1 on? 

 

( )
1

( 1)

1

1

( )

,

t

k t

t k t t

k t

V s

E r E r s s s s



  




 


 



 
 

            
 


�����������

       yes :-) 
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Time Independence of Future Rewards (Infinite Horizon) 
 

 Assume a given policy ( ) ( )t t ts s  , which does not depend on time 

 Random discounted reward stream: 
2 3

0 1 2 3, , , ,...r r r r     with  0,1   

 Expected future rewards from time t on (discounted on t), s S : 

 
( )

0 0

0

( ) , ( )k

k k k

k

V s E r s s a s  




 
    

 
  

 
( ) ( )

0( ) ( ) ?tV s V s    for all 0,1, 2,...t    ? 
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Time Independence of Future Rewards (Infinite Horizon) 
 

 Assume a given policy ( ) ( )t t ts s  , which does not depend on time 

 Random discounted reward stream: 
2 3

0 1 2 3, , , ,...r r r r     with  0,1   

 Expected future rewards from time t on (discounted on t), s S : 

 
( )

0 0

0

( ) , ( )k

k k k

k

V s E r s s a s  




 
    

 
  

 
( ) ( )

0( ) , ( ) ( )k t

t k t k k

k t

V s E r s s a s V s  






 
     

 
   for all 0,1, 2,...t   

 Same state, same actions, same expected reward stream, same discounting: 

=> The value of “being in a certain state” is time-independent (cf. 
( ) ( )V s

). 
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Problem Formulation (Infinite Horizon) 
 

 Find a (stationary) Markov policy ( )s   that maximizes 

 total expected (discounted) future rewards, 0 1  : 

 �   �0
0

max , , ( , , )
t

tt

t tt t

t

t t t t t t

t i Idiscount initial statereward for event iprobability for event i
factor under action a in state sunder action a in state s

E P i a s r i a s s





 

  
  

   
      

  ���������� , 

 where states evolve (time-independently) according to ( , , )s s i a s   . 

 How to solve such problems? 

 Will the value function or the optimal policy be time-dependent? 
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Solution Approach  (Dynamic Programming) 
 

 What is the best expected value of having the chance to . . . 
 

 “sell items (from any time t on, disc. on t) starting in state s”? 

 

 Answer:   That’s easy  ( )V s !      
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Solution Approach  (Dynamic Programming) 
 

 What is the best expected value of having the chance to . . . 
 

 “sell items (from any time t on, disc. on t) starting in state s”? 

 

 Answer:   That’s easy  ( )V s ! 

 

 We can assume V is independent of time and satisfies the Bellman equation! 

 

 We don’t know the “Value Function V”, but V is determined by: 
 

 Value (state today) = Best expected  (profit today + Value (state tomorrow)) 
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Solution Approach  (Dynamic Programming) 
 

 Value (state today) = Best expected  (profit today + Value (state tomorrow)) 
 

 Idea: Consider potential events & transition dynamics within one period. 

  What can happen during one time interval (under action a)? 
 

 state in t event reward state in t+1 probability 
 

  0  (0, , )r a s  (0, , )a s  (0, , )P a s  
 

     s   1  (1, , )r a s  (1, , )a s  (1, , )P a s  
 

  2  (2, , )r a s  (2, , )a s  (2, , )P a s  

 

 What does that mean for the value of state s  (at any time t), i.e., ( )V s ? 
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Balancing Potential Short- and Long-Term Rewards 
 

 state in t event reward state in t+1 probability 
 

  0  (0, , )r a s  (0, , )a s  (0, , )P a s  
 

     s   1  (1, , )r a s  (1, , )a s  (1, , )P a s  
 

  2  (2, , )r a s  (2, , )a s  (2, , )P a s  
 

 �
 

' . .

( ) max (0, , ) (0, , ) (0, , )
a A

probability not to sell today s reward best disc exp future rewardspotential
actions

V s P a s r a s V a s


  
          
����� ����� �������  

    
 

1 ' . .

(1, , ) (1, , ) (1, , ) ...

probability of demand today s reward best disc exp future rewards

P a s r a s V a s


 
           

����� ����� �������  
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Bellman Equation (Infinite Horizon) 
 

 We obtain the Bellman Equation, which determines the Value Function: 

 �
 

' . .

( ) max ( , , ) ( , , ) ( , , )
a A

i I
probability today s reward best disc exp future rewards of new statepotential

actions

V s P i a s r i a s V i a s




  
           
����� ����� �������  

 

 Does it reveal optimal policies? 
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Value Function & Optimal Policy 
 

 We obtain the Bellman Equation, which determines the Value Function: 

 �
 

' . .

( ) max ( , , ) ( , , ) ( , , )
a A

i I
probability today s reward best disc exp future rewards of new statepotential

actions

V s P i a s r i a s V i a s




  
           
����� ����� �������  

 

 Does it reveal optimal policies? 

 

 Yes,  is the optimal policy. 

 But, how can we compute the Value Function?  By backward induction? 
  

 *( ) arg max ...
a A

a s
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Value Iteration for Infinite Horizon MDPs 
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Value Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the equation system 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
  

 

 Value Iteration:  Use the “Finite horizon” backward induction approach: 

   1( ) max ( , , ) ( , , ) ( , , )t t
a A

i I

V s P i a s r i a s V i a s 




 
     

 
 , ( ) ( ) 0

T T
V s r s   

 

 

 

 

 

 

 

 

 

  

0

2 3

0 1 2 3, , , , . . .r r r r    
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Value Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the equation system 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
  

 

 Value Iteration:  Use the “Finite horizon” backward induction approach 

   1( ) max ( , , ) ( , , ) ( , , )t t
a A

i I

V s P i a s r i a s V i a s 




 
     

 
 , ( ) ( ) 0

T T
V s r s   

 

 

 

 

 

 

 

 

 

  

0 1000T 

2 3 999

0 1 2 3 999, , , , . . . ,r r r r r       1000 1001 1002

1000 1001 1002, , ,. . .r r r    

0

T k

T k

k

r 





 
������������	
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Value Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the equation system 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
  

 

 Value Iteration:  Use the “Finite horizon” backward induction approach 

   1( ) max ( , , ) ( , , ) ( , , )t t
a A

i I

V s P i a s r i a s V i a s 




 
     

 
 , ( ) ( ) 0

T T
V s r s   

 

 

 

 

 

 

 

 

 

  

0 1000T 

2 3 999

0 1 2 3 999, , , , . . . ,r r r r r      

�������������

1000 1001 1002

1000 1001 1002, , ,. . .r r r    

max

0

???T k

k

r 




   

0

T k

T k

k

r 





 
������������	
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Value Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the equation system 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
  

 

 Value Iteration:  Use the “Finite horizon” backward induction approach 

   1( ) max ( , , ) ( , , ) ( , , )t t
a A

i I

V s P i a s r i a s V i a s 




 
     

 
 , ( ) ( ) 0

T T
V s r s   

 

 

 

 

 

 

 

 

 

  

0 1000T 

2 3 999

0 1 2 3 999, , , , . . . ,r r r r r      

�������������

1000 1001 1002

1000 1001 1002, , ,. . .r r r    

max max

0

1

1

T k T

k

r r  






     


0

T k

T k

k

r 





 
������������	
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Value Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the equation system 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
  

 

 Value Iteration:  Use the “Finite horizon” backward induction approach 

   1( ) max ( , , ) ( , , ) ( , , )t t
a A

i I

V s P i a s r i a s V i a s 




 
     

 
 , ( ) ( ) 0

T T
V s r s   

 

 For “large” T and for any initial ( )TV s  the values 0 ( )V s  converge 

 to the exact values 
*( )V s  with 

*

0 max( ) ( ) 0
1

T
TV s V s r




   
  

 The optimal policy 
*( )a s , s S , is determined by 

 the arg max of the last iteration step, i.e., 0 ( )a p   
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Value Iteration Tabular Schema (Inventory Example) 

 

  

 

   

  

 

   

  

 

   

  

 

   

  

 

   

 

  

T

(4) (4) 0T TV r 

/ / ( )time periods iterations choose a suitable T

0 1T 

4s 

2T 

all

states

s S

(3) (3) 0T TV r 3s 

(2) (2) 0T TV r 2s 

(1) (1) 0T TV r 1s 

(0) (0) 0T TV r 0s 

1 starting values

ւ
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Value Iteration Tabular Schema (Inventory Example) 
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1 starting values
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Value Iteration Tabular Schema (Inventory Example) 
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(1)

V

a

1

*

1

(0),
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Policy Iteration for Infinite Horizon MDPs 
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Policy Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the system above 

 

 Policy iteration:  Subsequently evaluate & improve a policy: 
 

 (1)  

 

 (2)  
 

  

 

  

 

 (3)  
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Policy Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the system above 

 

 Policy iteration:  Subsequently evaluate & improve a policy: 
 

 (1) Choose any starting policy ( )s , s S  

 

 (2) Evaluate the policy ( )s  by solving the linear system s S   
 

 

 
 

 

 

 

 (3)  
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Policy Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the system above 

 

 Policy iteration:  Subsequently evaluate & improve a policy: 
 

 (1) Choose any starting policy ( )s , s S  

 

 (2) Evaluate the policy ( )s  by solving the linear system s S   
 

   ( ) ( )( ) ( , ( ), ) ( , ( ), ) ( , ( ), )
i I

V s P i s s r i s s V i s s    


      

 e.g., using a simplified Value Iteration (without max !) or via LP 
 

 

 (3)  
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Policy Iteration for Infinite Horizon MDPs 
 

 We want to determine the values 
*( )V s  that solve the system above 

 

 Policy iteration:  Subsequently evaluate & improve a policy: 
 

 (1) Choose any starting policy ( )s , s S  

 

 (2) Evaluate the policy ( )s  by solving the linear system s S   
 

   ( ) ( )( ) ( , ( ), ) ( , ( ), ) ( , ( ), )
i I

V s P i s s r i s s V i s s    


      

 e.g., using a simplified Value Iteration (without max !) or via LP 
 

 (3) Update   ( )( ) arg max ( , , ) ( , , ) ( , , )
a A i I

s P i a s r i a s V i a s 
 

 
     

 
  

 Repeat Step (2) & (3) s  until no improvement (=> optimal solution!) 
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Policy Iteration Schema (Inventory Example) 
 

 Choose a starting policy 
(0) ( )s , s S , cf. Step (1). 

 

(i) Compute the value function 
(0)( ) ( )V s

 of policy 
(0) ( )s , cf. Step (2). 

Use 
(0)( ) ( )V s

 to improve policy 
(0) ( )s  to a new policy 

(1) ( )s , cf. Step (3). 

 

(ii) Compute the value function 
(1)( ) ( )V s

 of policy 
(1) ( )s , cf. Step (2). 

Use 
(1)( ) ( )V s

 to improve policy 
(1) ( )s  to a new policy 

(2) ( )s , cf. Step (3). 

 

. . . 

 

Stop if after an iteration k we have 
( ) ( 1)( ) ( )k ks s    for all s S . 
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Policy Iteration Step (2) via “Value Iteration” 
 

 Assume the current policy ( )s , s S  

 

 We want to determine the values 
( ) ( )V s

 that solve the system, cf. Step (2) 

   ( ) ( )( ) ( , ( ), ) ( , ( ), ) ( , ( ), )
i I

V s P i s s r i s s V i s s    


     , s S   

 

 Iterative solution (value iteration with fixed a) starting with 
( ) ( ) 0TV s  : 

 

   ( ) ( )

1
:

( )

( ) max ( , , ) ( , , ) ( , , )t t
a A

i Ia s

V s P i a s r i a s V i a s 
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Policy Iteration Step (2) via “Value Iteration” 
 

 Assume the current policy ( )s , s S  

 

 We want to determine the values 
( ) ( )V s

 that solve the system, cf. Step (2), 

   ( ) ( )( ) ( , ( ), ) ( , ( ), ) ( , ( ), )
i I

V s P i s s r i s s V i s s    


     , s S   

 

 Iterative solution (value iteration with fixed a) starting with 
( ) ( ) 0TV s  : 

 

   ( ) ( )

1( ) ( , ( ), ) ( , ( ), ) ( , ( ), )t t

i I

V s P i s s r i s s V i s s    


      

 

 For “large” T and for any initial 
( ) ( )TV s

 the values 
( )

0 ( )V s
 converge 

 to the exact values 
( ) ( )V s

 with 
( ) ( )

0 ( ) ( ) 0TV s V s     
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Policy Iteration Step (2) via Linear Programming 
 

 Assume a step k’s current policy ( )s , s S  
 

 We want to determine the values 
( ) ( )V s

 that solve the system, cf. Step (2), 

 

( ) ( )

'

. .

( ) ( , ( ), ) ( , ( ), ) ( , ( ), )
i I

probability period s reward s

disc exp future profits of new state

V s P i s s r i s s V i s s    
 

 
  
      

  
  

 

����� ����� �����
���������

, s S   

 

 We have to solve a system of | |S  linear equations!   (not in focus) 

 

 Standard LP solvers can be applied, e.g., Gurobi, Cplex, etc. 
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Summary (Solving Discrete Time Infinite Horizon MDPs) 

 

Policy Iteration 

(+) provides optimal solutions for infinite horizon MDPs 

(+) fast convergence (stop if no improvement is possible) 

(–) full information required (cf. events & transitions) 

(–) only for smaller state spaces 

 

Value Iteration 

(+) provides near-optimal solutions for infinite horizon MDPs 

(+) numerically simple 

(+) fast convergence (if the discount factor is not close to 1) 

(–) full information required (cf. events & transitions) 

(–) for medium size state spaces, does not scale (curse of dimensionality) 
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Recall - Questions? 
 

 States, Action, Rewards, Transitions 

 Discounted Future Rewards 

 Value Function 

 Bellman Equation 

 Backward Induction 

 Value Iteration 

 Policy Iteration 
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Could You Solve Different Test Problems? 
 

 Finite Horizon (use Backward Induction) 

 

 – Eating cake (deterministic utility) 

 – Selling Airline Tickets (stochastic demand) 

 

 Infinite Horizon (use Value & Policy Iteration) 

 

 – Car replacement problem (deterministic costs) 

 – Inventory management (stochastic demand) 
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Overview 
 

Week Dates Topic 

1 April 21 Introduction 
 

2 April 25/28 Finite + Infinite Time MDPs 
 

3 May 2/5 Approximate Dynamic Programming (ADP) + Exercise 
 

4 May 9/12 Q-Learning (QL) 
 

5 May 16/19 Deep Q-Networks (DQN) 
 

6 May 23 DQN Extensions (Thu May 26 “Himmelfahrt”) 
 

7 May 30/June 2 Policy Gradient Algorithms 
 

8 June 9 Project Assignments (Mon June 6 “Pfingstmontag”) 
 

9 June 13/16 Work on Projects: Input/Support 
 

10 June 20/23 Work on Projects: Input/Support 
 

11 June 27/30 Work on Projects: Input/Support 
 

12 July 4/7 Work on Projects: Input/Support 
 

13 July 11/14 Work on Projects: Input/Support 
 

14 July 18/21 Final Presentations 

 Sep 15 Finish Documentation 
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Exercise Value Iteration & Policy Iteration 
 
Consider the inventory management example. Maximize expected discounted rewards. Find 

an optimal ordering policy. Items ordered at the beginning of a period are delivered at the 

beginning of the same period; holding cost only occur for items left at the beginning of the 

period. If demand exceeds the inventory (at the beginning of the period) then sales are lost, 

cf. 
{ 0}( , , ) min( , ) 1 ar i a s p i s c a h s f        , where 10, 2, 0.5, 20p c h f    . Demand 

probabilities are ( , , ) ( ) : 1/ 4P i a s P i  , 0,1,...,3i  . Consider the state space sS={0,1,...,50}. 

Feasible ordering decisions are aA:={0,1,...,50}. The discount factor is 0.95  . The initial 

state is 10 items. 

 

(a) Solve the problem using value iteration. 
 
(b) Solve the problem using policy iteration. 
 

(c) Simulate the optimal policy ( )s  over runs of 100 periods and accumulate total rewards 

discounted on t=0. Compare the mean with the value function for the initial state (Bonus). 
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Problem Embedding (Finite as Infinite Horizon MDP) 
 

 Finite Horizon (time-dependent) with discount 1   
 

 – ( , , )t tr r i a s  with probabilities ( , , )tP i a s , s S , 0,1,2,...,t T  

 – 1 ( , , )t t ts s i a s   with ( , )ti I a s , ( )ta A s  

 

 Infinite Horizon Value It. Embedding (time-independent) with same 1   
 

 – 0 0: (0, )s sɶ , : ( , )s t sɶ , s S , 0,1,2,...,t T  

 – ( , , ) ( , , , ) : ( , , ) ( )t Tr r i a s r i a t s if t T then r i a s else r s   ɶ ɶ ɶ ɶ  

 – ( , , ) : ( , , )tP i a s P i a sɶ ɶ , ( ) : ( )ta A s A s ɶ ɶ , ( , ) : ( , )ti I a s I a s ɶ ɶ  

 –  ( , , ) ( , , , ) : 1, ( , , )ts s i a s i a t s t if t T then i a s else s        ɶ ɶɶ ɶ ɶ  

 –   { } 1( , ) max ( , , , ) ( , , , ) 1 ( , , , )k t T k
a A

i I

V t s P i a t s r i a t s V i a t s  




 
      

 
ɶ
ɶ

ɶ ɶɶ , i.e. ( , ) 0kV t s t T    


