Dynamic Programming and Reinforcement Learning

Infinite Time Markov Decision Processes (Week 2b)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

April 28, 2022

• Questions?

• Today: Infinite Horizon Problems

Problem Examples

Value Iteration

Policy Iteration

Recap: Last Week

- Markov Policies in Finite Horizon MDPs
- Recursive Concept for Future Rewards
- The Value of "being in a certain state"
- Bellman Equation & Recursive Problem Decomposition
- Backward Induction Solution Approach

Solving MDP Problems

- Continuous Time Problems & Control Theory (not in focus)
- Discrete Time MDP Problems with **Finite Horizon** (last meeting)
 - Time-dependent Framework, Terminal Condition/Reward
 - Bellman Equation
 - Optimal numerical solutions via Backward induction
- Discrete Time MDP Problems with **Infinite Horizon** (today)
 - Time-independent Framework, Bellman Equation
 - Optimal numerical solutions via Value & Policy Iteration
 - Basis for **Reinforcement Learning**

Classification (Infinite Horizon Problems)

Example	Objective	State	Action	Dynamic	Payments
Inventory Mgmt.	min costs	#items	#order	order/holding	entry-sales
Advertising	max profits	image	#advertise	campaigns	effect-forget
Used Cars	min costs	age	replace(y/n)	buy/repair	aging/faults

Agriculture/Forestry

Durable Products

Chess/Go/Tetris

Circular Economy

Example Problem (Inventory Management)

Example Problem (Inventory Management)

Problem context: Sell and order items over time

• Time Horizon: Infinite

• Demand: Stochastic (where price is fixed)

• Action: Replenish your inventory from time to time

• Rewards: Order cost vs. inventory holding costs

• Goal: Maximize expected discounted future profits

• How to find an optimal order policy?

Example MDP (Inventory Management)

• Framework:
$$t = 0, 1, 2, ..., \infty$$

Discrete time periods

• State:
$$s \in S$$

Number of items left

• Actions:
$$a \in A$$

Number of ordered items (replenish)

• Events:
$$i \in I$$
, $P(i, a, s)$

Demand i (e.g., 0,1,2,3 with prob. 1/4 each)

• Rewards:
$$r = r(i, a, s)$$

$$:= p \cdot \min(i, s) - c \cdot a$$

$$-h \cdot s - 1_{\{a>0\}} \cdot f$$

Revenue – Order Cost – Holding Cost e.g., for given price p, variable order cost c,

• New State: $s \to s' = \Gamma(i, a, s)$

Old – Sold + Replenish (end of period)

• Initial State: $s_0 \in S$

Initial number of items in t=0

holding h, and fixed order costs f

Sequence of Events (Infinite Horizon)

- t=0 start in state S_0 at the beginning of period (0,1) choose/play action a_0 for period (0,1) observe realized reward r_0 of period (0,1)
- t=1 observe realized new state S_1 after period (0,1) / the beginning of period (1,2) choose/play action a_1 for period (1,2) observe realized reward r_1 of period (1,2)

. . .

Simulation of a Given Policy

- Assume a (stationary/time-indep.) order strategy: $\pi(s) = if \ s < 5$ then 12 else 0
- Parameters: p = 10, c = 2, h = 0.5, f = 20 Demand: P(i) = 1/4, i = 0,1,2,3

period	state	action	demand (event)	sales revenue	order	holding costs	reward	new state
0	5	0	1	10	0	-2.5	7.5	4
1	4	12	0	0	-24-20	-2	-46	16
2	16	0	2	20	0	-8	12	14
3	14	0	1	10	0	-7	-7	13
•••								

• What is the tong-term performance of $\pi(s)$?

Discounting

• Idea: If delayed rewards are worth less, we use a penalty factor $\gamma < 1$ for each period to measure the value they have for us "now"

```
value of future rewards when being in t = 0?
```


Discounting

• Idea: If delayed rewards are worth less, we use a penalty factor $\gamma < 1$ for each period to measure the value they have for us "now"

Expected Discounted Future Rewards (Infinite Horizon)

- *Random* discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots$ with $\gamma \in [0,1)$
- Exp. disc. future rewards from time *t* on (discounted on *current* time *t*):

$$V_t^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, \pi\right)$$

• Exp. disc. future rewards from time t on (discounted on t=0):

$$\tilde{V}_t^{(\pi)}(s) = \gamma^t \cdot V_t^{(\pi)}(s)$$

Recursion for Future Rewards (Infinite Horizon)

- *Random* discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots$ with $\gamma \in [0,1)$
- Recursion for expected future rewards from time t on, $s \in S$:

$$V_{t}^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_{k} \middle| s_{t} = s, \pi\right) = E\left(\gamma^{t-t} \cdot r_{t} + \sum_{k=t+1}^{\infty} \gamma^{k-t} \cdot r_{k} \middle| s_{t} = s, \pi\right)$$

$$= E\left(r_{t} + \gamma \cdot \sum_{k=t+1}^{\infty} \gamma^{k-t-1} \cdot r_{k} \middle| s_{t} = s, \pi\right) \quad \text{rewards now + from t+1 on?}$$

Recursion for Future Rewards (Infinite Horizon)

- *Random* discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots$ with $\gamma \in [0,1)$
- Recursion for expected future rewards from time t on, $s \in S$:

$$V_{t}^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_{k} \middle| s_{t} = s, \pi\right) = E\left(\gamma^{t-t} \cdot r_{t} + \sum_{k=t+1}^{\infty} \gamma^{k-t} \cdot r_{k} \middle| s_{t} = s, \pi\right)$$

$$= E\left(r_{t} + \gamma \cdot \sum_{k=t+1}^{\infty} \gamma^{k-t-1} \cdot r_{k} \middle| s_{t} = s, \pi\right) \quad \text{rewards now + from t+1 on?}$$

$$= E\left(r_{t} + \gamma \cdot E\left(\sum_{k=t+1}^{\infty} \gamma^{k-(t+1)} \cdot r_{k} \middle| s_{t+1} = s'\right) \middle| s_{t} = s, \pi\right) \quad \text{yes :-)}$$

Time Independence of Future Rewards (Infinite Horizon)

- Assume a given policy $\pi_t(s_t) = \pi(s_t)$, which does not depend on time
- Random discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots \text{ with } \gamma \in [0,1)$
- Expected future rewards from time t on (discounted on t), $s \in S$:

$$V_0^{(\pi)}(s) = E\left(\sum_{k=0}^{\infty} \gamma^k \cdot r_k \middle| s_0 = s, a_k = \pi(s_k)\right)$$

$$V_t^{(\pi)}(s) = V_0^{(\pi)}(s)$$
? for all $t = 0, 1, 2, ...$?

Time Independence of Future Rewards (Infinite Horizon)

- Assume a given policy $\pi_t(s_t) = \pi(s_t)$, which does not depend on time
- Random discounted reward stream: $r_0, \gamma \cdot r_1, \gamma^2 \cdot r_2, \gamma^3 \cdot r_3, \dots \text{ with } \gamma \in [0,1)$
- Expected future rewards from time t on (discounted on t), $s \in S$:

$$V_0^{(\pi)}(s) = E\left(\sum_{k=0}^{\infty} \gamma^k \cdot r_k \middle| s_0 = s, a_k = \pi(s_k)\right)$$

$$V_t^{(\pi)}(s) = E\left(\sum_{k=t}^{\infty} \gamma^{k-t} \cdot r_k \middle| s_t = s, a_k = \pi(s_k)\right) = V_0^{(\pi)}(s) \text{ for all } t = 0, 1, 2, \dots$$

- Same state, same actions, same expected reward stream, same discounting:
- => The value of "being in a certain state" is time-independent (cf. $V^{(\pi)}(s)$).

Problem Formulation (Infinite Horizon)

• Find a (**stationary**) *Markov policy* $\pi = \pi(s)$ that maximizes total expected (discounted) future rewards, $0 \le \gamma < 1$:

$$\max_{\pi} E \left[\sum_{t=0}^{\infty} \underbrace{\gamma^{t}}_{\substack{discount \\ factor}} \cdot \left(\sum_{\substack{i_{t} \in I \\ probability \ for \ event \ i_{t} \\ under \ action \ a_{t} \ in \ state \ s_{t}}} \underbrace{P(i_{t}, a_{t}, s_{t})}_{probability \ for \ event \ i_{t}} \cdot \underbrace{P(i_{t}, a_{t}, s_{t})}_{reward \ for \ event \ i_{t}} \right]}_{initial \ state} \right],$$

where states evolve (time-independently) according to $s \rightarrow s' = \Gamma(i, a, s)$.

- How to solve such problems?
- Will the *value function* or the *optimal policy* be **time-dependent**?

Solution Approach (Dynamic Programming)

• What is the **best expected value** of having the chance to . . .

"sell items (from any time t on, disc. on t) starting in state s"?

• Answer: That's easy V(s)!

Solution Approach (Dynamic Programming)

- What is the **best expected value** of having the chance to . . . "sell items (from any time t on, disc. on t) starting in state s"?
- Answer: That's easy V(s)!
- We can assume *V* is independent of time and satisfies the Bellman equation!
- We don't know the "Value Function V", but V is determined by:

Value (state today) = Best expected (profit today + Value (state tomorrow))

Solution Approach (Dynamic Programming)

- Value (state today) = Best expected (profit today + Value (state tomorrow))
- Idea: Consider potential events & transition dynamics within one period.

 What can happen during one time interval (under action *a*)?

state in t	event	reward	state in $t+1$	probability
	0	r(0,a,s)	$\Gamma(0,a,s)$	P(0,a,s)
S	1	r(1,a,s)	$\Gamma(1,a,s)$	P(1,a,s)
	2	r(2,a,s)	$\Gamma(2,a,s)$	P(2,a,s)

• What does that mean for the value of state s (at any time t), i.e., V(s)?

Balancing Potential Short- and Long-Term Rewards

state in t	event	reward	state in <i>t</i> +1	probability
	0	r(0,a,s)	$\Gamma(0,a,s)$	P(0,a,s)
\boldsymbol{S}	1	r(1,a,s)	$\Gamma(1,a,s)$	P(1,a,s)
	2	r(2,a,s)	$\Gamma(2,a,s)$	P(2,a,s)
V(s) =	$\max_{\substack{a \in A \\ potential \\ actions}} \begin{cases} p \\ p \end{cases}$	$\underbrace{P(0,a,s)}_{robability\ not\ to\ sell}$	$\left(\underbrace{r(0,a,s)}_{today's\ reward} + \underbrace{\gamma}_{best\ a}\right)$	$V(\Gamma(0,a,s))$ disc. exp. future rewards
	+ prot	$\underbrace{P(1,a,s)}_{\text{bability of demand}=1}$	$ \underbrace{r(1,a,s)}_{today's\ reward} + \underbrace{\gamma}_{best\ o} $	$\frac{V(\Gamma(1,a,s))}{\text{lisc. exp. future rewards}} + \dots$

Bellman Equation (Infinite Horizon)

• We obtain the Bellman Equation, which **determines** the Value Function:

$$V(s) = \max_{\substack{a \in A \\ potential \\ actions}} \left\{ \sum_{i \in I} \underbrace{P(i, a, s)}_{probability} \cdot \left(\underbrace{r(i, a, s)}_{today's \ reward} + \underbrace{\gamma \cdot V(\Gamma(i, a, s))}_{best \ disc. \ exp. future \ rewards \ of \ new \ state} \right) \right\}$$

Does it reveal optimal policies?

Value Function & Optimal Policy

• We obtain the Bellman Equation, which **determines** the Value Function:

$$V(s) = \max_{\substack{a \in A \\ potential \\ actions}} \left\{ \sum_{i \in I} \underbrace{P(i, a, s)}_{probability} \cdot \left(\underbrace{r(i, a, s)}_{today's \ reward} + \underbrace{\gamma \cdot V(\Gamma(i, a, s))}_{best \ disc. \ exp. future \ rewards \ of \ new \ state} \right) \right\}$$

- Does it reveal optimal policies?
- Yes, $a^*(s) = \underset{a \in A}{\operatorname{arg max}} \{...\}$ is the *optimal policy*.
- But, how can we compute the Value Function? By *backward induction*?

• We want to determine the values $V^*(s)$ that solve the equation system

$$V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V^* \left(\Gamma(i, a, s) \right) \right) \right\}$$

• Value Iteration: Use the "Finite horizon" backward induction approach:

$$V_{t}(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V_{t+1} \left(\Gamma(i, a, s) \right) \right) \right\}, \ V_{T}(s) = r_{T}(s) = 0$$

• We want to determine the values $V^*(s)$ that solve the equation system

$$V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V^* \left(\Gamma(i, a, s) \right) \right) \right\}$$

• Value Iteration: Use the "Finite horizon" backward induction approach

$$V_{t}(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V_{t+1} \left(\Gamma(i, a, s) \right) \right) \right\}, V_{T}(s) = r_{T}(s) = 0$$

$$\gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{T+k}$$

$$r_{0}, \gamma \cdot r_{1}, \gamma^{2} \cdot r_{2}, \gamma^{3} \cdot r_{3}, \dots, \gamma^{999} \cdot r_{999}$$

$$\gamma^{1000} \cdot r_{1000}, \gamma^{1001} \cdot r_{1001}, \gamma^{1002} \cdot r_{1002}, \dots$$

$$T = 1000$$

• We want to determine the values $V^*(s)$ that solve the equation system

$$V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V^* \left(\Gamma(i, a, s) \right) \right) \right\}$$

• Value Iteration: Use the "Finite horizon" backward induction approach

$$V_{t}(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V_{t+1} \left(\Gamma(i, a, s) \right) \right) \right\}, V_{T}(s) = r_{T}(s) = 0$$

$$\gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{T+k}$$

$$r_{0}, \gamma \cdot r_{1}, \gamma^{2} \cdot r_{2}, \gamma^{3} \cdot r_{3}, \dots, \gamma^{999} \cdot r_{999} \qquad \gamma^{1000} \cdot r_{1000}, \gamma^{1001} \cdot r_{1001}, \gamma^{1002} \cdot r_{1002}, \dots$$

$$\leq \gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{\max} = ???$$

• We want to determine the values $V^*(s)$ that solve the equation system

$$V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V^* \left(\Gamma(i, a, s) \right) \right) \right\}$$

• Value Iteration: Use the "Finite horizon" backward induction approach

$$V_{t}(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V_{t+1} \left(\Gamma(i, a, s) \right) \right) \right\}, V_{T}(s) = r_{T}(s) = 0$$

$$\gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{T+k}$$

$$r_{0}, \gamma \cdot r_{1}, \gamma^{2} \cdot r_{2}, \gamma^{3} \cdot r_{3}, \dots, \gamma^{999} \cdot r_{999} \qquad \gamma^{1000} \cdot r_{1000}, \gamma^{1001} \cdot r_{1001}, \gamma^{1002} \cdot r_{1002}, \dots$$

$$\leq \gamma^{T} \cdot \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{\max} = \gamma^{T} \cdot r_{\max} \cdot \frac{1}{1-\gamma}$$

28

- We want to determine the values $V^*(s)$ that solve the equation system $V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V^* \left(\Gamma(i, a, s) \right) \right) \right\}$
- Value Iteration: Use the "Finite horizon" backward induction approach $V_{t}(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V_{t+1} \left(\Gamma(i, a, s) \right) \right) \right\}, V_{T}(s) = r_{T}(s) = 0$
- For "large" T and for any initial $V_T(s)$ the values $V_0(s)$ converge to the exact values $V^*(s)$ with $\left|V_0(s) V^*(s)\right| \le \frac{\gamma^T}{1-\gamma} \cdot r_{\max} \xrightarrow{T \to \infty} 0$
- The optimal policy $a^*(s)$, $s \in S$, is determined by the *arg max* of the **last iteration step**, i.e., $a_0(p)$

Value Iteration Tabular Schema (Inventory Example)

time | periods | iterations (choose a suitable T)

	0	1	T-2	T-1	T starti	ng values
s = 4					$V_T(4) = r_T(4) = 0$	/
all $s=3$					$V_T(3) = r_T(3) = 0$	
$states \\ s \in S s = 2$					$V_T(2) = r_T(2) = 0$	
s = 1					$V_T(1) = r_T(1) = 0$	
s = 0					$V_T(0) = r_T(0) = 0$	

Value Iteration Tabular Schema (Inventory Example)

time | periods | iterations (choose a suitable T)

	0	1	T-2	T-1	T starti	ng values
s = 4				$V_{T-1}(4),$ $\left(a_{T-1}^*(4)\right)$	$V_T(4) = r_T(4) = 0$	
all $s=3$				$V_{T-1}(3),$ $\left(a_{T-1}^*(3)\right)$	$V_T(3) = r_T(3) = 0$	
$states \\ s \in S s = 2$				P(0,a,2) $P(1,a,2)$	$V_T(2) = r_T(2) = 0$	
s = 1				P(2,a, P(3,a,2)	$(2)V_{T}(1) = r_{T}(1) = 0$	
s = 0					$V_T(0) = r_T(0) = 0$	

Value Iteration Tabular Schema (Inventory Example)

result / policy			me/ perio	ds / iterati	try different		
\	0	1		T-2	T-1	T starti	ng values
s=4	$V_0(4),$ $a_0^*(4)$	$V_1(4),$ $a_1^*(4)$		$V_{T-2}(4),$ $a_{T-2}^*(4)$	$V_{T-1}(4),$ $a_{T-1}^*(4)$	$V_T(4) = r_T(4) = 0$	/
all $s=3$	$V_0(3),$ $a_0^*(3)$	$V_1(3),$ $a_1^*(3)$		$V_{T-2}(3),$ $a_{T-2}^*(3)$	$V_{T-1}(3),$ $a_{T-1}^{*}(3)$	$V_T(3) = r_T(3) = 0$	
$states \\ s \in S s = 2$	$V_0(2),$ $a_0^*(2)$	$V_1(2),$ $a_1^*(2)$		$V_{T-2}(2),$ $a_{T-2}^{*}(2)$	$V_{T-1}(2),$ $a_{T-1}^{*}(2)$	$V_T(2) = r_T(2) = 0$	
s = 1	$V_0(1),$ $a_0^*(1)$	$V_1(1),$ $a_1^*(1)$		$V_{T-2}(1),$ $a_{T-2}^*(1)$	$V_{T-1}(1),$ $a_{T-1}^*(1)$	$V_T(1) = r_T(1) = 0$	
s = 0	$V_0(0), a_0^*(0)$	$V_1(0),$ $a_1^*(0)$		$V_{T-2}(0),$ $a_{T-2}^*(0)$	$V_{T-1}(0),$ $a_{T-1}^*(0)$	$V_T(0) = r_T(0) = 0$	

Policy Iteration for Infinite Horizon MDPs

Policy Iteration for Infinite Horizon MDPs

- We want to determine the values $V^*(s)$ that solve the system above
- Policy iteration: Subsequently evaluate & improve a policy:

(1)

(2)

(3)

Policy Iteration for Infinite Horizon MDPs

- We want to determine the values $V^*(s)$ that solve the system above
- Policy iteration: Subsequently evaluate & improve a policy:
 - (1) Choose any starting policy $\pi(s)$, $s \in S$
 - (2) **Evaluate** the policy $\pi(s)$ by solving the linear system $\forall s \in S$

(3)

Policy Iteration for Infinite Horizon MDPs

- We want to determine the values $V^*(s)$ that solve the system above
- **Policy iteration**: Subsequently *evaluate* & *improve* a policy:
 - (1) Choose any starting policy $\pi(s)$, $s \in S$
 - (2) **Evaluate** the policy $\pi(s)$ by solving the linear system $\forall s \in S$ $V^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot \left(r(i, \pi(s), s) + \gamma \cdot V^{(\pi)} \left(\Gamma(i, \pi(s), s) \right) \right)$ e.g., using a simplified Value Iteration (*without max*!) or via LP

(3)

Policy Iteration for Infinite Horizon MDPs

- We want to determine the values $V^*(s)$ that solve the system above
- **Policy iteration**: Subsequently *evaluate* & *improve* a policy:
 - (1) Choose any starting policy $\pi(s)$, $s \in S$
 - (2) **Evaluate** the policy $\pi(s)$ by solving the linear system $\forall s \in S$ $V^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot \left(r(i, \pi(s), s) + \gamma \cdot V^{(\pi)} \left(\Gamma(i, \pi(s), s) \right) \right)$ e.g., using a simplified Value Iteration (without max!) or via LP
 - (3) Update $\pi(s) \leftarrow \underset{a \in A}{\operatorname{arg\,max}} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V^{(\pi)} \left(\Gamma(i, a, s) \right) \right) \right\}$ Repeat Step (2) & (3) $\forall s$ until no improvement (=> optimal solution!)

Policy Iteration Schema (Inventory Example)

Choose a starting policy $\pi^{(0)}(s)$, $s \in S$, cf. Step (1).

- (i) Compute the value function $V^{(\pi^{(0)})}(s)$ of policy $\pi^{(0)}(s)$, cf. Step (2). Use $V^{(\pi^{(0)})}(s)$ to improve policy $\pi^{(0)}(s)$ to a new policy $\pi^{(1)}(s)$, cf. Step (3).
- (ii) Compute the value function $V^{(\pi^{(1)})}(s)$ of policy $\pi^{(1)}(s)$, cf. Step (2). Use $V^{(\pi^{(1)})}(s)$ to improve policy $\pi^{(1)}(s)$ to a new policy $\pi^{(2)}(s)$, cf. Step (3).

. . .

Stop if after an iteration k we have $\pi^{(k)}(s) = \pi^{(k-1)}(s)$ for all $s \in S$.

Policy Iteration Step (2) via "Value Iteration"

- Assume the current policy $\pi(s)$, $s \in S$
- We want to determine the values $V^{(\pi)}(s)$ that solve the system, cf. Step (2)

$$V^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot \left(r(i, \pi(s), s) + \gamma \cdot V^{(\pi)} \left(\Gamma(i, \pi(s), s) \right) \right), \ \forall s \in S$$

• Iterative solution (value iteration with fixed a) starting with $V_T^{(\pi)}(s) = 0$:

$$\underbrace{V_{t}^{(\pi)}(s) = \max_{\substack{a \in A: \\ a = \pi(s)}} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot V_{t+1}^{(\pi)} \left(\Gamma(i, a, s) \right) \right) \right\}}_{}$$

Policy Iteration Step (2) via "Value Iteration"

- Assume the current policy $\pi(s)$, $s \in S$
- We want to determine the values $V^{(\pi)}(s)$ that solve the system, cf. Step (2), $V^{(\pi)}(s) = \sum_{i=1}^{n} P(i, \pi(s), s) \cdot \left(r(i, \pi(s), s) + \gamma \cdot V^{(\pi)} \left(\Gamma(i, \pi(s), s) \right) \right), \ \forall s \in S$
- Iterative solution (value iteration with fixed *a*) starting with $V_T^{(\pi)}(s) = 0$: $V_t^{(\pi)}(s) = \sum_{i \in I} P(i, \pi(s), s) \cdot \left(r(i, \pi(s), s) + \gamma \cdot V_{t+1}^{(\pi)} \left(\Gamma(i, \pi(s), s) \right) \right)$
- For "large" T and for any initial $V_T^{(\pi)}(s)$ the values $V_0^{(\pi)}(s)$ converge to the exact values $V^{(\pi)}(s)$ with $\left|V_0^{(\pi)}(s) V^{(\pi)}(s)\right| \xrightarrow{T \to \infty} 0$

Policy Iteration Step (2) via Linear Programming

- Assume a step k's current policy $\pi(s)$, $s \in S$
- We want to determine the values $V^{(\pi)}(s)$ that solve the system, cf. Step (2),

$$V^{(\pi)}(s) = \sum_{i \in I} \underbrace{P(i, \pi(s), s)}_{probability} \cdot \underbrace{\underbrace{r(i, \pi(s), s)}_{period's \ reward} + \underbrace{\gamma \cdot V^{(\pi)}}_{disc. \ exp. \ future \ profits \ of \ new \ state}}_{disc. \ exp. \ future \ profits \ of \ new \ state}\right), \ \forall s \in S$$

- We have to solve a system of |S| linear equations! (not in focus)
- Standard LP solvers can be applied, e.g., Gurobi, Cplex, etc.

HPI

Summary (Solving Discrete Time Infinite Horizon MDPs)

Policy Iteration

- (+) provides optimal solutions for infinite horizon MDPs
- (+) fast convergence (stop if no improvement is possible)
- (-) full information required (cf. events & transitions)
- (–) only for smaller state spaces

Value Iteration

- (+) provides near-optimal solutions for infinite horizon MDPs
- (+) numerically simple
- (+) fast convergence (if the discount factor is not close to 1)
- (-) full information required (cf. events & transitions)
- (-) for medium size state spaces, does not scale (curse of dimensionality)

НРІ

Recall - Questions?

- States, Action, Rewards, Transitions
- Discounted Future Rewards
- Value Function
- Bellman Equation
- Backward Induction
- Value Iteration
- Policy Iteration

Could You Solve Different Test Problems?

- Finite Horizon (use Backward Induction)
 - Eating cake (deterministic utility)
 - Selling Airline Tickets (stochastic demand)
- Infinite Horizon (use Value & Policy Iteration)
 - Car replacement problem (deterministic costs)
 - Inventory management (stochastic demand)

Week	Dates	Topic	
1	April 21	Introduction	
2	April 25/28	Finite + Infinite Time MDPs	
3	May 2/5	Approximate Dynamic Programming (ADP) + Exercise	
4	May 9/12	Q-Learning (QL)	
5	May 16/19	Deep Q-Networks (DQN)	
6	May 23	DQN Extensions	(Thu May 26 "Himmelfahrt")
7	May 30/June 2	Policy Gradient Algorithms	
8	June 9	Project Assignments	(Mon June 6 "Pfingstmontag")
9	June 13/16	Work on Projects: Input/Support	
10	June 20/23	Work on Projects: Input/Support	
11	June 27/30	Work on Projects: Input/Support	
12	July 4/7	Work on Projects: Input/Support	
13	July 11/14	Work on Projects: Input/Support	
14	July 18/21 Sep 15	Final Presentations Finish Documentation	

Exercise Value Iteration & Policy Iteration

Consider the inventory management example. Maximize expected discounted rewards. Find an optimal ordering policy. Items ordered at the beginning of a period are delivered at the beginning of the same period; holding cost only occur for items left at the beginning of the period. If demand exceeds the inventory (at the beginning of the period) then sales are lost, cf. $r(i,a,s) = p \cdot \min(i,s) - c \cdot a - h \cdot s - 1_{\{a>0\}} \cdot f$, where p=10,c=2,h=0.5,f=20. Demand probabilities are P(i,a,s) = P(i) := 1/4, i=0,1,...,3. Consider the state space $s \in S=\{0,1,...,50\}$. Feasible ordering decisions are $a \in A := \{0,1,...,50\}$. The discount factor is $\gamma = 0.95$. The initial state is 10 items.

- (a) Solve the problem using value iteration.
- (b) Solve the problem using policy iteration.
- (c) Simulate the optimal policy $\pi(s)$ over runs of 100 periods and accumulate total rewards discounted on t=0. Compare the mean with the value function for the initial state (Bonus).

Problem Embedding (Finite as Infinite Horizon MDP)

- Finite Horizon (time-dependent) with discount $\gamma \le 1$
 - $-r_t = r_t(i, a, s)$ with probabilities $P_t(i, a, s)$, $s \in S$, t = 0, 1, 2, ..., T
 - $= S_t \rightarrow S_{t+1} = \Gamma_t(i, a, s)$ with $i \in I_t(a, s)$, $a \in A_t(s)$
- Infinite Horizon Value It. Embedding (time-independent) with same $\gamma \le 1$
 - $=\tilde{s}_0 \coloneqq (0,s_0), \ \tilde{s} \coloneqq (t,s), \ s \in S, \ t = 0,1,2,...,T$
 - $= \tilde{r} = \tilde{r}(i, a, \tilde{s}) = \tilde{r}(i, a, t, s) := if \ t < T \ then \ r_{t}(i, a, s) \ else \ r_{T}(s)$
 - $= \tilde{P}(i, a, \tilde{s}) := P_t(i, a, s), \ a \in \tilde{A}(\tilde{s}) := A_t(s), \ i \in \tilde{I}(a, \tilde{s}) := I_t(a, s)$
 - $= \tilde{s} \rightarrow \tilde{s}' = \tilde{\Gamma}(i, a, \tilde{s}) = \tilde{\Gamma}(i, a, t, s) := (t + 1, if \ t < T \ then \ \Gamma_t(i, a, s) \ else \ s)$
 - $-V_{k}(t,s) = \max_{a \in \tilde{A}} \left\{ \sum_{i \in \tilde{I}} \tilde{P}(i,a,t,s) \cdot \left(\tilde{r}(i,a,t,s) + \gamma \cdot 1_{\{t < T\}} \cdot V_{k+1} \left(\tilde{\Gamma}(i,a,t,s) \right) \right) \right\}, \text{ i.e. } V_{k}(t,s) = 0 \ \forall t > T$