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Linear Programming II ﬂ

o Questions regarding last week?

e Today: — Motivation AMPL
— Example V — Equilibria in Mixed Strategies (Game Theory)
— Penalty Approaches & Continuous Relaxations
— Solution Tuning

— Tricks to Circumvent Non-Linearities
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Solving Motivation AMPL
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Solving Knapsack Problems using LP via AMPL ﬂ

e Allyouneed: AMPL, a solver, 10 lines of code

e AMPL translates the problem to the solver, which solves the problem

e Simplex Alg. is fast in general - but can have exponential complexity

e (Can we solve our knapsack problem with 1000, 10K, or 100K items?

e  What do you think is the solution time?
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LP meets Game Theory
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Game Theory — “Gefangenendilemma” (Pure NE) ﬂ

A 5 Gestehen Lwanm

Gestchen |- 6 /-6 0 /—Ao

Leugnen =40/ 0 |-2 /-2

What’s the best strategy? Equilibrium in pure strategies: “Gestehen” (dominant)
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Game Theory — “Papier Stein Schere” (Mixed NE) E

Spieler 2

Stein' | Schere’ | Papier

Stem 0 0 [ ] ] I

spieler | Schere 1 [ . 0 | —
Papier | | — ] 1 ) 0

No pure equilibrium. What is the best (mixed) strategy?
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Game Theory — “Papier Stein Schere” (Mixed NE) ﬂ

1/3 1/3 1/3
Spieler 2

Stein’ | Schere’ _pﬂpimr

1/3 Stein | 0 [ 1 | [
Spieler I1/3 B Cnre 1 | 5 0 I 1
1/3 Papier | | 1 ] 1 ) 0

No pure equilibrium. What is the best (mixed) strategy?

Symmetric Intuition: Equilibrium in mixed strategies, i.e., 1/3, 1/3, 1/3
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Game Theory — “Papier Stein Schere 2.0” E

Spieler 2

Stein' | Schere’ | Papier

Stein | L [ ] | 20] e
sSpieler | Schere 1 [ . 0 | —
Papier | | -1 | 1 ; 0

Asymmetric rewards. Will player 2 play more often “Papier”?

Answer?
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Game Theory — “Papier Stein Schere 2.0”

1/3 1/3 1/3
Spieler 2

Stein’ | Schere’ | Papier’

1/4 Stein | ¢ [ 1l 20
S[Ji&:iersl/lz Schere 1 ] 5 0 I 1
1/3 Papier | — | 1 ; 0

Asymmetric rewards. Will player 2 play more often “Papier”?

Answer: No. But player 1 plays more “Schere”!
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Game Theory — “Papier Stein Schere 2.0”

1/3 1/3 1/3
Spieler 2
Stein’ Schere’ Fﬂ]'_'lil;':Tr
Stei ¢ ] 2.0
1/4 Stem 0 [ 5
Spieler | am ] 0 —
5/12 Schere | 5 I
Resis —1 | 0
1/3 Papier : ] "

Solution Approach:

Use Linear Programming to make the competitor

indifferent in his/her strategies !
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LP Model — “Papier Stein Schere 2.0” ﬂ

Assume payoff r(i, j) for player 1 when playing i while the other plays j
Assume payoff r®(i, j) for player 2 when playing j while the other plays i

Variables: x" (i), x” () €[0,1] prob’s of players playing options, ij=1,..., N

Solution Approach: P1 makes P2 indifferent in all actions j=/,...,N, i.e.,

> X020 = > X0 r?362)= Y xV0)-r?3,3)

i=l,.,N i=l,.,N i=l,..,.N

and vice versa (P2 makes P1 indifferent in all actions i=/,...,N):

>, X201, = X202 )= X2 ()G, )

j=1,..N j=1,..,N j=1,.,N

Data-Driven Decision-Making in Enterprise Applications — Linear Programming I1



LP Model — “Papier Stein Schere 2.0

param N :=3; # number of options

param rl1{i in 1..N, j in 1..N} := if i=j then 0 else if (1+i) mod 3
= 3 mod 3 then Uniform(0,5) else Uniform(-5,0); # payoffs

param r2{i in 1..N, 3 in 1..N} := -rl1[i,]j]; # 2Pers-0sum-game
var x1 {i in 1..N} >= 0; # probability Pl playing option i
var x2 {j in 1..N} >= 0; # probability P2 playing option j
subject to NB1l: sum{i in 1..N} x1[i] = 1; # norm player 1
subject to NB2: sum{j in 1..N} x2[j] = 1; # norm player 2

subject to NB3{j in 2..N}: sum{i in 1..N} x1[i]*r2[i,j] # 1 makes 2
= sum{i in 1..N} x1[i]*r2[i,1];# indifferent

subject to NB4{i in 2..N}: sum{j in 1..N} x2[J]*rl[i,J] # 2 makes 1
= sum{j in 1..N} x2[j]*rl([1l,3];# indifferent

solve; display x1,x2; # solution
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Penalty Approaches & Continuous Relaxations
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Penalty Formulations for Contraints

Objective: ¥ 5{232%0,1} i:lZN U~ X Knapsack example
: ex, < :
Constraints: . ;N % sC (One) Hard Constraint
i=l,...,

Penalty-Objective: nxl oy Z U= X, —a- 1Z: S X (Soft Constraint)
..... i

Constraints: none

Results: Pareto-optimal combinations of “Utility”” and “Space”
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Continuous Relaxations of Integer Problems

(i) Optimal integer solution (blue): min F(X) st. M(X)< 4 = X (A) optimal
%e{0,1}Y

(i1)) Continuous relaxation: N -%if}N F(¥) st. M(Z)<4 = X (A)e{0,1}"?
(iii) Penalty formulation (red): min FX)+a-M(X) = X'(a)e{0,1}" and
’ ) Pareto—optimal !

=o— Continuous Solution  —e— Integer Solution
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When do Integer & Continuous Solutions Coincide? E

maximize d‘x1+b'x2 s.t. ... with X,X, eR vs. x,x, eN

X

e Answer: The corners of the polygon have to be “integers”!
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Solution Tuning
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Recall Example IV: Project Assignment Problem ﬂ
x,; €{0,1}  whether project i, i=1,...,N, is assigned to worker j, j=1,...,.N

LP: max Z Wi X

NxN
% 0L N, =L N

s.t. > ox, = for all j=1,...,.N (each worker gets 1 project)
i=l,..,.N
> x, = for all i=1,...,.N (each project is assigned)

e  Will the allocation always be fair?
e How “outliers” can be avoided?

e Approaches: (1) utility functions, (i1) max min, (iii)) multi-objective
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Approach (1): Fair Project Assignment (Non-linear) ﬂ

x,; €{0,1}  whether project i, i=1,...,N,  is assigned to worker j, j=1,...,N

NLP: max Z “( Z Wi,j'xi,j]

NxN
Y 0N =L

using, e.g., U(z)=In(z), u(z):= 2% or u(z)=—e""

s.t. > ox, = for all j=1,...,.N (each worker gets 1 project)
i=l,..,N
> x, = for all i=1,....N (each project is assigned)
j=1,.,N

o Idea: Avoiding low scores is better than including high scores

e Disadvantage (1): Non-linear solver is needed
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Approach (11): Fair Project Assignment (Linear!) ﬂ

x,; €10,1}  whether project i, i=1,...,N,  is assigned to worker j, j=1,...,.N

) max min W. . X, . . ,
NLP: 50N { J=m i,J 1,1} , 1.€., max poorest guy’s reward!

LP: = max oz g ZS Z Wij X forall j=1,...N

x, {03V zeR i=1,..,N

> ox, = for all j=I1,....N  (each worker gets 1 project)
i=1,.,N

> x, =1 for all i=1,....N (each project is assigned)
j=1,.,N

e Idea: Optimize the lowest willingness (cf. worst case criteria)

e Disadvantage (i1): Total willingness score can be low
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Approach (111): Fair Project Assignment (Linear!) ﬂ

x,; €10,1}  whether project i, i=1,...,N,  is assigned to worker j, j=1,...,.N

LP: o 1 2 1 Wij % T 2 With parameter & >0
i,j > > i=l,.,N, j=1,..,.N

s.t. zs -—121\/ Wiy X Nj
> x, = for all j=1,....N  (each worker gets 1 project)
i=l,..,N
> x, = for all i=1,...,.N (each project is assigned)
j=l,.,N

e Idea: Combine both objectives as a weighted sum

e Disadvantage (ii1): Suitable weighting factor & has to be determined
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Nonlinear Programming Models

e  Often non-linear expressions are needed within a model

e (—) Linear solvers cannot be used anymore

e (—) NL solvers often cannot guarantee optimality

e (+) So-called “mild” nonlinearities can be expressed linearly

e (+) This is very valuable as we can exploit LP solvers and their optimality

e The price of such transformations is acceptable:

More variables and constraints
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Linearization Tricks
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I Linearization of “and” in the Constraints ﬂ

STy min 2-x, +x
Objective: X el0.1) 1T

Constraints NL:

x =1 and x, =1 (e.g. needed as joint condition)

Objective: . glelg,l} 2-x +x,

Constraints LIN:

X +x,=2
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II Linearization of “or” in the Constraints ﬂ

i min 2-x,+x,+Xx
Objective: 5y t0.1} [0, ] 12t
Constraints NLa: X, =1 orx, =1 (e.g., needed as joint condition)

Constraints NLb: X, =1 orx, =0

Constraints NLc: X3 =0 orx; 23

active: min 2-X,+x,+Xx
Objective: Xy (0.1} el 0.M],22{0.1} 1 2 3
Constraints LINa: X, +X, 21

Constraints LINb: X% +(1—x,) 21

Constraints LINc: %, SM -z = x;23.z
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III Linearization of “max” in the Objective

Objective NL: 5 m)gleR { lrzllla)](\, i }
Constraints:
S . min z
Objective LIN: 51y €R,z€R
Constraints:
new z2X, for all i=1,...,N
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IV Linearization of “min” in the Objective

L , max { min x,
Objective NL: Xy €R {i:l ..... N ’}
Constraints:
.. ) max z
Objective LIN: %oty R, z€R
Constraints:
new ZS X, for all i=1,...,N
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V  Linearization of “min” in the Constraints ﬂ

i min 2-x +Xx
Objective: X el 0.M] 1 T A2

Constraints NL: 4 <min(x,,x,) <7

SPUTR min 2:x, +x
Objective: 0 Mlz,nelo 1 2
Constraint LIN: 4 < X; for all i=1,2
new M-z, 2x, =7 forall i=1,2
new z,+z, <1
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VI Linearization of “abs” in the Objective

Objective NL: min 2-x, +abs(3—-x,)

X%, €R

Constraints:

Objective LIN; 1IN 2-x+z

xl ,X2 ER,ZGR

Constraints:
new x2 - 3 S Z
new 3 - X2 S Z
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VII Linearization of “abs” in the Constraints ﬂ

min 2-x, +Xx,

X%, €R

Objective:

Constraints NL: abs(3—x,) < x,

Objective LIN:; 1IN 2-x +x,

x,xeR,zeR

Constraints: zZ5 X
new X2 - 3 S zZ
new 3 - x2 S Z
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VIII Linearization of “if-then-else”

Objective NL: xl,xzer{gl}gmmlxl +(if x, <5.5 then a else b)
Constraints:

Objective LIN: | ,xze{o,l,rzr,l..i.,rb},ze{o,u 2-x,+b-z+a-(1-2)
Constraints:

new X,—55<M-z

new 55-x,<M-(1-2)
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IX Linearization of a Product of Binary Variables ﬂ

i min 2-x, +x
Objective: X el0.1) 1 T A

Constraints NL:  including the term: X; "X,

i min  2-x,+X
Objective: X el0.1} 20,1} 1 T A2

Constraints LIN: include the term z instead, where

ZXX,, for i=1,2

z2x +x,—1
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X Linearization of a Binary x Continuous Variable ﬂ

min  2-x, +x,

Objective: x,€{0,1},x,€[0,M ]

Constraints NL:  including the term: X; "X,

min 2-x, +x,
x,€{0,1},x,€[0,M ],z€[0,M ]

Objective:
Constraints LIN: include the term z instead, where
ZSM-xl, for i=1,2
z< X,

zz2x,—(1-x)-M
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Next Week ﬂ

Homework: Get AMPL. Solve Examples I-V (see code online).

Review the Linearizations [-X!

Outlook:
e Introduction in AMPL

e [mplementations of Example I-V
e Play with parameters, randseed, and problem complexity

e Nonlinear Programming and Suitable Solvers
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Overview

Week Dates

1

O 0 9 O L B~ W

p—t e
NN = O

13

April 27/30
May 4/ (7)
May 11/14
May 18
May 25/28
June 4
June 8/11
June 15/18
June 22/25
June 29/2
July 6/9
July 13/16
July/Aug

Topic

Introduction + Linear Programming
Linear Programming I1

Exercise Implementations

Linear + Logistic Regression (Thu May 21 “Himmelfahrt™)
Dynamic Programming (Mon June 1 “Pfingstmontag”)
Dynamic Pricing Competition

Project Assignments

Robust + Nonlinear Optimization

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Finish Documentation (Deadline: Aug 31)
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