Data-Driven Decision-Making In Enterprise Applications

Linear Programming II

Rainer Schlosser

Hasso Plattner Institute (EPIC)

May the 4th (be with you), 2020

Decision-Making Using Linear Programming

Linear Programming II

- Questions regarding last week?
- Today: Motivation AMPL
 - Example V Equilibria in Mixed Strategies (Game Theory)
 - Penalty Approaches & Continuous Relaxations
 - Solution Tuning
 - Tricks to Circumvent Non-Linearities

Solving Motivation AMPL

Solving Knapsack Problems using LP via AMPL

• All you need: AMPL, a solver, 10 lines of code

- AMPL translates the problem to the solver, which solves the problem
- Simplex Alg. is fast in general but can have exponential complexity
- Can we solve our knapsack problem with 1000, 10K, or 100K items?
- What do you think is the solution time?

LP meets Game Theory

Game Theory – "Gefangenendilemma" (Pure NE)

What's the best strategy? Equilibrium in **pure** strategies: "Gestehen" (dominant)

Game Theory – "Papier Stein Schere" (Mixed NE)

	Spieler 2			
	020	Stein'	Schere'	Papier'
Spieler 1	Stein	0	-1 1	-1
	Schere	-1	0	-1 1
	Papier	-1 1	1 -1	0

No pure equilibrium. What is the best (mixed) strategy?

Game Theory – "Papier Stein Schere" (Mixed NE)

		1/3 eler 2	1/3
	Stein'	Schere'	Papier'
1/3 Stein	0	-1 1	-1
Spieler 1 1/3 Schere	-1	0	-1 1
1/3 Papier	-1 1	1 -1	0

No pure equilibrium. What is the best (mixed) strategy?

Symmetric Intuition: Equilibrium in mixed strategies, i.e., 1/3, 1/3

Game Theory – "Papier Stein Schere 2.0"

	Spieler 2				
	025	Stein'	Schere'	Papier'	
Spieler 1	Stein	0	-1 1	-1 2.0	
	Schere	-1	0	-1 1	
	Papier	-1 1	1 -1	0	

Asymmetric rewards. Will player 2 play more often "Papier"?

Answer?

Game Theory – "Papier Stein Schere 2.0"

		1/3 eler 2	1/3
000	Stein'	Schere'	Papier'
1/4 Stein	0	-1 1	-1 2.0
Spieler 1 5/12 Schere	-1	0	-1 1
1/3 Papier	-1 1	-1	0

Asymmetric rewards. Will player 2 play more often "Papier"?

Answer: No. But player 1 plays more "Schere"!

Game Theory – "Papier Stein Schere 2.0"

		1/3 eler 2	1/3
	The state of the s	Schere'	Papier'
1/4 Stein	0	-1 1	-1 2.0
Spieler 1 5/12 Schere	1 -1	0	-1 1
1/3 Papier	-1 1	-1	0

Solution Approach: Use Linear Programming to make the competitor *indifferent* in his/her strategies!

LP Model – "Papier Stein Schere 2.0"

Assume payoff $r^{(1)}(i,j)$ for player 1 when playing i while the other plays j Assume payoff $r^{(2)}(i,j)$ for player 2 when playing j while the other plays i

Variables: $x^{(1)}(i), x^{(2)}(j) \in [0,1]$ prob's of players playing options, i,j=1,...,N

Solution Approach: P1 makes P2 indifferent in all actions j=1,...,N, i.e.,

$$\sum_{i=1,\dots,N} x^{(1)}(i) \cdot r^{(2)}(i,1) = \sum_{i=1,\dots,N} x^{(1)}(i) \cdot r^{(2)}(i,2) = \sum_{i=1,\dots,N} x^{(1)}(i) \cdot r^{(2)}(i,3)$$

and vice versa (P2 makes P1 indifferent in all actions i=1,...,N):

$$\sum_{j=1,\dots,N} x^{(2)}(i) \cdot r^{(1)}(1,j) = \sum_{j=1,\dots,N} x^{(2)}(i) \cdot r^{(1)}(2,j) = \sum_{j=1,\dots,N} x^{(2)}(j) \cdot r^{(1)}(3,j)$$

LP Model – "Papier Stein Schere 2.0"

```
# number of options
param N := 3;
param r1{i in 1..N, j in 1..N} := if i=j then 0 else if (1+i) mod 3
       = j \mod 3 then Uniform(0,5) else Uniform(-5,0); # payoffs
param r2\{i \text{ in } 1..N, j \text{ in } 1..N\} := -r1[i,j];
                                                          # 2Pers-0sum-game
var x1 {i in 1..N} >= 0;
                                         # probability P1 playing option i
var x2 {j in 1..N} >= 0;
                                          # probability P2 playing option i
subject to NB1:
                              sum\{i in 1..N\} x1[i] = 1; # norm player 1
subject to NB2:
                              sum\{j in 1..N\} x2[j] = 1; # norm player 2
subject to NB3{j in 2..N}: sum{i in 1..N} x1[i]*r2[i,j] # 1 makes 2
                            = sum\{i in 1..N\} x1[i]*r2[i,1]; # indifferent
subject to NB4{i in 2..N}: sum{j in 1..N} \times 2[j] \times r1[i,j] \# 2 makes 1
                            = sum\{j in 1..N\} x2[j]*r1[1,j]; # indifferent
solve; display x1,x2;
                                                             # solution
```

Data-Driven Decision-Making in Enterprise Applications – Linear Programming II

Penalty Approaches & Continuous Relaxations

Penalty Formulations for Contraints

Objective:
$$\max_{x_1, \dots, x_N \in \{0,1\}} \sum_{i=1,\dots,N} u_i \cdot x_i$$
 Knapsack example

Constraints:
$$\sum_{i=1}^{N} s_i \cdot x_i \le C$$
 (One) Hard Constraint

Penalty-Objective:
$$\max_{x_1,\dots,x_N\in\{0,1\}} \sum_{i=1,\dots,N} u_i \cdot x_i - \alpha \cdot \sum_{i=1,\dots,N} s_i \cdot x_i \quad \text{(Soft Constraint)}$$

Constraints: none

Results: Pareto-optimal combinations of "Utility" and "Space"

Continuous Relaxations of Integer Problems

- (i) Optimal integer solution (blue): $\min_{\vec{x} \in \{0,1\}^N} F(\vec{x})$ s.t. $M(\vec{x}) \le A \implies \vec{x}^*(A)$ optimal
- (ii) Continuous relaxation: $\min_{\vec{x} \in [0,1]^N} F(\vec{x}) \text{ s.t. } M(\vec{x}) \leq A \implies \vec{x}^*(A) \in \{0,1\}^N ?$
- (iii) Penalty formulation (red): $\min_{\vec{x} \in [0,1]^N} F(\vec{x}) + \alpha \cdot M(\vec{x}) \implies \vec{x}^*(\alpha) \in \{0,1\}^N \text{ and }$ $\uparrow \qquad Pareto-optimal!$

When do Integer & Continuous Solutions Coincide?

maximize $a \cdot x_1 + b \cdot x_2$ s.t. ... with $x_1, x_2 \in \mathbb{R}$ vs. $x_1, x_2 \in \mathbb{N}$

• Answer: The corners of the polygon have to be "integers"!

Solution Tuning

Recall Example IV: Project Assignment Problem

$$x_{i,j} \in \{0,1\}$$
 whether project $i, i=1,...,N$, is assigned to worker $j, j=1,...,N$

LP:
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}} \sum_{i=1,...,N, j=1,...,N} w_{i,j} \cdot x_{i,j}$$

s.t.
$$\sum_{i=1,...,N} x_{i,j} = 1$$
 for all $j=1,...,N$ (each worker gets 1 project)
$$\sum_{j=1,...,N} x_{i,j} = 1$$
 for all $i=1,...,N$ (each project is assigned)

- Will the allocation always be fair?
- How "outliers" can be avoided?
- Approaches: (i) utility functions, (ii) max min, (iii) multi-objective

Approach (i): Fair Project Assignment (Non-linear)

$$x_{i,j} \in \{0,1\}$$
 whether project $i, i=1,...,N$, is assigned to worker $j, j=1,...,N$

NLP:
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}} \sum_{j=1,\dots,N} u \left(\sum_{i=1,\dots,N} w_{i,j} \cdot x_{i,j} \right)$$
using, e.g., $u(z) \coloneqq \ln(z)$, $u(z) \coloneqq z^{0.6}$, or $u(z) \coloneqq -e^{-0.1 \cdot z}$
s.t.
$$\sum_{i=1,\dots,N} x_{i,j} = 1$$
 for all $j=1,\dots,N$ (each worker gets 1 project)
$$\sum_{i=1,\dots,N} x_{i,j} = 1$$
 for all $i=1,\dots,N$ (each project is assigned)

- Idea: Avoiding low scores is better than including high scores
- Disadvantage (i): Non-linear solver is needed

Approach (ii): Fair Project Assignment (Linear!)

$$x_{i,j} \in \{0,1\} \quad \text{whether project } i, i=1,...,N, \quad \text{is assigned to worker } j, j=1,...,N$$

$$\text{NLP:} \quad \max_{x_{i,j} \in \{0,1\}^{N \times N}} \left\{ \min_{j=1,...,N} \sum_{i=1,...,N} w_{i,j} \cdot x_{i,j} \right\} \quad \text{, i.e., max poorest guy's reward!}$$

$$\text{LP:} \quad \cong \max_{x_{i,j} \in \{0,1\}^{N \times N}, z \in \mathbb{R}} z \quad \text{s.t.} \quad z \leq \sum_{i=1,...,N} w_{i,j} \cdot x_{i,j} \quad \text{for all } j=1,...,N$$

$$\sum_{i=1,...,N} x_{i,j} = 1 \qquad \text{for all } j=1,...,N \quad \text{(each worker gets 1 project)}$$

$$\sum_{i=1,...,N} x_{i,j} = 1 \qquad \text{for all } i=1,...,N \quad \text{(each project is assigned)}$$

- Idea: Optimize the lowest willingness (cf. worst case criteria)
- Disadvantage (ii): Total willingness score can be low

Approach (iii): Fair Project Assignment (Linear!)

$$x_{i,j} \in \{0,1\}$$
 whether project $i, i=1,...,N$, is assigned to worker $j, j=1,...,N$

LP:
$$\max_{x_{i,j} \in \{0,1\}^{N \times N}, z \in \mathbb{R}} \sum_{i=1,\dots,N, j=1,\dots,N} w_{i,j} \cdot x_{i,j} + \alpha \cdot z, \text{ with parameter } \alpha \ge 0$$

s.t.
$$z \leq \sum_{i=1,\dots,N} w_{i,j} \cdot x_{i,j} \quad \forall j$$
$$\sum_{i=1,\dots,N} x_{i,j} = 1 \qquad \text{for all } j=1,\dots,N \quad \text{(each worker gets 1 project)}$$
$$\sum_{j=1,\dots,N} x_{i,j} = 1 \qquad \text{for all } i=1,\dots,N \quad \text{(each project is assigned)}$$

- Idea: Combine both objectives as a weighted sum
- Disadvantage (iii): Suitable weighting factor α has to be determined

Nonlinear Programming Models

- Often *non-linear expressions* are needed within a model
- (-) Linear solvers cannot be used anymore
- (–) NL solvers often cannot guarantee optimality
- (+) So-called "mild" nonlinearities can be expressed linearly
- (+) This is very valuable as we can exploit LP solvers and their optimality
- The price of such transformations is acceptable:

More variables and constraints

Linearization Tricks

I Linearization of "and" in the Constraints

Objective:
$$\min_{x_1, x_2 \in \{0,1\}} 2 \cdot x_1 + x_2$$

Constraints NL: ...

$$x_1 = 1$$
 and $x_2 = 1$ (e.g. needed as joint condition)

Objective:
$$\min_{x_1, x_2 \in \{0,1\}} 2 \cdot x_1 + x_2$$

Constraints LIN: ...

$$x_1 + x_2 = 2$$

НРІ

II Linearization of "or" in the Constraints

Objective:
$$\min_{x_1, x_2 \in \{0,1\}, x_3 \in [0,M]} 2 \cdot x_1 + x_2 + x_3$$

Constraints NLa:
$$x_1 = 1$$
 or $x_2 = 1$ (e.g., needed as joint condition)

Constraints NLb:
$$x_1 = 1$$
 or $x_2 = 0$

Constraints NLc:
$$x_3 = 0$$
 or $x_3 \ge 3$

Objective:
$$\min_{x_1, x_2 \in \{0,1\}, x_3 \in [0,M], z \in \{0,1\}} 2 \cdot x_1 + x_2 + x_3$$

Constraints LINa:
$$x_1 + x_2 \ge 1$$

Constraints LINb:
$$x_1 + (1 - x_2) \ge 1$$

Constraints LINc:
$$x_3 \le M \cdot z$$
, $x_3 \ge 3 \cdot z$

III Linearization of "max" in the Objective

Objective NL:
$$\min_{x_1,...,x_N \in \mathbb{R}} \left\{ \max_{i=1,...,N} x_i \right\}$$

Constraints: ...

Objective LIN:
$$\min_{x_1,...,x_N \in \mathbb{R}, z \in \mathbb{R}} z^{z}$$

Constraints: ...

new
$$z \ge x_i$$
 for all $i=1,...,N$

IV Linearization of "min" in the Objective

Objective NL:
$$\max_{x_1,...,x_N \in \mathbb{R}} \left\{ \min_{i=1,...,N} x_i \right\}$$

Constraints: ...

Objective LIN:
$$\max_{x_1,...,x_N \in \mathbb{R}, z \in \mathbb{R}} Z$$

Constraints: ...

new
$$z \le x_i$$
 for all $i=1,...,N$

V Linearization of "min" in the Constraints

Objective:
$$\min_{x_1, x_2 \in [0, M]} 2 \cdot x_1 + x_2$$

Constraints NL:
$$4 \le \min(x_1, x_2) \le 7$$

Objective:
$$\min_{x_1, x_2 \in [0, M], z_1, z_2 \in \{0, 1\}} 2 \cdot x_1 + x_2$$

Constraint LIN:
$$4 \le x_i$$
 for all $i=1,2$

new
$$M \cdot z_i \ge x_i - 7$$
 for all $i = 1, 2$

new
$$z_1 + z_2 \le 1$$

VI Linearization of "abs" in the Objective

Objective NL:
$$\min_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + abs(3 - x_2)$$

Constraints: ...

Objective LIN:
$$\min_{x_1, x_2 \in \mathbb{R}, z \in \mathbb{R}} 2 \cdot x_1 + z$$

Constraints: ...

new
$$x_2 - 3 \le z$$

new
$$3 - x_2 \le z$$

VII Linearization of "abs" in the Constraints

Objective:
$$\min_{x_1, x_2 \in \mathbb{R}} 2 \cdot x_1 + x_2$$

Constraints NL:
$$abs(3-x_2) \le x_1$$

Objective LIN:
$$\min_{x_1, x_2 \in \mathbb{R}, z \in \mathbb{R}} 2 \cdot x_1 + x_2$$

Constraints:
$$z \le x_1$$

new
$$x_2 - 3 \le z$$

new
$$3 - x_2 \le z$$

VIII Linearization of "if-then-else"

Objective NL:
$$\min_{x_1, x_2 \in \{0, 1, 2, ..., M\}} 2 \cdot x_1 + (if \ x_2 \le 5.5 \ then \ a \ else \ b)$$

Constraints: ...

Objective LIN:
$$\min_{x_1, x_2 \in \{0,1,2,\dots,M\}, z \in \{0,1\}} 2 \cdot x_1 + b \cdot z + a \cdot (1-z)$$

Constraints: ...

new
$$x_2 - 5.5 \le M \cdot z$$

$$1.5 - x_2 \le M \cdot (1 - z)$$

IX Linearization of a Product of Binary Variables

Objective:
$$\min_{x_1, x_2 \in \{0,1\}} 2 \cdot x_1 + x_2$$

Constraints NL: including the term: $x_1 \cdot x_2$

Objective:
$$\min_{x_1, x_2 \in \{0,1\}, z \in \{0,1\}} 2 \cdot x_1 + x_2$$

Constraints LIN: include the term z instead, where

$$z \leq x_i$$
, for $i=1,2$

$$z \ge x_1 + x_2 - 1$$

X Linearization of a Binary x Continuous Variable

Objective:
$$\min_{x_1 \in \{0,1\}, x_2 \in [0,M]} 2 \cdot x_1 + x_2$$

Constraints NL: including the term: $x_1 \cdot x_2$

Objective:
$$\min_{x_1 \in \{0,1\}, x_2 \in [0,M], z \in [0,M]} 2 \cdot x_1 + x_2$$

Constraints LIN: include the term z instead, where

$$z \leq M \cdot x_1$$
, for $i=1,2$

$$z \le x_2$$

$$z \ge x_2 - (1 - x_1) \cdot M$$

Next Week

Homework: Get AMPL. Solve Examples I-V (see code online).

Review the Linearizations I-X!

Outlook:

- Introduction in AMPL
- Implementations of Example I-V
- Play with parameters, randseed, and problem complexity
- Nonlinear Programming and Suitable Solvers

Week	Dates	Topic	
1	April 27/30	Introduction + Linear Programming	
2	May 4/ (7)	Linear Programming II	
3	May 11 /14	Exercise Implementations	
4	May 18	Linear + Logistic Regression	(Thu May 21 "Himmelfahrt")
5	May 25/28	Dynamic Programming	(Mon June 1 "Pfingstmontag"
6	June 4	Dynamic Pricing Competition	
7	June 8/11	Project Assignments	
8	June 15/18	Robust + Nonlinear Optimization	
9	June 22/25	Work on Projects: Input/Support	
10	June 29/2	Work on Projects: Input/Support	
11	July 6/9	Work on Projects: Input/Support	
12	July 13/16	Work on Projects: Input/Support	
13	July/Aug	Finish Documentation (Deadline: Au	g 31)

Data-Driven Decision-Making in Enterprise Applications – Linear Programming II