Dynamic Programming and Reinforcement Learning

Approximate Dynamic Programming (Week 3a)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

May 2, 2022

Outline

1

- Questions?
- Today: Approximate Dynamic Programming

Problem Examples

Forward Dynamic Programming

Simulation-based Approaches

Recap: Last Week

- Markov Policies in Infinite Horizon MDPs
- Discounting for Future Rewards
- Bellman Equation & Recursive Problem Decomposition
- Value Iteration
- Policy Iteration

HPI

Solving MDP Problems

- Continuous Time Problems & Control Theory (not in focus)
- Discrete Time MDP Problems with **Recursive Solutions** (last week)
	- *Time-dependent* Framework, Backward induction (finite time)
	- *Time-independent* Framework, Value & Policy Iteration
	- Optimal numerical solutions via Bellman Equation (backwards)
- 0 Discrete Time MDP Problems with **Approximate Solutions** (today)
	- Relaxation Concepts to Attack Larger Problem Sizes
	- **Simulation-based Heuristics** (today: forward dynamic programming)
	- Basis for Reinforcement Learning

MDP Problems with Different Complexities

Can We Solve All of Them?

Example Objective **State Action Events** Rewards**Airline Tickets** Hotel/Rental/Rail Fashion/Seasonal Perishable Products **Inventory Mgmt.**Durable Products E-Commerce Resource Allocations Tetris/Chess/Go Self-driving ...

HPI

Problem Sizes and Curse of Dimensionality

- State space: Compare $|S| = 10, 100, 1000, 10K, \ldots$
- \bullet Action space: Compare $|A| = 10, 100, 1000, 10K, \ldots$
- Event space: Compare $|I| = 10, 100, 1000, 10K, \ldots$
- Time/Iterations Compare $T = 10,100, 1000, 10K, \ldots$ (cf. $\gamma \rightarrow 1$)
- Backward Induction, Policy & Value Iteration **become intractable**
- 0 **Heuristic Options**: Clustering Approaches (not in focus) Simulation & Focus on relevant states Approximation of Value Functions/Policies

Curse of Dimensionality (Optimal DP Solution)

Example: Sell *J* types of products with *N* items each over *T* periods

Table 5. Optimal expected profits $V_0^*(\vec{N})$ and computation times of (4) - (5) for different $T = 10, 20, 50$ and $N = 5, 10, 20$ with $J = 3, \delta = 1, c = 0, L = 0.05, S := \{0, 1, \ldots, N\}, I := \{0, 1, \ldots, 4\}, \text{ and } A := \{4, 8, \ldots, 40\};$ Example 3.1

.					
		Ν		time	
	5	5	326.15	260s	
	10	5	498.61	641s	
	10	$10\,$	671.57	4324s	
	20	$10\,$	1044.49	8332s	
	20	20	1331.67	53595 _s	
	50	10	1 1 38.12	26 110s	
	50	20			
	100	20			

Schlosser, R. (2021). Scalable Relaxation Techniques to Solve Stochastic Dynamic Multi-Product PricingProblems with Substitution Effects, *Journal of Revenue and Pricing Management* 20 (1), 54-65.

Approximate Dynamic Programming (ADP)

$$
\pi(s) := \arg\max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot \left(r(i, a, s) + \gamma \cdot \left[V_{(t+1)} \left(\Gamma(i, a, s) \right) \right] \right) \right\}
$$

- (1) Use explicit function approximations for $V_{(t+1)}(s')$ (offline)
	- • **Aggregation**, enforced decomposition (use \tilde{V} of simpler problem)
	- Parametric approximation of $\tilde{V}(s', \theta)$ $\sqrt{(s', \theta)}$ (NNs, QL, AC, LP, etc.)
- (2) Use **implicit value approximations** for $V_{(t+1)}(s'|a,s)$ (online)
	- **Forward DP** for *^a*, *^s* (via simulation, use full information)
	- Rollout of a heuristic base policy for *a*, *s* (via simulation, cp. Pol. It.)
	- Open-loop feedback control (cf. e.g., det. problem version)

(1) Example of Aggregation (Explicit Value Appr.)

Example: Sell *J* types of products with *N* items each over *T* periods

Table 9. Expect profits, cf. (6), and runtimes of a combined heuristic compared to the optimal solution for different $T = 10, 20, 50, 100$ and $N = 5, 10, 20,$ cf. Table 5, $S_2 := \{0, 1, 5, N\}, I := \{0\}, \{1, 2\}, \{3, 4\},$ $A := \{10, 20, 30, 40\};$ Example 3.1. \triangledown \triangledown

		$\,N$	$V_0(N)$	V_0/V_0^*	time	$\%time$	
	5	5	308.90	94.7%	0.45s	0.17%	relaxed!
relaxed!	10	5	468.28	93.9%	0.78s	0.12%	
	10	10	637.32	94.9%	2.73s	0.06%	
	20	10	974.42	93.3%	5.64s	0.07%	
	20	20	1 255.51	94.3%	$15.5\mathrm{s}$	0.03%	
	50	10	1 1 0 2.27	96.9%	14.3s	0.05%	
	50	20	2005.91		34.0s		
	100	20	2 1 3 1 . 1 9		62.4s		

Schlosser, R. (2021). Scalable Relaxation Techniques to Solve Stochastic Dynamic Multi-Product PricingProblems with Substitution Effects, *Journal of Revenue and Pricing Management* 20 (1), 54-65.

(2) Example of Simulation-Based Value Appr.

- In (1) we approximate the value function **for all** states
- But do we really need all states?

•
$$
V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}
$$
 (Bellman equ.)

0 **Forward Dynamic Programming**: Use a simulation-based approach:

(0) Start with $V(s) := 0$, $\forall s \in S$ and perform $k=0,...,K$ iterations with given s_0 :

•
$$
V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}
$$
 (Bellman equ.)

- 0 **Forward Dynamic Programming**: Use a simulation-based approach:
- (0) Start with $V(s) := 0$, $\forall s \in S$ and perform $k=0,...,K$ iterations with given s_0 :
- (1) Let $a_k(s_k) = \pi(s_k)$, i.e., apply the current action/policy based on current $V(s)$, where $\pi(s)$:= $\arg \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V(\Gamma(i, a, s))) \right\},$ $\in A$ $\qquad \qquad$ $i \in$ = arg max $\left\{ \sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V(\Gamma(i, a, s))) \right\}$ $\left\{\sum_{i\in I} P(i,a,s) \cdot \left(r(i,a,s) + \gamma \cdot V\left(\Gamma(i,a,s)\right)\right)\right\}, \ \forall s \in S$

•
$$
V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}
$$
 (Bellman equ.)

- 0 **Forward Dynamic Programming**: Use a simulation-based approach:
- (0) Start with $V(s) := 0$, $\forall s \in S$ and perform $k=0,...,K$ iterations with given s_0 :
- (1) Let $a_k(s_k) = \pi(s_k)$, i.e., apply the current action/policy based on current $V(s)$, where $\pi(s)$:= $\arg \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V(\Gamma(i, a, s))) \right\},$ $\in A$ $\qquad \qquad$ $i \in$ = arg max $\left\{ \sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V(\Gamma(i, a, s))) \right\}$ $\left\{\sum_{i\in I} P(i,a,s) \cdot \left(r(i,a,s) + \gamma \cdot V\left(\Gamma(i,a,s)\right)\right)\right\}, \ \forall s \in S$

(2) Improve
$$
V(s_k) \leftarrow \sum_{i \in I} P(i, a_k(s_k), s_k) \cdot (r(i, a_k(s_k), s_k) + \gamma \cdot V(\Gamma(i, a_k(s_k), s_k)))
$$

•
$$
V^*(s) = \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V^* (\Gamma(i, a, s))) \right\}
$$
 (Bellman equ.)

- 0 **Forward Dynamic Programming**: Use a simulation-based approach:
- (0) Start with $V(s) := 0$, $\forall s \in S$ and perform $k=0,...,K$ iterations with given s_0 :
- (1) Let $a_k(s_k) = \pi(s_k)$, i.e., apply the current action/policy based on current $V(s)$, where $\pi(s)$:= $\arg \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V(\Gamma(i, a, s))) \right\},$ $\in A$ $\qquad \qquad$ $i \in$ = arg max $\left\{ \sum P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V(\Gamma(i, a, s))) \right\}$ $\left\{\sum_{i\in I} P(i,a,s) \cdot \left(r(i,a,s) + \gamma \cdot V\left(\Gamma(i,a,s)\right)\right)\right\}, \ \forall s \in S$

(2) Improve
$$
V(s_k) \leftarrow \sum_{i \in I} P(i, a_k(s_k), s_k) \cdot (r(i, a_k(s_k), s_k) + \gamma \cdot V(\Gamma(i, a_k(s_k), s_k)))
$$

(3) Simulate next state $s_{k+1} \leftarrow \Gamma(i, a_k(s_k), s_k)$ according to $P(i, a_k(s_k), s_k)$, $i \in I$

Discussion of Forward Dynamic Programming

- Visit/simulate relevant states (starting from an initial state s_0) (not in a synchronous manner as in DP)
- Exploit full knowledge
	- Update the value function via expected rewards and state transitions
- Simulate future states based on event/state transition probabilities *P*
- Apply a pure "greedy" policy based on current values *V*(*s*)
- Subsequently update *V* using the Bellman equation principle
- 0 Problem: We may miss optimal paths (cf. loops)! **What can we do?**

Forward Dynamic Programming (ε -greedy):

(0) Start with $V(s) := 0$, $\forall s \in S$ and perform $k=0,...,K$ iterations with given s_0 :

(1) Let
$$
a_k(s_k) = \begin{cases} a \in A & \text{with prob. } \varepsilon \text{ play a random action} \\ \pi(s_k) & \text{with prob. } 1 - \varepsilon \end{cases}
$$
, $\varepsilon \in (0,1)$,

i.e., apply a mixed *greedy/exploration* action/policy based on
$$
V(s)
$$
,
where $\pi(s) := \arg \max_{a \in A} \left\{ \sum_{i \in I} P(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V(\Gamma(i, a, s))) \right\}, \ \forall s \in S$

(2) Improve
$$
V(s_k) \leftarrow \sum_{i \in I} P(i, a_k(s_k), s_k) \cdot (r(i, a_k(s_k), s_k) + \gamma \cdot V(\Gamma(i, a_k(s_k), s_k)))
$$
 (check!)

(3) Simulate next state $s_{k+1} \leftarrow \Gamma(i, a_k(s_k), s_k)$ according to $P(i, a_k(s_k), s_k)$, $i \in I$

Discussion Forward Dynamic Programming

- Visit/simulate relevant states (starting from an initial state s_0) (not in a synchronous manner as in DP)
- Exploit full knowledge (vs. full knowledge is needed)
	- Improve the value function via expected rewards and state transitions
- Simulate future states based on event/state transition probabilities *P*
- Apply a partly "*greedy*" policy based on current values *V*(*s*)
- Subsequently improve *V* using the Bellman equation principle
- The approach converges correctly (Asymptotical optimal)
- 0 Allows "good" heuristic solutions for larger problems in a feasible time

ADP for the Inventory Management Example

HPI

Example Infinite Horizon MDP (Inventory Management)

- Framework: $t = 0, 1, 2, ..., \infty$
-
-
-
- - $:= p \cdot \min(i, s) c \cdot a$ ${a>0}$ 1 $-h \cdot s - 1_{\{a>0\}} \cdot f$ >

Discrete time periods

State: $s \in S$ Number of items left

Actions: $a \in A$ Number of ordered items (replenish)

Events: $i \in I$, $P(i, a, s)$ Demand *i* (e.g., 0,1,2,3 with prob. 1/4 each)

Rewards: $r = r(i, a, s)$ Revenue – Order Cost – Holding Cost *p*, variable order cost *c*, $\langle v_0, v_1 \rangle$ holding *h*, and fixed order costs *f*

- New State: $s \rightarrow s' = \Gamma(i, a, s)$ Old Sold + Replenish (end of period)
- Initial State: $s_0 \in S$

Initial items in $t=0$

ADP Results for the Inventory Management Example

- $\bullet\quad \varepsilon=$ exploration probability
- $K \in \{0, ..., 50,000\}$ episodes/iterations (all < 10 sec)
- 0 $\pi_{ADP}^{(K)} \approx \pi^*$ $\approx \pi$ obtain good / near-optimal solutions based on *V*
- 0 $V_{ADP}^{(K)} \approx V^*$

especially for (relevant) states with few inventory

runs K	500	000°	2 0 0 0	10 000	50 000
$V_{ADP}^{(K)}(10)/V^*(10)$	0.63		0.93	0.97	.00

0 • At home: play with K and ε as well as other parameters and study the quality of the ADP solution against the optimal one

ADP for Finite Horizon MDP Problems

Forward Dynamic Programming (ε -greedy):

(0) Start with $V_t(s) := 0$, $\forall s \in S$. Use $k=0,...,K$ iterations over $t=0,...,T-1$ from S_0 :

(1) Let
$$
a_t^{(k)}(s_t^{(k)}) = \begin{cases} a \in A & \text{with prob. } \varepsilon_k \text{ play a random action} \\ \pi_t(s_t^{(k)}) & \text{with prob. } 1 - \varepsilon_k \end{cases}
$$
, $\varepsilon_k \in (0,1)$

i.e., apply a mixed *exploration-exploitation* policy based on $V_t(s)$, where $\pi_t(s)$:= $\arg \max_{a \in A} \left\{ \sum_{i \in I} P_t(i, a, s) \cdot (r_t(i, a, s) + \gamma \cdot V_{t+1}(\Gamma_t(i, a, s))) \right\},$ ∈ $\begin{array}{ccc} \overline{a} & & \overline{b} & \\ \overline{a} & & \overline{b} & \\ \end{array}$ = aro max $\left\{ \sum p(i, a, s) \cdot (r(i, a, s) + \gamma \cdot V \cdot (\Gamma(i, a, s))) \right\}$ $\left\{\sum_{i\in I} P_t(i,a,s)\cdot (r_t(i,a,s)+\gamma\cdot V_{t+1}(\Gamma_t(i,a,s)))\right\}$ $\sum_{i\in I} P_t(i, a, s) \cdot (r_t(i, a, s) + \gamma \cdot V_{t+1}(\Gamma_t(i, a, s)))$, $\forall s \in S$

(2) Improve
$$
V_t(s_t^{(k)}) \leftarrow \sum_{i \in I} P_t(i, a_t^{(k)}(s_t^{(k)}), s_t^{(k)}) \cdot \left(r_t(i, a_t^{(k)}(s_t^{(k)}), s_t^{(k)}) + \gamma \cdot V_{t+1}\left(\Gamma_t(i, a_t^{(k)}(s_t^{(k)}), s_t^{(k)})\right)\right)
$$

(3) Simulate state $s_{t+1}^{(k)} \leftarrow \Gamma_t(i, a_t^{(k)}(s_t^{(k)}), s_t^{(k)})$ according to $P_t(i, a_t^{(k)}(s_t^{(k)}), s_t^{(k)})$, $i \in I$

Example MDP (Selling Airline Tickets)

ADP for the Airline Example

- $\varepsilon_k = 0.1 + 0.4 \cdot (1 k / K)$ $\varepsilon_k = 0.1 + 0.4 \cdot (1 - k/K)$ exploration probability (for run *k*)
- *K* $\in \{0, ..., 10\ 000\}$ different numbers of episodes (*T* iterations)
- 0 $\pi_{ADP}^{(K)} \approx \pi^*$ $\approx \pi$ obtain good / (near-)optimal solutions (for s_0)
- 0 $V_{ADP}^{(K)} \approx V^*$ especially for (relevant/achievable) states
- 0 • At home: play with K and ε_k as well as other model parameters to study the quality of the ADP solution against the optimal one

ADP Results for the Airline Example (*optimal*)

ADP Results for the Airline Example (*K=*100, 3 sec)

ADP Results for the Airline Example (*K=*100, 3 sec)

ADP Results for the Airline Example (*K=*10000, 200 sec)

28

HPI

ADP Results for the Airline Example (*K=*10000, 200 sec)

HPI

Summary (Solving Discrete Time MDPs via ADP)

ADP (Forward Dynamic Programming)

- $(+)$ provides near-optimal solutions for $(in)/finite$ horizon MDPs
- (+) guaranteed convergence
- (+) numerically simple
- (+) general applicable
- (+) quickly obtain good heuristics
- (–) updates only for single "visited" states (cf. large state spaces)
- (–) results are stochastic (due to simulated next states)
- (–) hyperparamer tuning (e.g., exploration rate)
- $(-)$ full information required (cf. events & transitions)

Next: QL, i.e., similar solution approaches requiring less information

Could You Solve Different Test Problems via ADP?

- Any Questions?
- Finite Horizon (*use ADP*)
	- Eating cake (deterministic utility)
	- Selling airline tickets (stochastic demand)
- Infinite Horizon (*use ADP*)
	- Car replacement problem (deterministic costs)
	- Inventory management (stochastic demand)

Overview

