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Outline 
 

 Questions? 

 Today: Approximate Dynamic Programming 

  Problem Examples 

  Forward Dynamic Programming 

  Simulation-based Approaches 
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Recap: Last Week 
 

 Markov Policies in Infinite Horizon MDPs 

 Discounting for Future Rewards 

 Bellman Equation & Recursive Problem Decomposition 

 Value Iteration 

 Policy Iteration 
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Solving MDP Problems 
 

 Continuous Time Problems & Control Theory (not in focus) 

 Discrete Time MDP Problems with Recursive Solutions (last week) 

 – Time-dependent Framework, Backward induction (finite time) 

 – Time-independent Framework, Value & Policy Iteration 

 – Optimal numerical solutions via Bellman Equation (backwards) 

 

 Discrete Time MDP Problems with Approximate Solutions (today) 

 – Relaxation Concepts to Attack Larger Problem Sizes 

 – Simulation-based Heuristics (today: forward dynamic programming) 

 – Basis for Reinforcement Learning  
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MDP Problems with Different Complexities 
 

Example Objective State Action Events Rewards 

Airline Tickets 

Hotel/Rental/Rail 

Apparel/Seasonal/Events 

Perishable Products 

Inventory Mgmt. 

Durable Products 

E-Commerce 

Resource Allocations 

Tetris/Chess/Go 

Self-driving 
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Can We Solve All of Them? 
 

Example Objective State Action Events Rewards 

Airline Tickets 

Hotel/Rental/Rail 

Fashion/Seasonal 

Perishable Products 

Inventory Mgmt. 

Durable Products 

E-Commerce 

Resource Allocations 

Tetris/Chess/Go 

Self-driving . . . 
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Problem Sizes and Curse of Dimensionality 
 

 State space: Compare |S| = 10, 100, 1000, 10K, . . .  

 Action space: Compare |A| = 10, 100, 1000, 10K, . . .  

 Event space: Compare |I| = 10, 100, 1000, 10K, . . .  

 Time/Iterations Compare T = 10,100, 1000, 10K, . . .   (cf. 1  ) 

 Backward Induction, Policy & Value Iteration become intractable 

 Heuristic Options: Clustering Approaches (not in focus) 

 Simulation & Focus on relevant states 

 Approximation of Value Functions/Policies 
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Curse of Dimensionality (Optimal DP Solution) 
 

Example:  Sell J types of products with N items each over T periods 
 

 
 

Schlosser, R. (2021). Scalable Relaxation Techniques to Solve Stochastic Dynamic Multi-Product Pricing 

Problems with Substitution Effects, Journal of Revenue and Pricing Management 20 (1), 54-65. 
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Approximate Dynamic Programming (ADP) 
 

   ( 1)( ) : arg max ( , , ) ( , , ) ( , , )t
a A i I

s P i a s r i a s V i a s  
 

 
     

 
  

(1) Use explicit function approximations for ( 1) ( )tV s   (offline) 

  Aggregation, enforced decomposition (use Vɶ  of simpler problem) 

  Parametric approximation of ( , )V s ɶ  (NNs, QL, AC, LP, etc.) 

(2) Use implicit value approximations for  ( 1) | ,tV s a s   (online) 

  Forward DP for a, s (via simulation, use full information) 

  Rollout of a heuristic base policy for a, s (via simulation, cp. Pol. It.) 

  Open-loop feedback control (cf. e.g., det. problem version) 
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(1) Example of Aggregation (Explicit Value Appr.) 
 

Example:  Sell J types of products with N items each over T periods 
 

 
 

Schlosser, R. (2021). Scalable Relaxation Techniques to Solve Stochastic Dynamic Multi-Product Pricing 

Problems with Substitution Effects, Journal of Revenue and Pricing Management 20 (1), 54-65. 

!relaxed
!relaxed
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(2) Example of Simulation-Based Value Appr. 
 

 In (1) we approximate the value function for all states 

 But do we really need all states? 

 

 Airline Example Inventory Example 
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?states relevant

?states relevant

?states relevant

?states relevant
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Forward Dynamic Programming (Infinite Horizon) 
 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
    (Bellman equ.) 

 

 Forward Dynamic Programming:  Use a simulation-based approach: 
 

(0) Start with ( ) : 0V s  , s S   and perform k=0,...,K iterations with given 0s : 
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Forward Dynamic Programming (Infinite Horizon) 
 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
    (Bellman equ.) 

 

 Forward Dynamic Programming:  Use a simulation-based approach: 
 

(0) Start with ( ) : 0V s  , s S   and perform k=0,...,K iterations with given 0s : 
 

(1) Let ( ) ( )k k ka s s , i.e., apply the current action/policy based on current V(s), 

 where   ( ) : arg max ( , , ) ( , , ) ( , , )
a A i I

s P i a s r i a s V i a s 
 

 
     

 
 , s S   
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Forward Dynamic Programming (Infinite Horizon) 
 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
    (Bellman equ.) 

 

 Forward Dynamic Programming:  Use a simulation-based approach: 
 

(0) Start with ( ) : 0V s  , s S   and perform k=0,...,K iterations with given 0s : 
 

(1) Let ( ) ( )k k ka s s , i.e., apply the current action/policy based on current V(s), 

 where   ( ) : arg max ( , , ) ( , , ) ( , , )
a A i I

s P i a s r i a s V i a s 
 

 
     

 
 , s S   

 

(2) Improve   ( ) ( , ( ), ) ( , ( ), ) ( , ( ), )k k k k k k k k k k

i I

V s P i a s s r i a s s V i a s s


      
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Forward Dynamic Programming (Infinite Horizon) 
 

   * *( ) max ( , , ) ( , , ) ( , , )
a A

i I

V s P i a s r i a s V i a s




 
     

 
    (Bellman equ.) 

 

 Forward Dynamic Programming:  Use a simulation-based approach: 
 

(0) Start with ( ) : 0V s  , s S   and perform k=0,...,K iterations with given 0s : 
 

(1) Let ( ) ( )k k ka s s , i.e., apply the current action/policy based on current V(s), 

 where   ( ) : arg max ( , , ) ( , , ) ( , , )
a A i I

s P i a s r i a s V i a s 
 

 
     

 
 , s S   

 

(2) Improve   ( ) ( , ( ), ) ( , ( ), ) ( , ( ), )k k k k k k k k k k

i I

V s P i a s s r i a s s V i a s s


      

 

(3) Simulate next state 1 ( , ( ), )k k k ks i a s s   according to ( , ( ), ),k k kP i a s s i I  
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Discussion of Forward Dynamic Programming 
 

 Visit/simulate relevant states (starting from an initial state 0s ) 

 (not in a synchronous manner as in DP) 

 Exploit full knowledge 

 - Update the value function via expected rewards and state transitions 

 - Simulate future states based on event/state transition probabilities P 

 Apply a pure “greedy” policy based on current values V(s) 

 Subsequently update V using the Bellman equation principle 

 Problem: We may miss optimal paths (cf. loops)!   What can we do? 
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Forward Dynamic Programming II (Infinite Horizon) 
 

Forward Dynamic Programming ( -greedy): 
 

(0) Start with ( ) : 0V s  , s S   and perform k=0,...,K iterations with given 0s : 
 

(1) Let 
.

( )
( ) . 1

k k

k

a A with prob play a random action
a s

s with prob


 


 


, (0,1)  , 

 

 i.e., apply a mixed greedy/exploration action/policy based on V(s), 

 where   ( ) : arg max ( , , ) ( , , ) ( , , )
a A i I

s P i a s r i a s V i a s 
 

 
     

 
 , s S   

 

(2) Improve   ( ) ( , ( ), ) ( , ( ), ) ( , ( ), )k k k k k k k k k k

i I

V s P i a s s r i a s s V i a s s


      (check!) 

 

(3) Simulate next state 1 ( , ( ), )k k k ks i a s s   according to ( , ( ), ),k k kP i a s s i I  
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Discussion Forward Dynamic Programming 
 

 Visit/simulate relevant states (starting from an initial state 0s ) 

 (not in a synchronous manner as in DP) 

 Exploit full knowledge (vs. full knowledge is needed) 

 - Improve the value function via expected rewards and state transitions 

 - Simulate future states based on event/state transition probabilities P 

 Apply a partly “greedy” policy based on current values V(s) 

 Subsequently improve V using the Bellman equation principle 

 The approach converges correctly (Asymptotical optimal) 

 Allows “good” heuristic solutions for larger problems in a feasible time 
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ADP for the Inventory Management Example 
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Example Infinite Horizon MDP (Inventory Management) 
 

 Framework: 0,1,2,...,t    Discrete time periods 
 

 State: s S  Number of items left 
 

 Actions: a A  Number of ordered items (replenish) 
 

 Events: i I , ( , , )P i a s  Demand i (e.g., 0,1,2,3 with prob. 1/4 each) 
 

 Rewards: ( , , )r r i a s  Revenue – Order Cost – Holding Cost 

  : min( , )p i s c a     e.g., for given price p, variable order cost c, 

      { 0}1 ah s f     holding h, and fixed order costs f 
 

 New State: ( , , )s s i a s    Old – Sold + Replenish (end of period) 
 

 Initial State: 0s S  Initial items in t=0 
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ADP Results for the Inventory Management Example 
 

 0.05   exploration probability 

  0,...,50 000K   episodes/iterations (all < 10 sec) 
 

 
( ) *K

ADP   obtain good / near-optimal solutions based on V 

 
( ) *K

ADPV V  especially for (relevant) states with few inventory 

 
runs K 500 1 000 2 000 10 000 50 000 

( ) *(10) / (10)K

ADPV V  0.63 0.77 0.93 0.97 1.00 

 

 At home: play with K and   as well as other parameters and study 

  the quality of the ADP solution against the optimal one 
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ADP for Finite Horizon MDP Problems 
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Forward Dynamic Programming (Finite Horizon) 
 

Forward Dynamic Programming ( -greedy): 
 

(0) Start with ( ) : 0
t

V s  , s S  . Use k=0,...,K iterations over t=0,...,T-1 from 0s : 
 

(1) Let 
( ) ( )

( )

.
( )

( ) . 1

kk k

t t k

t t k

a A with prob play a random action
a s

s with prob


 


 


, (0,1)
k
   

 

 i.e., apply a mixed exploration-exploitation policy based on ( )
t

V s , 

 where   1( ) : arg max ( , , ) ( , , ) ( , , )t t t t t
a A i I

s P i a s r i a s V i a s  
 

 
     

 
 , s S   

 

(2) Improve   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1( ) ( , ( ), ) ( , ( ), ) ( , ( ), )k k k k k k k k k k

t t t t t t t t t t t t t t t

i I

V s P i a s s r i a s s V i a s s 


      

 

(3) Simulate state 
( ) ( ) ( ) ( )

1 ( , ( ), )k k k k

t t t t ts i a s s    according to 
( ) ( ) ( )( , ( ), ),k k k

t t t tP i a s s i I  
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Example MDP (Selling Airline Tickets) 
 

 Framework: 0,1,2,...,t T  Time periods 
 

 State: : {0,1,..., }ts S N   Items left 
 

 Actions: : {5,10,..., 400}ta A   Price 
 

 Events: : {0,1}ti I   with probabilities Demand 

  (1, , ) : (1 / 400) (1 ) /
t

P a s a t T          (0, , ) 1 (1, , )
t t

P a s P a s   
 

 Rewards: ( , , ) : min( , )tr r i a s a i s    Revenue 
 

 New State: 1 ( , , ) : max(0, )t t t t t t ts s i a s s i      Old – sold 
 

 Initial State: 0s S , 0 :s N  Initial items N 
 

 Final Reward: ( ) :Tr s f s    with 10f   Weight for freight 
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ADP for the Airline Example 
 

 0.1 0.4 (1 / )k k K      exploration probability (for run k) 

 

  0,...,10 000K   different numbers of episodes (T iterations) 

 

 
( ) *K

ADP   obtain good / (near-)optimal solutions (for 0s ) 

 

 
( ) *K

ADPV V  especially for (relevant/achievable) states 

 

 

 At home: play with K and k  as well as other model parameters to 

  study the quality of the ADP solution against the optimal one 
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ADP Results for the Airline Example (optimal) 
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ADP Results for the Airline Example (K=100, 3 sec) 
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ADP Results for the Airline Example (K=100, 3 sec) 
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ADP Results for the Airline Example (K=10 000, 200 sec) 
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ADP Results for the Airline Example (K=10 000, 200 sec) 
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Summary (Solving Discrete Time MDPs via ADP) 
 

ADP (Forward Dynamic Programming) 

(+) provides near-optimal solutions for (in/)finite horizon MDPs 

(+) guaranteed convergence 

(+) numerically simple 

(+) general applicable 

(+) quickly obtain good heuristics 

 

(–) updates only for single “visited” states (cf. large state spaces) 

(–) results are stochastic (due to simulated next states) 

(–) hyperparamer tuning (e.g., exploration rate) 

(–) full information required (cf. events & transitions) 
 

Next:  QL, i.e., similar solution approaches requiring less information 
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Could You Solve Different Test Problems via ADP? 
 

 Any Questions? 

 Finite Horizon (use ADP) 
 

 – Eating cake (deterministic utility) 

 – Selling airline tickets (stochastic demand) 

 

 Infinite Horizon (use ADP) 
 

 – Car replacement problem (deterministic costs) 

 – Inventory management (stochastic demand) 
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Overview 
 

Week Dates Topic 

1 April 21 Introduction 
 

2 April 25/28 Finite + Infinite Time MDPs 
 

3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise 
 

4 May 12 Q-Learning (QL) (not Mon May 9) 
 

5 May 16/19 Deep Q-Networks (DQN) 
 

6 May 23 DQN Extensions (Thu May 26 “Himmelfahrt”) 
 

7 May 30/June 2 Policy Gradient Algorithms 
 

8 June 9 Project Assignments (Mon June 6 “Pfingstmontag”) 
 

9 June 13/16 Work on Projects: Input/Support 
 

10 June 20/23 Work on Projects: Input/Support 
 

11 June 27/30 Work on Projects: Input/Support 
 

12 July 4/7 Work on Projects: Input/Support 
 

13 July 11/14 Work on Projects: Input/Support 
 

14 July 18/21 Final Presentations 

 Sep 15 Finish Documentation 


