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Outline

Questions?

Today:

Approximate Dynamic Programming
Problem Examples
Forward Dynamic Programming

Simulation-based Approaches




Recap: Last Week

e Markov Policies in Infinite Horizon MDPs

e Discounting for Future Rewards

e Bellman Equation & Recursive Problem Decomposition
e Value Iteration

e Policy Iteration



Solving MDP Problems “

e  Continuous Time Problems & Control Theory (not in focus)

o Discrete Time MDP Problems with Recursive Solutions (last week)
— Time-dependent Framework, Backward induction (finite time)
— Time-independent Framework, Value & Policy Iteration

— Optimal numerical solutions via Bellman Equation (backwards)

e  Discrete Time MDP Problems with Approximate Solutions (today)
— Relaxation Concepts to Attack Larger Problem Sizes
— Simulation-based Heuristics (today: forward dynamic programming)

— Basis for Reinforcement Learning



MDP Problems with Different Complexities “

Example Objective State Action Events Rewards

Airline Tickets
Hotel/Rental/Rail
Apparel/Seasonal/Events
Perishable Products

Inventory Mgmt.
Durable Products
E-Commerce
Resource Allocations
Tetris/Chess/Go
Self-driving



Can We Solve All of Them? w

Example Objective State Action Events Rewards

Airline Tickets
Hotel/Rental/Rail
Fashion/Seasonal

Perishable Products

Inventory Mgmt.
Durable Products
E-Commerce
Resource Allocations
Tetris/Chess/Go
Self-driving . . .

ONE IIIIES NIIT SIMPLY), *
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Problem Sizes and Curse of Dimensionality H

o State space: Compare |[S| =10, 100, 1000, 10K, . ..
° Action space: Compare |[4| =10, 100, 1000, 10K, . ..
e  Event space: Compare |/| =10, 100, 1000, 10K, . ..
° Time/Iterations Compare T =10,100, 1000, 10K, ... (cf. y > 1)

o Backward Induction, Policy & Value Iteration become intractable

e  Heuristic Options: Clustering Approaches (not in focus)
Simulation & Focus on relevant states

Approximation of Value Functions/Policies



Curse of Dimensionality (Optimal DP Solution)

Example: Sell J types of products with N items each over T periods

Table 5. Optimal expected profits V) (ﬁ) and computation &mﬁ(ﬂt) - (5) for different T' = 10, 20,50 and
N =5,10,20 with J =3, =1,¢=0, L =0.05, S:= {0,1,7.,N}, I :={0,1,...,4}, and A := {4,8,...,40};

Example 3.1.
/ T N Vo (\_fj time \ \

5 5 326.15 260s
10 5 198.61 641s
10 10 671.57 43245
20 10 1044.49 8332s
20 20 1331.67 535955
50 10 113812 26110s
50 20 / /
100 20 / /

Schlosser, R. (2021). Scalable Relaxation Techniques to Solve Stochastic Dynamic Multi-Product Pricing
Problems with Substitution Effects, Journal of Revenue and Pricing Management 20 (1), 54-65.
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Approximate Dynamic Programming (ADP) H

7(s) ;= arg max {Z P(i,a,s)- (r(i, a,s)+y- V(Hl) (F(i, a, S)))}

acA icl

(1) Use explicit function approximations for V,,1,(s") (offline)
e Aggregation, enforced decomposition (use V oof simpler problem)

e Parametric approximation of V(s',0) (NNs, QL, AC, LP, etc.)

(2) Use implicit value approximations for V., (S' | a,s) (online)
e Forward DP for a, s (via simulation, use full information)

e Rollout of a heuristic base policy for a, s (via simulation, cp. Pol. It.)

e  Open-loop feedback control (cf. e.g., det. problem version)



(1) Example of Aggregation (Explicit Value Appr.) “

Example: Sell J types of products with N items each over T periods

Table 9. Expect profits, cf. (6), and runtimes of a combined heuristic compared to the optimal solution
for different T = 10,20,50,100 and N = 5,10,20, cf. Table 5, Sy := {0,1,5,N}, I := {0},{1,2},{3,4},

A = {10,20,30,40}; Example 3.1.
/ T N Vo(N) Vo/Vg time %t.ime\ \

5 5 30800 94.7% 04bs 017% luved !
10 5 46828 93.9% 0.78s 0.12% reiaxea:
10 10  637.32 94.9% 2.73s 0.06%

20 10 97442 93.3% b5.64s 0.07%

20 20 125551 94.3% 1555 0.03%

50 10 110227 96.9% 14.3s 0.05%

50 20 200591  /  34.0s  /

100 20 213119 /  624s  /

relaxed !

Schlosser, R. (2021). Scalable Relaxation Techniques to Solve Stochastic Dynamic Multi-Product Pricing
Problems with Substitution Effects, Journal of Revenue and Pricing Management 20 (1), 54-65.



(2) Example of Simulation-Based Value Appr. H

e In (1) we approximate the value function for all states
o But do we really need all states?

Airline Example Inventory Example

tat / /9 states relevant?
states relevant

Inventary Level

states relevant?

0 10 20 30 40 50

10



Forward Dynamic Programming (Infinite Horizon) “

. V()= max {ZP(i,a,s)-(r(i,a,S) +7-V (F(i,a,s)))} (Bellman equ.)

e Forward Dynamic Programming: Use a simulation-based approach:

(0) Start with V(s):=0, Vs € S and perform k=0.,....,K iterations with given S :

11



Forward Dynamic Programming (Infinite Horizon) H

. V()= max {Z P(i,a,s)- (r(i,a,s) +yV (F(i,a,s)))} (Bellman equ.)

iel
e Forward Dynamic Programming: Use a simulation-based approach:
(0) Start with V(s):=0, Vs € S and perform k=0.,....,K iterations with given S :

(1) Let a,(s,)=7(s,),1i.e., apply the current action/policy based on current ¥{(s),

where 7(s):= argmax{ZP(i,a,s)-(r(i,a,s)+7/-V(F(i,a,s)))}, VseS

acA icl

12



Forward Dynamic Programming (Infinite Horizon) H

. V()= max {Z P(i,a,s)- (r(i,a,s) +yV (F(i,a,s)))} (Bellman equ.)

iel
e Forward Dynamic Programming: Use a simulation-based approach:
(0) Start with V(s):=0, Vs € S and perform k=0.,....,K iterations with given S :

(1) Let a,(s,)=7(s,),1i.e., apply the current action/policy based on current ¥{(s),

where 7(s):= argmax{ZP(i,a,s)-(r(i,a,s)+7/-V(F(i,a,s)))}, VseS

acA iel

(2) Improve Visy) <_Zp(iaak(sk)ask)'(r(iaak(sk)ask)+7'V(F(i>ak(5k)>sk)))

iel

13



Forward Dynamic Programming (Infinite Horizon) H

(0)
(D)

2)
€)

Vi(s)= max {Z P(i,a,s)- (r(i,a,s) +yV (F(i,a,s)))} (Bellman equ.)

iel
Forward Dynamic Programming: Use a simulation-based approach:
Start with V' (s):=0, Vs € S and perform k=0,...,K iterations with given S :

Let a,(s,)=7(s,),i.e., apply the current action/policy based on current V{(s),

where 7(s) = arg max {ZP(i,a,s)-(r(i,a,s)+7.V(F(i,a,s)))}, Vse S

acA icl

Improve Visy) <_Zp(iaak(sk)ask)'(r(iaak(sk)ask)+7'V(F(i>ak(5k)>sk)))

iel

Simulate next state S;,; < I'(, a, (Sk),Sk) according to P(i,ak (Sk),Sk), iel

14



Discussion of Forward Dynamic Programming ﬂ

e Visit/simulate relevant states (starting from an initial state )

(not in a synchronous manner as in DP)

e Exploit full knowledge
- Update the value function via expected rewards and state transitions

- Simulate future states based on event/state transition probabilities P
e Apply apure “greedy” policy based on current values V(s)

e Subsequently update 7 using the Bellman equation principle

e Problem: We may miss optimal paths (cf. loops)! What can we do?

15



Forward Dynamic Programming II (Infinite Horizonﬂ

Forward Dynamic Programming ( &€ -greedy):

(0)

(D

2)

3)

Start with V' (s)==0, Vs € S and perform k=0,...,K iterations with given S, :

ae A with prob. & play a random action <———

,£€(0,1),

Let % (s¢) = {ﬂ(sk) with prob.1-¢&

1.e., apply a mixed greedy/exploration action/policy based on V(s),

where 7(s) :=arg max {ZP(i,a,s)-(r(i,a,s)+)/-V(F(i,a,s)))}’ Vs e S

acA icl

Improve V(s,) < X P(i.a.(s,),s,)-(r(ia,(s,).5) +7-V (LG a(s,).5,.))) (check!)

iel
Simulate next state S;,; <= I'({,a,(s,),s,) according to P(i,a,(s,),s,), i€l

16



Discussion Forward Dynamic Programming H

e Visit/simulate relevant states (starting from an initial state )

(not in a synchronous manner as in DP)

e Exploit full knowledge (vs. full knowledge is needed)
- Improve the value function via expected rewards and state transitions

- Simulate future states based on event/state transition probabilities P
e Apply a partly “greedy” policy based on current values V(s)
e Subsequently improve V' using the Bellman equation principle
e The approach converges correctly (Asymptotical optimal)

e Allows “good” heuristic solutions for larger problems in a feasible time
17



ADP for the Inventory Management Example

Reorder Level

D e ) mm— s m— o s

Inventory Level

18



Example Infinite Horizon MDP (Inventory Manageﬂ

e Framework: £=0,1,2,...,00 Discrete time periods

e State: sesS Number of items left

e Actions: ae A Number of ordered items (replenish)

e Events: iel, P(i,a,s) Demand i (e.g., 0,1,2,3 with prob. 1/4 each)
e Rewards: 7r=r(,a,s) Revenue — Order Cost — Holding Cost

= p-min(i,s)—c-a e.g., for given price p, variable order cost c,
—h-s— 1{a>0} f holding /4, and fixed order costs f

e New State: s —>s'=I(i,a,s) OId — Sold + Replenish (end of period)

o [Initial State: s, €S Initial items in =0

19



ADP Results for the Inventory Management Examplﬂ

e=0.05

exploration probability

K €{0,...,50 000} episodes/iterations (all < 10 sec)

(K)o
7 app 23

(K) 1/*
VADP =~V

obtain good / near-optimal solutions based on V'

especially for (relevant) states with few inventory

runs K

500 1 000 2 000 10 000 50 000

Vis(10)/ V7 (10)

0.63 0.77 0.93 0.97 1.00

At home:

play with K and & as well as other parameters and study

the quality of the ADP solution against the optimal one

20



ADP for Finite Horizon MDP Problems

21



Forward Dynamic Programming (Finite Horizon) ﬂ

Forward Dynamic Programming ( &€ -greedy):

(0)

(D

(2)

€)

Start with V;(s) =0, Vs € S . Use k=0,....K iterations over =0,...,7-1 from S, :

k) ¢ (k) ae A with prob. &, play a random action —<———
Let al‘ (St ): , gk = (0’ 1)

7, (s") with prob.1-g,
i.e., apply a mixed exploration-exploitation policy based on V,(s),

where ﬂ-t(S) = argmax{ZPt(i,a,s)-(rt(i,a,s)+)/-Vt+1(Ft(i,a,s)))} , VseS

acA iel

Improve ,(s%") < 3 B(i,a" (5.5 (o (5. 5) +7 V., (TG (58,5 ) )
iel

. k . k k k . . k k k .
Simulate state s < T, (i,a (s),5") according to B(@i,a* (s*),s"), iel

22



Example MDP (Selling Airline Tickets) ﬂ

e Framework: (=0,12,...T Time periods
e State: s, €8:=10,1,..., N} [tems left

e Actions: a, € 4:=1{5,10,...,400} Price

e Events: i, e [ :={0,1} with probabilities Demand

P(,a,s)=(1-a/400)-(1+¢)/T P(0,a,s)=1-P(,a,s)
e Rewards: v.=r(i,a,s)=a-min(i,s) Revenue
e New State: s, > s,,=I(,a,,s,)=max(0,s,—%) Old - sold
e Initial State: S, €S, 5, =N Initial items N

e Final Reward: 7;(s)=f-s with f =10 Weight for freight

23



ADP for the Airline Example H

e £ =0.1404-(1-k/K) exploration probability (for run k)

e Ke {0,---,10 OOO} different numbers of episodes (7 iterations)
o 7T,(4[1<)3» ~T obtain good / (near-)optimal solutions (for Sy )
° Vjﬁf}, ~V especially for (relevant/achievable) states

At home: play with K and €, as well as other model parameters to

study the quality of the ADP solution against the optimal one

24



ADP Results for the Airline Example (optimal)

Value function optimal o0

8000

6000

state s

4000

2000

20 40 60 80 100 120 140 160 180 200
timet

Prices optimal 0

290

200

state s

100

20 40 60 80 100 120 140 160 180 200

timet

25



ADP Results for the Airline Example (K=100, 3 sec)ﬂ

Number of State Visits 100

SO | e —— : .

L) 40 - - 70

& 30+

£ 20t -
10} S,

ot — 30

0 20 40 60 80 100 120 140 160 180 200 0

time t 0
Prices ADP 400

state s

0 20 40 60 80 100 120 140 160 180 200
time t 0
26



ADP Results for the Airline Example (K=100, 3 sec)ﬂ

Value function ADP/optimal 098 <

50t 0.79
. 40t
< 30} 0.59
S 20 ' 0.40
H .
Ot B 0.20

0O 20 40 60 80 100 120 140 160 180 200
time t
Value function ADP 1400

0

1200

1000

state s

700

500

0 20 40 60 80 100 120 140 160 180 200 | |,
time t

27



ADP Results for the Airline Example (K=10000, 20

Value function ADP/optimal 099 —

50t
40+
30+
20}
10}

0.80

state s

0.40

0.20

0 20 40 60 80 100 120 140 160 180 200

time t

Value function ADP 5700
50t
40} v 7800
; 30 I 5800
S 20!
10+ 3900
of. , , , A , , . A , ,
0 20 40 60 80 100 120 140 160 180 200 1900
fime t 0

28



ADP Results for the Airline Example (K=10000, 20

state s

state s

Prices ADP/optimal

20 40 60 80 100 120 140 160 180 200
time t

Prices ADP

20 40 60 80 100 120 140 160 180 200

time t

1.8

1.4

0.9

0.5

400

300

200

| 100

29



Summary (Solving Discrete Time MDPs via ADP) H

ADP (Forward Dynamic Programming)

(+) provides near-optimal solutions for (in/)finite horizon MDPs
(+) guaranteed convergence

(+) numerically simple

(+) general applicable

(+) quickly obtain good heuristics

(-) updates only for single “visited” states (cf. large state spaces)
(=) results are stochastic (due to simulated next states)
(=) hyperparamer tuning (e.g., exploration rate)

(=) full information required (cf. events & transitions)

Next: QL, i.e., similar solution approaches requiring less information
30



Could You Solve Different Test Problems via ADP? H

e  Any Questions?

o Finite Horizon (use ADP)

— Eating cake (deterministic utility)

— Selling airline tickets (stochastic demand)

o Infinite Horizon (use ADP)

— Car replacement problem (deterministic costs)

— Inventory management (stochastic demand)

31



Overview

Week Dates

April 21

April 25/28
May 2/5

May 12

May 16/19
May 23

May 30/June 2

[

June 9
June 13/16
June 20/23
June 27/30
July 4/7
July 11/14

July 18/21
Sep 15

O 0 9 O N B~ W N

e e e e
B W NN = O

Topic

Introduction

Finite + Infinite Time MDPs

Approximate Dynamic Programming (ADP) + DP Exercise

Q-Learning (QL) (not Mon May 9)
Deep Q-Networks (DQN)
DQN Extensions (Thu May 26 “Himmelfahrt™)

Policy Gradient Algorithms

Project Assignments (Mon June 6 “Pfingstmontag”)
Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Final Presentations
Finish Documentation
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