Dynamic Programming and Reinforcement Learning

Monte Carlo Techniques and Q-Learning (Week 4)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

May 12, 2022

Outline

1

- Questions?
- Today: Finally, dynamics do not have to be known

Learning & optimizing from simulation

Monte Carlo Simulations

Q-Learning

Recap: Last Week

- Approximate Dynamic Programming
- Forward Dynamic Programming
- Simulation-based Approaches
- Exercises & Implementation
- Value iteration & Policy iteration

HPI

Solving MDP Problems via DP and RL

- Discrete Time MDP Problems with full knowledge (last weeks)
 - Optimal Solutions (curse of dimensionality)
 - ADP & relaxation concepts to attack larger problem sizes
 - Forward Dynamic Programming (simulation-based)
- Discrete Time MDP Problems with less knowledge (today)
 - Time-independent (stationary) infinite horizon framework
 - No knowledge about reward distributions or state transitions
 - Simulation-based evaluation of policies
 - Simulation-based optimization of policies

MDP Problems with Different Characteristics

Example	Objective	State	Action	Events	Rewards
Airline Ticket	S				1
Hotel/Rental/Rail		Distinguish:			
Apparel/Seasonal/Events		Finite vs Infinite vs "Sink"			
Perishable Pro	ducts				
Inventory Mg	mt.				
Durable Products		Distinguish:			
E-Commerce		System dynamics known vs			
Resource Allocations		unknown			
Tetris/Chess/G	0				
Self-driving					

Recap

- Considered setup: Infinite horizon (stationary)
- Stationary policy: $\pi(s)$ for all states $s \in S$
- Realized trajectory: $s_0, a_0, r_0, s_1, a_1, r_1, ..., s_t, a_t, r_t, ...$
- (Observed) disc. future reward in s_t : $G_t = G_t(s_t) = \sum_{k>0} \gamma^k \cdot r_{t+k}$
- Recursion for G_t : $G_t(s = s_t) = r_t + \gamma \cdot G_{t+1}(s' = s_{t+1})$
- Sink: A final state will be reached at a **random** time *T*
- No sink: There is **no absorbing state** (cf. inventory prob.)

• Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?
- (1) Generate/simulate *one* trajectory (the sink is reached at time T): $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T$

For each trajectory compute all $G_t(s = s_t)$ (via recursion from r_T)

(2)

(3)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?
- (1) Generate/simulate *one* trajectory (the sink is reached at time T): $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T$

For each trajectory compute all $G_t(s = s_t)$ (via recursion from r_T)

(2) For all t = 0, 1, ..., T estimate the policy's value function $V^{(\pi)}(s)$ via: $V^{(\pi)}(s_t) \leftarrow G_t(s_t)$

Can we do better?

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?
- (1) Generate/simulate *one* trajectory (the sink is reached at time T): $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T$

For each trajectory compute all $G_t(s = s_t)$ (via recursion from r_T)

- (2) For all t = 0, 1, ..., T estimate the policy's value function $V^{(\pi)}(s)$ via: $V^{(\pi)}(s_t) \leftarrow G_t(s_t)$
- (3) Use more simulated trajectories!

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?
- (3) Generate/simulate k=1,...,K trajectories (the sink is reached at time $T^{(k)}$): $s_0^{(k)}, a_0^{(k)}, r_0^{(k)}, s_1^{(k)}, a_1^{(k)}, r_1^{(k)}, ..., s_{T^{(k)}}^{(k)}, a_{T^{(k)}}^{(k)}, r_{T^{(k)}}^{(k)}$ For each trajectory compute all $G_t^{(k)}(s = s_t^{(k)})$ (via recursion from $r_{T^{(k)}}^{(k)}$)
- (4) How to update the estimation for $V^{(\pi)}(s)$?

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?
- (3) Generate/simulate k=1,...,K trajectories (the sink is reached at time $T^{(k)}$): $s_0^{(k)}, a_0^{(k)}, r_0^{(k)}, s_1^{(k)}, a_1^{(k)}, r_1^{(k)}, ..., s_{T^{(k)}}^{(k)}, a_{T^{(k)}}^{(k)}, r_{T^{(k)}}^{(k)}$ For each trajectory compute all $G_t^{(k)}(s = s_t^{(k)})$ (via recursion from $r_{T^{(k)}}^{(k)}$)
- (4) For all t = 0, 1, ..., T of a run k update the estimation for $V^{(\pi)}(s)$ using a learning rate parameter $\eta \in (0, 1)$ as follows:

$$V^{(\pi)}(s_t^{(k)}) \leftarrow \eta \cdot G_t(s_t^{(k)}) + (1-\eta) \cdot V^{(\pi)}(s_t^{(k)})$$

- HPI
- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?
- (3) Generate/simulate k=1,...,K trajectories (the sink is reached at time $T^{(k)}$): $s_0^{(k)}, a_0^{(k)}, r_0^{(k)}, s_1^{(k)}, a_1^{(k)}, r_1^{(k)}, ..., s_{T^{(k)}}^{(k)}, a_{T^{(k)}}^{(k)}, r_{T^{(k)}}^{(k)}$ For each trajectory compute all $G_t^{(k)}(s = s_t^{(k)})$ (via recursion from $r_{T^{(k)}}^{(k)}$)
- (4) For all t = 0, 1, ..., T of a run k **update** the estimation for $V^{(\pi)}(s)$ using a learning rate parameter $\eta \in (0, 1)$ as follows:

$$V^{(\pi)}(s_t^{(k)}) \leftarrow \eta \cdot G_t(s_t^{(k)}) + (1 - \eta) \cdot V^{(\pi)}(s_t^{(k)})$$
$$= \eta \cdot \left(G_t(s_t^{(k)}) - V^{(\pi)}(s_t^{(k)})\right) + V^{(\pi)}(s_t^{(k)})$$

Temporal Difference Learning (without Sink)

• Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)

Temporal Difference Learning (without Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)
- Idea: To estimate $G_{t+1}(s_{t+1})$ use $V^{(\pi)}(s_{t+1}) = E(G_{t+1}(s_{t+1}))$:-)

Temporal Difference Learning (without Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)
- Idea: To estimate $G_{t+1}(s_{t+1})$ use $V^{(\pi)}(s_{t+1}) = E(G_{t+1}(s_{t+1}))$:-)

• Replace
$$V^{(\pi)}(s_{t}^{(k)}) \leftarrow \eta \cdot \underbrace{G_{t}(s_{t}^{(k)})}_{r_{t}^{(k)} + \gamma \cdot G_{t+1}(s_{t+1}^{(k)})} + (1-\eta) \cdot V^{(\pi)}(s_{t}^{(k)})$$
, cf. MCE (4),
by $V^{(\pi)}(s_{t}^{(k)}) \leftarrow \eta \cdot \left(r_{t}^{(k)} + \gamma \cdot \underbrace{V^{(\pi)}(s_{t+1}^{(k)})}_{=E(G_{t+1}(s_{t+1}^{(k)}))}\right) + (1-\eta) \cdot V^{(\pi)}(s_{t}^{(k)})$

Temporal Difference Learning (without Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)
- Idea: To estimate $G_{t+1}(s_{t+1})$ use $V^{(\pi)}(s_{t+1}) = E(G_{t+1}(s_{t+1}))$:-)

• Replace
$$V^{(\pi)}(s_{t}^{(k)}) \leftarrow \eta \cdot \underbrace{G_{t}(s_{t}^{(k)})}_{r_{t}^{(k)}+\gamma \cdot G_{t+1}(s_{t+1}^{(k)})} + (1-\eta) \cdot V^{(\pi)}(s_{t}^{(k)})$$
, cf. MCE (4),
by $V^{(\pi)}(s_{t}^{(k)}) \leftarrow \eta \cdot \left(r_{t}^{(k)}+\gamma \cdot \underbrace{V^{(\pi)}(s_{t+1}^{(k)})}_{=E(G_{t+1}(s_{t+1}^{(k)}))}\right) + (1-\eta) \cdot V^{(\pi)}(s_{t}^{(k)})$
$$= \eta \cdot \left(r_{t}^{(k)}+\gamma \cdot V^{(\pi)}(s_{t+1}^{(k)}) - V^{(\pi)}(s_{t}^{(k)})\right) + V^{(\pi)}(s_{t}^{(k)})$$

Towards Optimized Policies

- We can learn/simulate the performance V^(π)(s) of a given policy π(s) under unknown dynamics
- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?

Towards Optimized Policies

- We can learn/simulate the performance V^(π)(s) of a given policy π(s)
 under unknown dynamics
- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?

$$V^{(\pi)}(s_t^{(k)}) = \max_{a_t \in A} E\left(r_t^{(k)} + \gamma \cdot V^{(\pi)}(s_{t+1}^{(k)})\right) \quad ???$$

• Missing coupling element?

Towards Optimized Policies

- We can learn/simulate the performance V^(π)(s) of a given policy π(s)
 under unknown dynamics
- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?

$$V^{(\pi)}(s_t^{(k)}) = \max_{a_t \in A} E\left(r_t^{(k)} + \gamma \cdot V^{(\pi)}(s_{t+1}^{(k)})\right) \quad ???$$

- Missing coupling element: anticipation of state transitions!
- Solution options:

Towards Optimized Policies

- We can learn/simulate the performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics
- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?

$$V^{(\pi)}(s_t^{(k)}) = \max_{a_t \in A} E\left(r_t^{(k)} + \gamma \cdot V^{(\pi)}(s_{t+1}^{(k)})\right) \quad ???$$

- Missing coupling element: anticipation of state transitions!
- Solution options: estimate state transition probabilities

- learn state-action-values (more efficient)

- $V^{(\pi)}(s)$ expected disc. future rewards of a given policy $\pi(s)$
- $Q^{(\pi)}(s,a)$??

- $V^{(\pi)}(s)$ expected disc. future rewards of a given policy $\pi(s)$
- $Q^{(\pi)}(s,a)$ expected disc. future rewards of a given policy $\pi(s)$ when instead **now playing** *a* **in** *s* and then again continue to play $\pi(s)$

$$Q^{(\pi)}(s,a) \coloneqq E\left(G_t \qquad | s_t = s, a_t = a, \forall k > t \text{ use } a_k = \pi(s_k)\right)$$
$$= E\left(r_t + \gamma \cdot V^{(\pi)}(s_{t+1}) | s_t = s, a_t = a\right) \text{ (effect of state transitions is "included"!)}$$

- $V^{(\pi)}(s)$ expected disc. future rewards of a given policy $\pi(s)$
- $Q^{(\pi)}(s,a)$ expected disc. future rewards of a given policy $\pi(s)$ when instead **now playing** *a* **in** *s* and then again continue to play $\pi(s)$

$$Q^{(\pi)}(s,a) \coloneqq E\left(G_t \qquad | s_t = s, a_t = a, \forall k > t \text{ use } a_k = \pi(s_k)\right)$$
$$= E\left(r_t + \gamma \cdot V^{(\pi)}(s_{t+1}) | s_t = s, a_t = a\right) \text{ (effect of state transitions is "included")}$$

- Note, $Q^{(\pi)}(s, \pi(s)) = V^{(\pi)}(s)$, i.e., V is a special case of Q
- And it allows to optimize policies!??

!)

- $V^{(\pi)}(s)$ expected disc. future rewards of a given policy $\pi(s)$
- $Q^{(\pi)}(s,a)$ expected disc. future rewards of a given policy $\pi(s)$ when instead **now playing** *a* **in** *s* and then again continue to play $\pi(s)$

$$Q^{(\pi)}(s,a) \coloneqq E\left(G_t \qquad | s_t = s, a_t = a, \forall k > t \text{ use } a_k = \pi(s_k)\right)$$
$$= E\left(r_t + \gamma \cdot V^{(\pi)}(s_{t+1}) | s_t = s, a_t = a\right) \text{ (effect of state transitions is "included"!)}$$

- Note, $Q^{(\pi)}(s, \pi(s)) = V^{(\pi)}(s)$, i.e., V is a special case of Q
- Allows to optimize: $a^*(s) = \underset{a_t \in A}{\operatorname{arg\,max}} \{Q(s, a_t)\}$ cf. policy iteration (!)

- (1) Play a given policy $\pi(s)$, i.e., observe s_t, a_t, r_t and also s_{t+1}, a_{t+1}
- (2) Update the Q-value estimate

- (1) Play a given policy $\pi(s)$, i.e., observe s_t, a_t, r_t and also s_{t+1}, a_{t+1}
- (2) Update the Q-value estimate (start with random values or 0) via: $Q^{(\pi)}(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1})\right) + (1 - \eta_t) \cdot Q^{(\pi)}(s_t, a_t)$ where the bound range is a set m were been been been time.

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t \coloneqq 1/t$

- (1) Play a given policy $\pi(s)$, i.e., observe s_t, a_t, r_t and also s_{t+1}, a_{t+1}
- (2) Update the Q-value estimate (start with random values or 0) via: $Q^{(\pi)}(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1})\right) + (1 - \eta_t) \cdot Q^{(\pi)}(s_t, a_t)$ $= \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1}) - Q^{(\pi)}(s_t, a_t)\right) + Q^{(\pi)}(s_t, a_t)$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t \coloneqq 1/t$

- (3) If the policy is changed also the Q-values change
- (4) Can we find an optimal policy?

- (1) Play a given policy $\pi(s)$, i.e., observe s_t, a_t, r_t and also s_{t+1}, a_{t+1}
- (2) Update the Q-value estimate (start with random values or 0) via: $Q^{(\pi)}(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1})\right) + (1 - \eta_t) \cdot Q^{(\pi)}(s_t, a_t)$ $= \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1}) - Q^{(\pi)}(s_t, a_t)\right) + Q^{(\pi)}(s_t, a_t)$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t \coloneqq 1/t$

- (3) If the policy is changed also the Q-values change
- (4) An ε -greedy version of $\pi_t(s) = \arg \max_{a \in A} Q_t(s, a)$ is guaranteed to converge to the optimal policy (as all pairs *s* and *a* are reachable).

Optimal Q-Values using Tabular Q-Learning (QL)

- (1) Play the current policy $\pi(s)$, i.e., observe s_t, a_t, r_t and s_{t+1}
- (2) Update the Q-value estimate

Optimal Q-Values using Tabular Q-Learning (QL)

- (1) Play the current policy $\pi(s)$, i.e., observe s_t, a_t, r_t and s_{t+1}
- (2) Update the Q-value estimate (start with random values or 0 in t=0) via: $Q(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot \max_{a \in A} Q(s_{t+1}, a)\right) + (1 - \eta_t) \cdot Q(s_t, a_t)$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t \coloneqq 1/t$

(3) Can we find an optimal policy?

Optimal Q-Values using Tabular Q-Learning (QL)

- (1) Play the current policy $\pi(s)$, i.e., observe s_t, a_t, r_t and s_{t+1}
- (2) Update the Q-value estimate (start with random values or 0 in t=0) via:

$$Q(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot \max_{a \in A} Q(s_{t+1}, a)\right) + (1 - \eta_t) \cdot Q(s_t, a_t)$$
$$= \eta_t \cdot \left(r_t + \gamma \cdot \max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t)\right) + Q(s_t, a_t)$$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t \coloneqq 1/t$

(3) An ε -greedy version of $a_t \coloneqq \pi(s_t) = \arg \max_{a \in A} Q(s_t, a)$ is guaranteed to converge to the optimal policy (as all pairs *s* and *a* are reachable).

On-Policy vs. Off-Policy Learning

SARSA

- Tuples are generated by the policy that we want to learn the values for
- Future estimations of a Q-value still depends on the policy
- The requirements for the policy forces us to generate the tuples in the specified order using the most current iteration of the policy
- If the policy used to generate the tuples is different, the values will change
- This style of algorithm is called on-policy

Q-Learning

- The tuples can be generated by **any** policy at any time, the generated Q-values will be the same
- The only requirement to ensure convergence: every combination of *s* and *a* that is visited repeatedly in endless time

• This style of algorithm is called off-policy

• Improves SARSA by shortening the learning process with off-policy learning

Summary (Solving Discrete Time MDPs via ADP)

SARSA & Q-Learning

- (+) no system knowledge is required
- (+) provides near-optimal solutions for infinite horizon MDPs
- (+) guaranteed convergence
- (+) numerically simple
- (+) general applicable
- (+) obtain good heuristics
- (-) updates only for single "visited" states (cf. large state spaces)
- (-) results are stochastic (due to simulated next states)
- (-) hyper parameter tuning (e.g., learning + exploration rate)

Next: Deep QL, allows to attack larger problems

Overview

Week	Dates	Topic		
1	April 21	Introduction		
2	April 25/28	Finite + Infinite Time MDPs		
3	May 2/5	Approximate Dynamic Programming (ADP) + DP Exercise		
4	May 12	Q-Learning (QL)	(not Mon May 9)	
5	May 16/19	Deep Q-Networks (DQN)		
6	May 23	DQN Extensions	(not Thu May 26 "Himmelfahrt")	
7	May 30/June 2	Policy Gradient Algorithms		
8	June 9	Project Assignments	(not Mon June 6 "Pfingstmontag")	
9	June 13/16	Work on Projects: Input/Support		
10	June 20/23	Work on Projects: Input/Support		
11	June 27/30	Work on Projects: Input/Support		
12	July 4/7	Work on Projects: Input/Support		
13	July 11/14	Work on Projects: Input/Support		
14	July 18/21 Sep 15	Final Presentations Finish Documentation		

HPI