Dynamic Programming and Reinforcement Learning

Monte Carlo Techniques and Q-Learning (Week 4)

Rainer Schlosser, Alexander Kastius
Hasso Plattner Institute (EPIC)

May 12, 2022



Outline “

e  Questions?

e Today: Finally, dynamics do not have to be known
Learning & optimizing from simulation
Monte Carlo Simulations

Q-Learning



Recap: Last Week

e Approximate Dynamic Programming

Forward Dynamic Programming

Simulation-based Approaches

e Exercises & Implementation

Value iteration & Policy iteration




Solving MDP Problems via DP and RL “

e  Discrete Time MDP Problems with full knowledge (last weeks)
— Optimal Solutions (curse of dimensionality)
— ADP & relaxation concepts to attack larger problem sizes

— Forward Dynamic Programming (simulation-based)

e  Discrete Time MDP Problems with less knowledge (today)
— Time-independent (stationary) infinite horizon framework
— No knowledge about reward distributions or state transitions
— Simulation-based evaluation of policies

— Simulation-based optimization of policies



MDP Problems with Different Characteristics w

Example Objective State Action Events Rewards
Airline Tickets

Hotel/Rental/Rail Distinguish:
Apparel/Seasonal/Events Finite vs Infinite vs “Sink”
Perishable Products

Inventory Mgmt.

Durable Products Distinguish:
E-Commerce System dynamics known vs
Resource Allocations unknown
Tetris/Chess/Go

Self-driving



Recap ﬂ

e  Considered setup:  Infinite horizon (stationary)

e  Stationary policy:  7(s) for all states s € S

o  Realized trajectory:  S¢>@Qg> 7581515585055

e  (Observed) disc. future reward in S, : G, =G,/(s)= Z Y

k>0
. [
° Recursion for G, : G(s=s)=r+y-G,(s'=5,)

° Sink: A final state will be reached at a random time 7

e  No sink: There is no absorbing state (cf. inventory prob.)



Monte-Carlo Estimation (with Sink) “

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics?



Monte-Carlo Estimation (with Sink) H

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time 7'):

SosQosTysS15sA s Nseees Sy Ar Iy

For each trajectory compute all G, (s =s,) (via recursion from 7;)

(2)

)



Monte-Carlo Estimation (with Sink) H

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time 7'):

SosQosTysS15sA s Nseees Sy Ar Iy

For each trajectory compute all G, (s =s,) (via recursion from 7;)

(2) Forall t=0,L...,T estimate the policy’s value function V™ (s) via:

V() « G (s,)

Can we do better?



Monte-Carlo Estimation (with Sink) H

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time 7'):

S0sAosTys 815155y Sy Ar s Iy

For each trajectory compute all G, (s =s,) (via recursion from 7;)

(2) Forall t=0,L...,T estimate the policy’s value function V™' (s) via:

V() « G (s,)

(3) Use more simulated trajectories!



Monte-Carlo Estimation (with Sink) H

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics?

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time T%):

(k)

(k) (k) (k) (k) (k) _.(k) (k) k
cs a8 al )

So 2y 51,

. k k . . k
For each trajectory compute all G\ (s =s*) (via recursion from 7))

(4) How to update the estimation for V'™ (s)?
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Monte-Carlo Estimation (with Sink) H

)

(4)

Performance V" (s) of a given policy 7(s) under unknown dynamics?

Generate/simulate k=1,...,K trajectories (the sink is reached at time 7*):

(k) (k) (k) (k) (k) _.(k) (k) (k) (k)
So aao 9r0 9S1 9a1 97”1 9"'9ST(k)9aT(k)9rT(k)

. k k . . k
For each trajectory compute all G\ (s =s*) (via recursion from 7))

Forall £=0,1,...,T of a run k update the estimation for ¥‘*(s)

using a learning rate parameter 77 € (0,1) as follows:

V) G s+ (=) 1 (519)
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Monte-Carlo Estimation (with Sink) ﬂ

)

(4)

Performance V" (s) of a given policy 7(s) under unknown dynamics?

Generate/simulate k=1,...,K trajectories (the sink is reached at time 7*):

(k) (k) (k) (k) (k) _.(k) (k) (k) (k)
So aao 9ro 9S1 9a1 97”1 9"'9ST(k)9aT(k)9rT(k)

. k k . . k
For each trajectory compute all G\ (s =s*) (via recursion from 7))

Forall £=0,1,...,T of a run k update the estimation for ¥ ‘*(s)

using a learning rate parameter 77 € (0,1) as follows:
V(s < n-G(sf)+ (A =m)-V7(s)
=1+(G, (/) =V () +V (5"
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Temporal Difference Learning (without Sink) “

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics

when there is no sink (to start to compute G,(s,) =7, +7-G,,(s,,,))

13



Temporal Difference Learning (without Sink) ﬂ

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics

when there is no sink (to start to compute G,(s,) =7, +7-G,,(s,,,))

e Idea: To estimate G,,,(s,,,) use V7 (5,,) = E(G,,,(5,))) )

14



Temporal Difference Learning (without Sink) H

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics

when there is no sink (to start to compute G,(s,) =7, +7-G,,(s,,,))
e  Idea: Toestimate G,,,(s,.,;) use V7 (5.) = E(G,,(5.,,)) =)

O e Gt +U=m V)

o Replace , ¢cf. MCE (4),
74 yGry (st
I R AT G P RS NARIED

:E(Gm (St(-fl) ))

15



Temporal Difference Learning (without Sink) H

e  Performance V7 (s) of a given policy 7(s) under unknown dynamics

when there is no sink (to start to compute G,(s,) =7, +7-G,,(s,,,))
e  Idea: Toestimate G,,,(s,.,;) use V7 (5.)=E(G,,(5.,,)) =)

O e Gt +U=m) )

o Replace , ¢cf. MCE (4),
4 yGry (st
I R AT G P RS NARIED

:E(Gm (St(-fl) ))

=n- (’?(k) 4y V(D) (sf"))) VO (s®)

t+1
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Towards Optimized Policies ﬂ

o We can learn/simulate the performance V™ (s) ofa given policy 7(s)

under unknown dynamics

o Can we optimize state-dependent actions based on Vi (s)?

17



Towards Optimized Policies ﬂ

o We can learn/simulate the performance V™ (s) ofa given policy 7(s)

under unknown dynamics

o Can we optimize state-dependent actions based on Vi (s)?
VO (st = max E(r™ +y V7 (s(E)) 999
a,eA

t+1
tE

e  Missing coupling element?

18



Towards Optimized Policies ﬂ

o We can learn/simulate the performance V™ (s) ofa given policy 7(s)

under unknown dynamics

o Can we optimize state-dependent actions based on Vi (s)?

VO (st = max E(r™ +y V7 (s(E)) 999
a,e

e  Missing coupling element: anticipation of state transitions!

o Solution options:

19



Towards Optimized Policies H

o We can learn/simulate the performance V™ (s) ofa given policy 7(s)

under unknown dynamics

o Can we optimize state-dependent actions based on Vi (s)?

VO (s =max E (0 +y -V 7 (sE)) 9

ey t+1

e  Missing coupling element: anticipation of state transitions!

o Solution options: — estimate state transition probabilities

— learn state-action-values (more efficient)

20



Q-Values m

o V() expected disc. future rewards of a given policy 7(s)

o 0OY(s,a) 27

21



Q-Values “

o V'(s)  expected disc. future rewards of a given policy 7(s)

e (O ) (s,a) expected disc. future rewards of a given policy 7(s) when

instead now playing a in s and then again continue to play 7(s)
0" (s,a) ::E(Gt |s, =s,a,=a,Vk >tusea, =7Z'(Sk))

— (7) — —
=E (rz T7 V (St+1) | S, =8,4, = a) (effect of state transitions is “included™!)
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Q-Values ﬂ

o V'(s)  expected disc. future rewards of a given policy 7(s)

e (O (”)(S ,a) expected disc. future rewards of a given policy 7(s) when

instead now playing a in s and then again continue to play 7(s)

0" (s,a) ::E(Gt |s, =s,a,=a,Vk >tusea, =7Z'(Sk))

= E(rt T7 V(ﬂ)(SHl) | S, =8,4, = a) (effect of state transitions is “included™!)
e Note, 07 (s,7(s)=V"(s), ie., Vis a special case of O

e And it allows to optimize policies!??
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Q-Values H

o V'(s)  expected disc. future rewards of a given policy 7(s)

e (O (”)(S ,a) expected disc. future rewards of a given policy 7(s) when

instead now playing a in s and then again continue to play 7(s)
0" (s,a) ::E(Gt |s, =s,a,=a,Vk >tusea, =7Z'(Sk))

= E(rt T7 V(ﬂ)(SHl) | S, =8,4, = a) (effect of state transitions is “included™!)
e Note, 07 (s,7(s)=V"(s), ie., Vis a special case of O

e Allows to optimize: a'(s)=argmax{0(s,a,)} cf policy iteration (!)

a,eA
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Estimating Q-Values (of a Policy) using SARSA “

(1) Play a given policy 7(s), i.e., observe S,,4,,7, and also S,.,4,.,

(2) Update the Q-value estimate

25



Estimating Q-Values (of a Policy) using SARSA H

(1) Play a given policy 7(s), i.e., observe S,,4,,7, and also S,.,4,.,

(2) Update the Q-value estimate (start with random values or 0) via:

07 (s,.a,) < 1, (1, +7-07(s,.1,a,,))+(1=1,)-07(s,.q,

where the learning rate 77, may be reduced over time

to obtain estimates that remain constant, e.g., using 77, :=1/¢

26



Estimating Q-Values (of a Policy) using SARSA ﬂ

(1) Play a given policy 7(s), i.e., observe S,,4,,7, and also S,.,4,.,

(2) Update the Q-value estimate (start with random values or 0) via:
07 (s,,a,) «n,-(r,+7-0% (s,,1,a,))+(1-1,)- 07 (s,.a,)
= 77t ) (rt + Ve Q(”)(SHI’ at+1) B Q(”)(St’ at)) T Q(”)(St’ at)

where the learning rate 77, may be reduced over time

to obtain estimates that remain constant, e.g., using 77, =1/

(3) Ifthe policy is changed also the Q-values change

(4) Can we find an optimal policy?
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Estimating Q-Values (of a Policy) using SARSA ﬂ

(1) Play a given policy 7(s), i.e., observe S,,4,,7, and also S,.,4,.,

(2) Update the Q-value estimate (start with random values or 0) via:
07 (s,,a,) 1, (r+y- 0" (s,,1.a,))+(1-1,)-07(s,.q,
= 77t ) (rt + Ve Q(”)(SHI’ at+1) B Q(”)(St’ at)) T Q(”)(St’ at)

where the learning rate 77, may be reduced over time

to obtain estimates that remain constant, e.g., using 77, :=1/1¢

(3) If the policy is changed also the Q-values change

(4) An & -greedy version of 7, (s)=argmax,_, O,(s,a) is guaranteed

to converge to the optimal policy (as all pairs s and a are reachable).
28



Optimal Q-Values using Tabular Q-Learning (QL) “

(1) Play the current policy 7(s), i.e., observe S,,4,,%, and S,

(2) Update the Q-value estimate

29



Optimal Q-Values using Tabular Q-Learning (QL) H

(1) Play the current policy 7(s), i.e., observe S,,4,,%, and S,
(2) Update the Q-value estimate (start with random values or 0 in /=0) via:

OGs,a) 1, (1, + 7 max 05, @)+ (1-1,)- 05,4,

where the learning rate 77, may be reduced over time

to obtain estimates that remain constant, e.g., using 77, =1/

(3) Can we find an optimal policy?
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Optimal Q-Values using Tabular Q-Learning (QL) ﬂ

(1) Play the current policy 7(s), i.e., observe S,,4,,7, and S,
(2) Update the Q-value estimate (start with random values or 0 in /=0) via:
O(s,,0,) < 11,1, + 7 max Os,.1, @) | + (1=17,)- 0(s,,4,)
=1+ 47 max O(s,... ) - 05,,0,) | + 05,4,

where the learning rate 77, may be reduced over time

to obtain estimates that remain constant, e.g., using 77, =1/

(3) An & -greedy version of @, =7 (s,) =argmax,_, O(s,,a) is guaranteed
to converge to the optimal policy (as all pairs s and a are reachable).
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On-Policy vs. Off-Policy Learning

SARSA

e Tuples are generated by the policy
that we want to learn the values for

e Future estimations of a Q-value
still depends on the policy

e The requirements for the policy
forces us to generate the tuples in the
specified order using the most current
iteration of the policy

e Ifthe policy used to generate the
tuples is different, the values will
change

e This style of algorithm is called
on-policy

Q-Learning

e The tuples can be generated
by any policy at any time, the
generated Q-values will be the
same

e The only requirement to
ensure convergence: every
combination of s and a that is
visited repeatedly in endless time

e This style of algorithm is
called off-policy

e Improves SARSA by
shortening the learning process
with off-policy learning

32



Summary (Solving Discrete Time MDPs via ADP) ﬂ

SARSA & Q-Learning

(+) no system knowledge is required

(+) provides near-optimal solutions for infinite horizon MDPs
(+) guaranteed convergence

(+) numerically simple

(+) general applicable

(+) obtain good heuristics

updates only for single “visited” states (cf. large state spaces)
results are stochastic (due to simulated next states)

A/T\/-\
~ ' ~—

hyper parameter tuning (e.g., learning + exploration rate)

Next: Deep QL, allows to attack larger problems
33



Overview

Week Dates

April 21

April 25/28
May 2/5

May 12

May 16/19
May 23

May 30/June 2

[

June 9
June 13/16
June 20/23
June 27/30
July 4/7
July 11/14

July 18/21
Sep 15

O 0 9 N W K=~ W N

e e e e
B W NN = O

Topic

Introduction

Finite + Infinite Time MDPs

Approximate Dynamic Programming (ADP) + DP Exercise

Q-Learning (QL) (not Mon May 9)
Deep Q-Networks (DQN)
DQN Extensions (not Thu May 26 “Himmelfahrt”)

Policy Gradient Algorithms

Project Assignments (not Mon June 6 “Pfingstmontag”)
Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Work on Projects: Input/Support

Final Presentations
Finish Documentation
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