

Dynamic Programming and Reinforcement Learning

Monte Carlo Techniques and Q-Learning (Week 4)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

May 12, 2022

1

Outline

 Questions?

 Today: Finally, dynamics do not have to be known

 Learning & optimizing from simulation

 Monte Carlo Simulations

 Q-Learning

2

Recap: Last Week

 Approximate Dynamic Programming

 Forward Dynamic Programming

 Simulation-based Approaches

 Exercises & Implementation

 Value iteration & Policy iteration

3

Solving MDP Problems via DP and RL

 Discrete Time MDP Problems with full knowledge (last weeks)

 – Optimal Solutions (curse of dimensionality)

 – ADP & relaxation concepts to attack larger problem sizes

 – Forward Dynamic Programming (simulation-based)

 Discrete Time MDP Problems with less knowledge (today)

 – Time-independent (stationary) infinite horizon framework

 – No knowledge about reward distributions or state transitions

 – Simulation-based evaluation of policies

 – Simulation-based optimization of policies

4

MDP Problems with Different Characteristics

Example Objective State Action Events Rewards

Airline Tickets

Hotel/Rental/Rail

Apparel/Seasonal/Events

Perishable Products

Inventory Mgmt.

Durable Products

E-Commerce

Resource Allocations

Tetris/Chess/Go

Self-driving

Distinguish:

Finite vs Infinite vs “Sink”

Distinguish:

System dynamics known vs

unknown

5

Recap

 Considered setup: Infinite horizon (stationary)

 Stationary policy: ()s for all states s S

 Realized trajectory: 0 0 0 1 1 1, , , , , ,..., , , ,...t t ts a r s a r s a r

 (Observed) disc. future reward in ts :
0

() k

t t t t k

k

G G s r 


  

 Recursion for tG : 1 1() ()t t t t tG s s r G s s      

 Sink: A final state will be reached at a random time T

 No sink: There is no absorbing state (cf. inventory prob.)

6

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

7

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time T):

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r

 For each trajectory compute all ()t tG s s (via recursion from Tr)

(2)

(3)

8

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time T):

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r

 For each trajectory compute all ()t tG s s (via recursion from Tr)

(2) For all 0,1,...,t T estimate the policy’s value function
() ()V s

 via:

() () ()t t tV s G s 

 Can we do better?

9

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time T):

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r

 For each trajectory compute all ()t tG s s (via recursion from Tr)

(2) For all 0,1,...,t T estimate the policy’s value function
() ()V s

 via:

() () ()t t tV s G s 

(3) Use more simulated trajectories!

10

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time
()k

T):

 () () ()

() () () () () () () () ()

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r

 For each trajectory compute all
() ()()k k

t tG s s (via recursion from ()

()
k

k

T
r)

(4) How to update the estimation for
() ()V s

?

11

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time
()k

T):

 () () ()

() () () () () () () () ()

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r

 For each trajectory compute all
() ()()k k

t tG s s (via recursion from ()

()
k

k

T
r)

(4) For all 0,1,...,t T of a run k update the estimation for
() ()V s

 using a learning rate parameter (0,1)  as follows:

() () () () ()() () (1) ()k k k

t t t tV s G s V s      

12

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time
()k

T):

 () () ()

() () () () () () () () ()

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r

 For each trajectory compute all
() ()()k k

t tG s s (via recursion from ()

()
k

k

T
r)

(4) For all 0,1,...,t T of a run k update the estimation for
() ()V s

 using a learning rate parameter (0,1)  as follows:

() () () () ()() () (1) ()k k k

t t t tV s G s V s      

  () () () () ()() () ()k k k

t t t tG s V s V s    

13

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s    )

14

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s    )

 Idea: To estimate 1 1()t tG s  use  ()

1 1 1() ()t t tV s E G s
   :-)

15

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s    )

 Idea: To estimate 1 1()t tG s  use  ()

1 1 1() ()t t tV s E G s
   :-)

 Replace
()()

1 1

() () () () ()

()

() () (1) ()

kk
t t t

k k k

t t t t

r G s

V s G s V s 



 

  

    
����� , cf. MCE (4),

 by
 ()

1 1

() () () () () () ()

1

()

() () (1) ()

k
t t

k k k k

t t t t

E G s

V s r V s V s    

 





 
 

       
 
 

�����

16

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s    )

 Idea: To estimate 1 1()t tG s  use  ()

1 1 1() ()t t tV s E G s
   :-)

 Replace
()()

1 1

() () () () ()

()

() () (1) ()

kk
t t t

k k k

t t t t

r G s

V s G s V s 



 

  

    
����� , cf. MCE (4),

 by
 ()

1 1

() () () () () () ()

1

()

() () (1) ()

k
t t

k k k k

t t t t

E G s

V s r V s V s    

 





 
 

       
 
 

�����

  () () () () () () ()

1() () ()k k k k

t t t tr V s V s V s         

17

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

18

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

  () () () () ()

1() max ()
t

k k k

t t t
a A

V s E r V s  


   ???

 Missing coupling element?

19

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

  () () () () ()

1() max ()
t

k k k

t t t
a A

V s E r V s  


   ???

 Missing coupling element: anticipation of state transitions!

 Solution options:

20

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

  () () () () ()

1() max ()
t

k k k

t t t
a A

V s E r V s  


   ???

 Missing coupling element: anticipation of state transitions!

 Solution options: – estimate state transition probabilities

 – learn state-action-values (more efficient)

21

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 ??

22

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 expected disc. future rewards of a given policy ()s when

 instead now playing a in s and then again continue to play ()s

  () (,) : | , , ()t t t k kQ s a E G s s a a k t use a s      

  ()

1() | ,
t t t t

E r V s s s a a      (effect of state transitions is “included”!)

23

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 expected disc. future rewards of a given policy ()s when

 instead now playing a in s and then again continue to play ()s

  () (,) : | , , ()t t t k kQ s a E G s s a a k t use a s      

  ()

1() | ,
t t t t

E r V s s s a a      (effect of state transitions is “included”!)

 Note,
() ()(, ()) ()Q s s V s   , i.e., V is a special case of Q

 And it allows to optimize policies!??

24

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 expected disc. future rewards of a given policy ()s when

 instead now playing a in s and then again continue to play ()s

  () (,) : | , , ()t t t k kQ s a E G s s a a k t use a s      

  ()

1() | ,
t t t t

E r V s s s a a      (effect of state transitions is “included”!)

 Note,
() ()(, ()) ()Q s s V s   , i.e., V is a special case of Q

 Allows to optimize:  *() arg max (,)
t

t
a A

a s Q s a


 cf. policy iteration (!)

25

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a 

(2) Update the Q-value estimate

26

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a 

(2) Update the Q-value estimate (start with random values or 0) via:

  () () ()

1 1(,) (,) (1) (,)
t t t t t t t t t

Q s a r Q s a Q s a           

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t 

27

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a 

(2) Update the Q-value estimate (start with random values or 0) via:

  () () ()

1 1(,) (,) (1) (,)
t t t t t t t t t

Q s a r Q s a Q s a           

  () () ()

1 1(,) (,) (,)
t t t t t t t t

r Q s a Q s a Q s a          

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t 

(3) If the policy is changed also the Q-values change

(4) Can we find an optimal policy?

28

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a 

(2) Update the Q-value estimate (start with random values or 0) via:

  () () ()

1 1(,) (,) (1) (,)
t t t t t t t t t

Q s a r Q s a Q s a           

  () () ()

1 1(,) (,) (,)
t t t t t t t t

r Q s a Q s a Q s a          

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t 

(3) If the policy is changed also the Q-values change

(4) An  -greedy version of () arg max (,)t a A ts Q s a  is guaranteed

 to converge to the optimal policy (as all pairs s and a are reachable).

29

Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy ()s , i.e., observe , ,t t ts a r and 1ts 

(2) Update the Q-value estimate

30

Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy ()s , i.e., observe , ,t t ts a r and 1ts 

(2) Update the Q-value estimate (start with random values or 0 in t=0) via:

  1(,) max (,) (1) (,)t t t t t t t t
a A

Q s a r Q s a Q s a  


      

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t 

(3) Can we find an optimal policy?

31

Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy ()s , i.e., observe , ,t t ts a r and 1ts 

(2) Update the Q-value estimate (start with random values or 0 in t=0) via:

  1(,) max (,) (1) (,)t t t t t t t t
a A

Q s a r Q s a Q s a  


      

  1max (,) (,) (,)t t t t t t t
a A

r Q s a Q s a Q s a  


     

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t 

(3) An  -greedy version of : () arg max (,)t t a A ta s Q s a   is guaranteed

 to converge to the optimal policy (as all pairs s and a are reachable).

32

On-Policy vs. Off-Policy Learning

SARSA

 Tuples are generated by the policy

that we want to learn the values for

 Future estimations of a Q-value

still depends on the policy

 The requirements for the policy

forces us to generate the tuples in the

specified order using the most current

iteration of the policy

 If the policy used to generate the

tuples is different, the values will

change

 This style of algorithm is called

on-policy

Q-Learning

 The tuples can be generated

by any policy at any time, the

generated Q-values will be the

same

 The only requirement to

ensure convergence: every

combination of s and a that is

visited repeatedly in endless time

 This style of algorithm is

called off-policy

 Improves SARSA by

shortening the learning process

with off-policy learning

33

Summary (Solving Discrete Time MDPs via ADP)

SARSA & Q-Learning

(+) no system knowledge is required

(+) provides near-optimal solutions for infinite horizon MDPs

(+) guaranteed convergence

(+) numerically simple

(+) general applicable

(+) obtain good heuristics

(–) updates only for single “visited” states (cf. large state spaces)

(–) results are stochastic (due to simulated next states)

(–) hyper parameter tuning (e.g., learning + exploration rate)

Next: Deep QL, allows to attack larger problems

34

Overview

Week Dates Topic

1 April 21 Introduction

2 April 25/28 Finite + Infinite Time MDPs

3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise

4 May 12 Q-Learning (QL) (not Mon May 9)

5 May 16/19 Deep Q-Networks (DQN)

6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)

7 May 30/June 2 Policy Gradient Algorithms

8 June 9 Project Assignments (not Mon June 6 “Pfingstmontag”)

9 June 13/16 Work on Projects: Input/Support

10 June 20/23 Work on Projects: Input/Support

11 June 27/30 Work on Projects: Input/Support

12 July 4/7 Work on Projects: Input/Support

13 July 11/14 Work on Projects: Input/Support

14 July 18/21 Final Presentations

 Sep 15 Finish Documentation

