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Outline 
 

 Questions? 

 Today: Finally, dynamics do not have to be known  

  Learning & optimizing from simulation 

  Monte Carlo Simulations 

  Q-Learning 
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Recap: Last Week 
 

 Approximate Dynamic Programming 

 Forward Dynamic Programming 

 Simulation-based Approaches 

 Exercises & Implementation 

 Value iteration & Policy iteration 
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Solving MDP Problems via DP and RL 
 

 Discrete Time MDP Problems with full knowledge (last weeks) 

 – Optimal Solutions (curse of dimensionality) 

 – ADP & relaxation concepts to attack larger problem sizes 

 – Forward Dynamic Programming (simulation-based) 

 Discrete Time MDP Problems with less knowledge (today) 

 – Time-independent (stationary) infinite horizon framework 

 – No knowledge about reward distributions or state transitions 

 – Simulation-based evaluation of policies 

 – Simulation-based optimization of policies 
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MDP Problems with Different Characteristics 
 

Example Objective State Action Events Rewards 

Airline Tickets 

Hotel/Rental/Rail 

Apparel/Seasonal/Events 

Perishable Products 

Inventory Mgmt. 

Durable Products 

E-Commerce 

Resource Allocations 

Tetris/Chess/Go 

Self-driving 

Distinguish: 

Finite  vs  Infinite  vs  “Sink” 

Distinguish: 

System dynamics known vs 

unknown 
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Recap 
 

 Considered setup: Infinite horizon (stationary) 

 Stationary policy: ( )s  for all states s S  

 

 Realized trajectory: 0 0 0 1 1 1, , , , , ,..., , , ,...t t ts a r s a r s a r  

 (Observed) disc. future reward in ts : 
0

( ) k

t t t t k

k

G G s r 


    

 Recursion for tG : 1 1( ) ( )t t t t tG s s r G s s        

 Sink: A final state will be reached at a random time T  

 No sink: There is no absorbing state (cf. inventory prob.) 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(1) Generate/simulate one trajectory (the sink is reached at time T ): 

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r  

 For each trajectory compute all ( )t tG s s  (via recursion from Tr ) 

(2)  

 

(3)  
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(1) Generate/simulate one trajectory (the sink is reached at time T ): 

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r  

 For each trajectory compute all ( )t tG s s  (via recursion from Tr ) 

(2) For all 0,1,...,t T  estimate the policy’s value function 
( ) ( )V s

 via: 

 
( ) ( ) ( )t t tV s G s   

 Can we do better? 

  



 

9 

 

 

Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(1) Generate/simulate one trajectory (the sink is reached at time T ): 

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r  

 For each trajectory compute all ( )t tG s s  (via recursion from Tr ) 

(2) For all 0,1,...,t T  estimate the policy’s value function 
( ) ( )V s

 via: 

 
( ) ( ) ( )t t tV s G s   

(3) Use more simulated trajectories! 

  



 

10 

 

 

Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time 
( )k

T ): 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r  

 For each trajectory compute all 
( ) ( )( )k k

t tG s s  (via recursion from ( )

( )
k

k

T
r ) 

(4) How to update the estimation for 
( ) ( )V s

? 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time 
( )k

T ): 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r  

 For each trajectory compute all 
( ) ( )( )k k

t tG s s  (via recursion from ( )

( )
k

k

T
r ) 

(4) For all 0,1,...,t T  of a run k update the estimation for 
( ) ( )V s

  

 using a learning rate parameter (0,1)   as follows: 

 
( ) ( ) ( ) ( ) ( )( ) ( ) (1 ) ( )k k k

t t t tV s G s V s        
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time 
( )k

T ): 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r  

 For each trajectory compute all 
( ) ( )( )k k

t tG s s  (via recursion from ( )

( )
k

k

T
r ) 

(4) For all 0,1,...,t T  of a run k update the estimation for 
( ) ( )V s

  

 using a learning rate parameter (0,1)   as follows: 

 
( ) ( ) ( ) ( ) ( )( ) ( ) (1 ) ( )k k k

t t t tV s G s V s        

   ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k k k

t t t tG s V s V s      
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Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 
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Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 

 Idea: To estimate 1 1( )t tG s   use  ( )

1 1 1( ) ( )t t tV s E G s
        :-) 
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Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 

 Idea: To estimate 1 1( )t tG s   use  ( )

1 1 1( ) ( )t t tV s E G s
        :-) 

 Replace 
( )( )

1 1

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) (1 ) ( )

kk
t t t

k k k

t t t t

r G s

V s G s V s 



 

  

    
����� ,  cf. MCE (4), 

 by 
 ( )

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( )

( ) ( ) (1 ) ( )

k
t t

k k k k

t t t t

E G s

V s r V s V s    

 





 
 

       
 
 

�����  
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Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 

 Idea: To estimate 1 1( )t tG s   use  ( )

1 1 1( ) ( )t t tV s E G s
        :-) 

 Replace 
( )( )

1 1

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) (1 ) ( )

kk
t t t

k k k

t t t t

r G s

V s G s V s 



 

  

    
����� ,  cf. MCE (4), 

 by 
 ( )

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( )

( ) ( ) (1 ) ( )

k
t t

k k k k

t t t t

E G s

V s r V s V s    

 





 
 

       
 
 

�����  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( )k k k k

t t t tr V s V s V s           
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Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 
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Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 

   ( ) ( ) ( ) ( ) ( )

1( ) max ( )
t

k k k

t t t
a A

V s E r V s  


      ??? 

 Missing coupling element? 
 

  



 

19 

 

 

Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 

   ( ) ( ) ( ) ( ) ( )

1( ) max ( )
t

k k k

t t t
a A

V s E r V s  


      ??? 

 Missing coupling element: anticipation of state transitions! 

 

 Solution options:  
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Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 

   ( ) ( ) ( ) ( ) ( )

1( ) max ( )
t

k k k

t t t
a A

V s E r V s  


      ??? 

 Missing coupling element: anticipation of state transitions! 

 

 Solution options: – estimate state transition probabilities 

  – learn state-action-values (more efficient) 
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Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 ??  
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Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 expected disc. future rewards of a given policy ( )s  when 

  instead now playing a in s and then again continue to play ( )s  

  ( ) ( , ) : | , , ( )t t t k kQ s a E G s s a a k t use a s        

   ( )

1( ) | ,
t t t t

E r V s s s a a       (effect of state transitions is “included”!) 
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Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 expected disc. future rewards of a given policy ( )s  when 

  instead now playing a in s and then again continue to play ( )s  

  ( ) ( , ) : | , , ( )t t t k kQ s a E G s s a a k t use a s        

   ( )

1( ) | ,
t t t t

E r V s s s a a       (effect of state transitions is “included”!) 

 

 Note, 
( ) ( )( , ( )) ( )Q s s V s   , i.e., V is a special case of Q 

 

 And it allows to optimize policies!?? 
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Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 expected disc. future rewards of a given policy ( )s  when 

  instead now playing a in s and then again continue to play ( )s  

  ( ) ( , ) : | , , ( )t t t k kQ s a E G s s a a k t use a s        

   ( )

1( ) | ,
t t t t

E r V s s s a a       (effect of state transitions is “included”!) 

 

 Note, 
( ) ( )( , ( )) ( )Q s s V s   , i.e., V is a special case of Q 

 

 Allows to optimize:    *( ) arg max ( , )
t

t
a A

a s Q s a


     cf. policy iteration (!) 
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate  
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate (start with random values or 0) via: 

  ( ) ( ) ( )

1 1( , ) ( , ) (1 ) ( , )
t t t t t t t t t

Q s a r Q s a Q s a             

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate (start with random values or 0) via: 

  ( ) ( ) ( )

1 1( , ) ( , ) (1 ) ( , )
t t t t t t t t t

Q s a r Q s a Q s a             

    ( ) ( ) ( )

1 1( , ) ( , ) ( , )
t t t t t t t t

r Q s a Q s a Q s a            

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) If the policy is changed also the Q-values change 

(4) Can we find an optimal policy?  
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate (start with random values or 0) via: 

  ( ) ( ) ( )

1 1( , ) ( , ) (1 ) ( , )
t t t t t t t t t

Q s a r Q s a Q s a             

    ( ) ( ) ( )

1 1( , ) ( , ) ( , )
t t t t t t t t

r Q s a Q s a Q s a            

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) If the policy is changed also the Q-values change 

(4) An  -greedy version of ( ) arg max ( , )t a A ts Q s a   is guaranteed  

 to converge to the optimal policy (as all pairs s and a are reachable). 
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Optimal Q-Values using Tabular Q-Learning (QL) 
 

(1) Play the current policy ( )s , i.e., observe , ,t t ts a r  and 1ts   

 

(2) Update the Q-value estimate  
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Optimal Q-Values using Tabular Q-Learning (QL) 
 

(1) Play the current policy ( )s , i.e., observe , ,t t ts a r  and 1ts   

 

(2) Update the Q-value estimate (start with random values or 0 in t=0) via: 

  1( , ) max ( , ) (1 ) ( , )t t t t t t t t
a A

Q s a r Q s a Q s a  


        

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) Can we find an optimal policy? 
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Optimal Q-Values using Tabular Q-Learning (QL) 
 

(1) Play the current policy ( )s , i.e., observe , ,t t ts a r  and 1ts   

 

(2) Update the Q-value estimate (start with random values or 0 in t=0) via: 

  1( , ) max ( , ) (1 ) ( , )t t t t t t t t
a A

Q s a r Q s a Q s a  


        

   1max ( , ) ( , ) ( , )t t t t t t t
a A

r Q s a Q s a Q s a  


       

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) An  -greedy version of : ( ) arg max ( , )t t a A ta s Q s a    is guaranteed  

 to converge to the optimal policy (as all pairs s and a are reachable). 
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On-Policy vs. Off-Policy Learning 
 

 

 
  

SARSA 
 

 Tuples are generated by the policy 

that we want to learn the values for 
 

 Future estimations of a Q-value 

still depends on the policy 
 

 The requirements for the policy 

forces us to generate the tuples in the 

specified order using the most current 

iteration of the policy 
 

 If the policy used to generate the 

tuples is different, the values will 

change 
 

 This style of algorithm is called 

on-policy 

Q-Learning 
 

 The tuples can be generated 

by any policy at any time, the 

generated Q-values will be the 

same 
 

 The only requirement to 

ensure convergence: every 

combination of s and a that is 

visited repeatedly in endless time 
 

 This style of algorithm is 

called off-policy 
 

 Improves SARSA by 

shortening the learning process 

with off-policy learning 
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Summary (Solving Discrete Time MDPs via ADP) 
 

SARSA & Q-Learning 

(+) no system knowledge is required 

(+) provides near-optimal solutions for infinite horizon MDPs 

(+) guaranteed convergence 

(+) numerically simple 

(+) general applicable 

(+) obtain good heuristics 

 

(–) updates only for single “visited” states (cf. large state spaces) 

(–) results are stochastic (due to simulated next states) 

(–) hyper parameter tuning (e.g., learning + exploration rate) 
 

Next:  Deep QL, allows to attack larger problems 
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Overview 
 

Week Dates Topic 

1 April 21 Introduction 
 

2 April 25/28 Finite + Infinite Time MDPs 
 

3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise 
 

4 May 12 Q-Learning (QL) (not Mon May 9) 
 

5 May 16/19 Deep Q-Networks (DQN) 
 

6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”) 
 

7 May 30/June 2 Policy Gradient Algorithms 
 

8 June 9 Project Assignments (not Mon June 6 “Pfingstmontag”) 
 

9 June 13/16 Work on Projects: Input/Support 
 

10 June 20/23 Work on Projects: Input/Support 
 

11 June 27/30 Work on Projects: Input/Support 
 

12 July 4/7 Work on Projects: Input/Support 
 

13 July 11/14 Work on Projects: Input/Support 
 

14 July 18/21 Final Presentations 

 Sep 15 Finish Documentation 


