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Outline 
 

 Questions? 

 Today: Finally, dynamics do not have to be known  

  Learning & optimizing from simulation 

  Monte Carlo Simulations 

  Q-Learning 
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Recap: Last Week 
 

 Approximate Dynamic Programming 

 Forward Dynamic Programming 

 Simulation-based Approaches 

 Exercises & Implementation 

 Value iteration & Policy iteration 
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Solving MDP Problems via DP and RL 
 

 Discrete Time MDP Problems with full knowledge (last weeks) 

 – Optimal Solutions (curse of dimensionality) 

 – ADP & relaxation concepts to attack larger problem sizes 

 – Forward Dynamic Programming (simulation-based) 

 Discrete Time MDP Problems with less knowledge (today) 

 – Time-independent (stationary) infinite horizon framework 

 – No knowledge about reward distributions or state transitions 

 – Simulation-based evaluation of policies 

 – Simulation-based optimization of policies 
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MDP Problems with Different Characteristics 
 

Example Objective State Action Events Rewards 

Airline Tickets 

Hotel/Rental/Rail 

Apparel/Seasonal/Events 

Perishable Products 

Inventory Mgmt. 

Durable Products 

E-Commerce 

Resource Allocations 

Tetris/Chess/Go 

Self-driving 

Distinguish: 

Finite  vs  Infinite  vs  “Sink” 

Distinguish: 

System dynamics known vs 

unknown 
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Recap 
 

 Considered setup: Infinite horizon (stationary) 

 Stationary policy: ( )s  for all states s S  

 

 Realized trajectory: 0 0 0 1 1 1, , , , , ,..., , , ,...t t ts a r s a r s a r  

 (Observed) disc. future reward in ts : 
0

( ) k

t t t t k

k

G G s r 


    

 Recursion for tG : 1 1( ) ( )t t t t tG s s r G s s        

 Sink: A final state will be reached at a random time T  

 No sink: There is no absorbing state (cf. inventory prob.) 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(1) Generate/simulate one trajectory (the sink is reached at time T ): 

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r  

 For each trajectory compute all ( )t tG s s  (via recursion from Tr ) 

(2)  

 

(3)  
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(1) Generate/simulate one trajectory (the sink is reached at time T ): 

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r  

 For each trajectory compute all ( )t tG s s  (via recursion from Tr ) 

(2) For all 0,1,...,t T  estimate the policy’s value function 
( ) ( )V s

 via: 

 
( ) ( ) ( )t t tV s G s   

 Can we do better? 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(1) Generate/simulate one trajectory (the sink is reached at time T ): 

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r  

 For each trajectory compute all ( )t tG s s  (via recursion from Tr ) 

(2) For all 0,1,...,t T  estimate the policy’s value function 
( ) ( )V s

 via: 

 
( ) ( ) ( )t t tV s G s   

(3) Use more simulated trajectories! 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time 
( )k

T ): 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r  

 For each trajectory compute all 
( ) ( )( )k k

t tG s s  (via recursion from ( )

( )
k

k

T
r ) 

(4) How to update the estimation for 
( ) ( )V s

? 
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time 
( )k

T ): 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r  

 For each trajectory compute all 
( ) ( )( )k k

t tG s s  (via recursion from ( )

( )
k

k

T
r ) 

(4) For all 0,1,...,t T  of a run k update the estimation for 
( ) ( )V s

  

 using a learning rate parameter (0,1)   as follows: 

 
( ) ( ) ( ) ( ) ( )( ) ( ) (1 ) ( )k k k

t t t tV s G s V s        
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Monte-Carlo Estimation (with Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics? 

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time 
( )k

T ): 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r  

 For each trajectory compute all 
( ) ( )( )k k

t tG s s  (via recursion from ( )

( )
k

k

T
r ) 

(4) For all 0,1,...,t T  of a run k update the estimation for 
( ) ( )V s

  

 using a learning rate parameter (0,1)   as follows: 

 
( ) ( ) ( ) ( ) ( )( ) ( ) (1 ) ( )k k k

t t t tV s G s V s        

   ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k k k

t t t tG s V s V s      
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Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 
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Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 

 Idea: To estimate 1 1( )t tG s   use  ( )

1 1 1( ) ( )t t tV s E G s
        :-) 
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Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 

 Idea: To estimate 1 1( )t tG s   use  ( )

1 1 1( ) ( )t t tV s E G s
        :-) 

 Replace 
( )( )

1 1

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) (1 ) ( )

kk
t t t

k k k

t t t t

r G s

V s G s V s 



 

  

    
����� ,  cf. MCE (4), 

 by 
 ( )

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( )

( ) ( ) (1 ) ( )

k
t t

k k k k

t t t t

E G s

V s r V s V s    

 





 
 

       
 
 

�����  

  



 

16 

 

 

Temporal Difference Learning (without Sink) 
 

 Performance 
( ) ( )V s

 of a given policy ( )s  under unknown dynamics 

 when there is no sink (to start to compute 1 1( ) ( )t t t t tG s r G s     ) 

 Idea: To estimate 1 1( )t tG s   use  ( )

1 1 1( ) ( )t t tV s E G s
        :-) 

 Replace 
( )( )

1 1

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) (1 ) ( )

kk
t t t

k k k

t t t t

r G s

V s G s V s 



 

  

    
����� ,  cf. MCE (4), 

 by 
 ( )

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( )

( ) ( ) (1 ) ( )

k
t t

k k k k

t t t t

E G s

V s r V s V s    

 





 
 

       
 
 

�����  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( )k k k k

t t t tr V s V s V s           
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Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 
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Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 

   ( ) ( ) ( ) ( ) ( )

1( ) max ( )
t

k k k

t t t
a A

V s E r V s  


      ??? 

 Missing coupling element? 
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Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 

   ( ) ( ) ( ) ( ) ( )

1( ) max ( )
t

k k k

t t t
a A

V s E r V s  


      ??? 

 Missing coupling element: anticipation of state transitions! 

 

 Solution options:  
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Towards Optimized Policies 
 

 We can learn/simulate the performance 
( ) ( )V s

 of a given policy ( )s  

 under unknown dynamics 

 

 Can we optimize state-dependent actions based on 
( ) ( )V s

? 

   ( ) ( ) ( ) ( ) ( )

1( ) max ( )
t

k k k

t t t
a A

V s E r V s  


      ??? 

 Missing coupling element: anticipation of state transitions! 

 

 Solution options: – estimate state transition probabilities 

  – learn state-action-values (more efficient) 
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Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 ??  
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Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 expected disc. future rewards of a given policy ( )s  when 

  instead now playing a in s and then again continue to play ( )s  

  ( ) ( , ) : | , , ( )t t t k kQ s a E G s s a a k t use a s        

   ( )

1( ) | ,
t t t t

E r V s s s a a       (effect of state transitions is “included”!) 
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Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 expected disc. future rewards of a given policy ( )s  when 

  instead now playing a in s and then again continue to play ( )s  

  ( ) ( , ) : | , , ( )t t t k kQ s a E G s s a a k t use a s        

   ( )

1( ) | ,
t t t t

E r V s s s a a       (effect of state transitions is “included”!) 

 

 Note, 
( ) ( )( , ( )) ( )Q s s V s   , i.e., V is a special case of Q 

 

 And it allows to optimize policies!?? 

  



 

24 

 

 

Q-Values 
 

 ( ) ( )V s
 expected disc. future rewards of a given policy ( )s  

 ( ) ( , )Q s a
 expected disc. future rewards of a given policy ( )s  when 

  instead now playing a in s and then again continue to play ( )s  

  ( ) ( , ) : | , , ( )t t t k kQ s a E G s s a a k t use a s        

   ( )

1( ) | ,
t t t t

E r V s s s a a       (effect of state transitions is “included”!) 

 

 Note, 
( ) ( )( , ( )) ( )Q s s V s   , i.e., V is a special case of Q 

 

 Allows to optimize:    *( ) arg max ( , )
t

t
a A

a s Q s a


     cf. policy iteration (!) 
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate  
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate (start with random values or 0) via: 

  ( ) ( ) ( )

1 1( , ) ( , ) (1 ) ( , )
t t t t t t t t t

Q s a r Q s a Q s a             

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate (start with random values or 0) via: 

  ( ) ( ) ( )

1 1( , ) ( , ) (1 ) ( , )
t t t t t t t t t

Q s a r Q s a Q s a             

    ( ) ( ) ( )

1 1( , ) ( , ) ( , )
t t t t t t t t

r Q s a Q s a Q s a            

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) If the policy is changed also the Q-values change 

(4) Can we find an optimal policy?  
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Estimating Q-Values (of a Policy) using SARSA 
 

(1) Play a given policy ( )s , i.e., observe , ,t t ts a r  and also 1 1,t ts a   

 

(2) Update the Q-value estimate (start with random values or 0) via: 

  ( ) ( ) ( )

1 1( , ) ( , ) (1 ) ( , )
t t t t t t t t t

Q s a r Q s a Q s a             

    ( ) ( ) ( )

1 1( , ) ( , ) ( , )
t t t t t t t t

r Q s a Q s a Q s a            

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) If the policy is changed also the Q-values change 

(4) An  -greedy version of ( ) arg max ( , )t a A ts Q s a   is guaranteed  

 to converge to the optimal policy (as all pairs s and a are reachable). 
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Optimal Q-Values using Tabular Q-Learning (QL) 
 

(1) Play the current policy ( )s , i.e., observe , ,t t ts a r  and 1ts   

 

(2) Update the Q-value estimate  
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Optimal Q-Values using Tabular Q-Learning (QL) 
 

(1) Play the current policy ( )s , i.e., observe , ,t t ts a r  and 1ts   

 

(2) Update the Q-value estimate (start with random values or 0 in t=0) via: 

  1( , ) max ( , ) (1 ) ( , )t t t t t t t t
a A

Q s a r Q s a Q s a  


        

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) Can we find an optimal policy? 
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Optimal Q-Values using Tabular Q-Learning (QL) 
 

(1) Play the current policy ( )s , i.e., observe , ,t t ts a r  and 1ts   

 

(2) Update the Q-value estimate (start with random values or 0 in t=0) via: 

  1( , ) max ( , ) (1 ) ( , )t t t t t t t t
a A

Q s a r Q s a Q s a  


        

   1max ( , ) ( , ) ( , )t t t t t t t
a A

r Q s a Q s a Q s a  


       

 where the learning rate t  may be reduced over time  

 to obtain estimates that remain constant, e.g., using : 1 /t t   

(3) An  -greedy version of : ( ) arg max ( , )t t a A ta s Q s a    is guaranteed  

 to converge to the optimal policy (as all pairs s and a are reachable). 
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On-Policy vs. Off-Policy Learning 
 

 

 
  

SARSA 
 

 Tuples are generated by the policy 

that we want to learn the values for 
 

 Future estimations of a Q-value 

still depends on the policy 
 

 The requirements for the policy 

forces us to generate the tuples in the 

specified order using the most current 

iteration of the policy 
 

 If the policy used to generate the 

tuples is different, the values will 

change 
 

 This style of algorithm is called 

on-policy 

Q-Learning 
 

 The tuples can be generated 

by any policy at any time, the 

generated Q-values will be the 

same 
 

 The only requirement to 

ensure convergence: every 

combination of s and a that is 

visited repeatedly in endless time 
 

 This style of algorithm is 

called off-policy 
 

 Improves SARSA by 

shortening the learning process 

with off-policy learning 
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Summary (Solving Discrete Time MDPs via ADP) 
 

SARSA & Q-Learning 

(+) no system knowledge is required 

(+) provides near-optimal solutions for infinite horizon MDPs 

(+) guaranteed convergence 

(+) numerically simple 

(+) general applicable 

(+) obtain good heuristics 

 

(–) updates only for single “visited” states (cf. large state spaces) 

(–) results are stochastic (due to simulated next states) 

(–) hyper parameter tuning (e.g., learning + exploration rate) 
 

Next:  Deep QL, allows to attack larger problems 
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Overview 
 

Week Dates Topic 

1 April 21 Introduction 
 

2 April 25/28 Finite + Infinite Time MDPs 
 

3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise 
 

4 May 12 Q-Learning (QL) (not Mon May 9) 
 

5 May 16/19 Deep Q-Networks (DQN) 
 

6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”) 
 

7 May 30/June 2 Policy Gradient Algorithms 
 

8 June 9 Project Assignments (not Mon June 6 “Pfingstmontag”) 
 

9 June 13/16 Work on Projects: Input/Support 
 

10 June 20/23 Work on Projects: Input/Support 
 

11 June 27/30 Work on Projects: Input/Support 
 

12 July 4/7 Work on Projects: Input/Support 
 

13 July 11/14 Work on Projects: Input/Support 
 

14 July 18/21 Final Presentations 

 Sep 15 Finish Documentation 


