

Dynamic Programming and Reinforcement Learning

Monte Carlo Techniques and Q-Learning (Week 4)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

May 12, 2022

1

Outline

 Questions?

 Today: Finally, dynamics do not have to be known

 Learning & optimizing from simulation

 Monte Carlo Simulations

 Q-Learning

2

Recap: Last Week

 Approximate Dynamic Programming

 Forward Dynamic Programming

 Simulation-based Approaches

 Exercises & Implementation

 Value iteration & Policy iteration

3

Solving MDP Problems via DP and RL

 Discrete Time MDP Problems with full knowledge (last weeks)

 – Optimal Solutions (curse of dimensionality)

 – ADP & relaxation concepts to attack larger problem sizes

 – Forward Dynamic Programming (simulation-based)

 Discrete Time MDP Problems with less knowledge (today)

 – Time-independent (stationary) infinite horizon framework

 – No knowledge about reward distributions or state transitions

 – Simulation-based evaluation of policies

 – Simulation-based optimization of policies

4

MDP Problems with Different Characteristics

Example Objective State Action Events Rewards

Airline Tickets

Hotel/Rental/Rail

Apparel/Seasonal/Events

Perishable Products

Inventory Mgmt.

Durable Products

E-Commerce

Resource Allocations

Tetris/Chess/Go

Self-driving

Distinguish:

Finite vs Infinite vs “Sink”

Distinguish:

System dynamics known vs

unknown

5

Recap

 Considered setup: Infinite horizon (stationary)

 Stationary policy: ()s for all states s S

 Realized trajectory: 0 0 0 1 1 1, , , , , ,..., , , ,...t t ts a r s a r s a r

 (Observed) disc. future reward in ts :
0

() k

t t t t k

k

G G s r

 Recursion for tG : 1 1() ()t t t t tG s s r G s s

 Sink: A final state will be reached at a random time T

 No sink: There is no absorbing state (cf. inventory prob.)

6

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

7

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time T):

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r

 For each trajectory compute all ()t tG s s (via recursion from Tr)

(2)

(3)

8

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time T):

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r

 For each trajectory compute all ()t tG s s (via recursion from Tr)

(2) For all 0,1,...,t T estimate the policy’s value function
() ()V s

 via:

() () ()t t tV s G s

 Can we do better?

9

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time T):

 0 0 0 1 1 1, , , , , ,..., , ,T T Ts a r s a r s a r

 For each trajectory compute all ()t tG s s (via recursion from Tr)

(2) For all 0,1,...,t T estimate the policy’s value function
() ()V s

 via:

() () ()t t tV s G s

(3) Use more simulated trajectories!

10

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time
()k

T):

 () () ()

() () () () () () () () ()

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r

 For each trajectory compute all
() ()()k k

t tG s s (via recursion from ()

()
k

k

T
r)

(4) How to update the estimation for
() ()V s

?

11

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time
()k

T):

 () () ()

() () () () () () () () ()

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r

 For each trajectory compute all
() ()()k k

t tG s s (via recursion from ()

()
k

k

T
r)

(4) For all 0,1,...,t T of a run k update the estimation for
() ()V s

 using a learning rate parameter (0,1) as follows:

() () () () ()() () (1) ()k k k

t t t tV s G s V s

12

Monte-Carlo Estimation (with Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics?

(3) Generate/simulate k=1,...,K trajectories (the sink is reached at time
()k

T):

 () () ()

() () () () () () () () ()

0 0 0 1 1 1, , , , , , ..., , ,k k k

k k k k k k k k k

T T T
s a r s a r s a r

 For each trajectory compute all
() ()()k k

t tG s s (via recursion from ()

()
k

k

T
r)

(4) For all 0,1,...,t T of a run k update the estimation for
() ()V s

 using a learning rate parameter (0,1) as follows:

() () () () ()() () (1) ()k k k

t t t tV s G s V s

 () () () () ()() () ()k k k

t t t tG s V s V s

13

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s)

14

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s)

 Idea: To estimate 1 1()t tG s use ()

1 1 1() ()t t tV s E G s
 :-)

15

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s)

 Idea: To estimate 1 1()t tG s use ()

1 1 1() ()t t tV s E G s
 :-)

 Replace
()()

1 1

() () () () ()

()

() () (1) ()

kk
t t t

k k k

t t t t

r G s

V s G s V s

����� , cf. MCE (4),

 by
 ()

1 1

() () () () () () ()

1

()

() () (1) ()

k
t t

k k k k

t t t t

E G s

V s r V s V s

�����

16

Temporal Difference Learning (without Sink)

 Performance
() ()V s

 of a given policy ()s under unknown dynamics

 when there is no sink (to start to compute 1 1() ()t t t t tG s r G s)

 Idea: To estimate 1 1()t tG s use ()

1 1 1() ()t t tV s E G s
 :-)

 Replace
()()

1 1

() () () () ()

()

() () (1) ()

kk
t t t

k k k

t t t t

r G s

V s G s V s

����� , cf. MCE (4),

 by
 ()

1 1

() () () () () () ()

1

()

() () (1) ()

k
t t

k k k k

t t t t

E G s

V s r V s V s

�����

 () () () () () () ()

1() () ()k k k k

t t t tr V s V s V s

17

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

18

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

 () () () () ()

1() max ()
t

k k k

t t t
a A

V s E r V s

 ???

 Missing coupling element?

19

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

 () () () () ()

1() max ()
t

k k k

t t t
a A

V s E r V s

 ???

 Missing coupling element: anticipation of state transitions!

 Solution options:

20

Towards Optimized Policies

 We can learn/simulate the performance
() ()V s

 of a given policy ()s

 under unknown dynamics

 Can we optimize state-dependent actions based on
() ()V s

?

 () () () () ()

1() max ()
t

k k k

t t t
a A

V s E r V s

 ???

 Missing coupling element: anticipation of state transitions!

 Solution options: – estimate state transition probabilities

 – learn state-action-values (more efficient)

21

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 ??

22

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 expected disc. future rewards of a given policy ()s when

 instead now playing a in s and then again continue to play ()s

 () (,) : | , , ()t t t k kQ s a E G s s a a k t use a s

 ()

1() | ,
t t t t

E r V s s s a a (effect of state transitions is “included”!)

23

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 expected disc. future rewards of a given policy ()s when

 instead now playing a in s and then again continue to play ()s

 () (,) : | , , ()t t t k kQ s a E G s s a a k t use a s

 ()

1() | ,
t t t t

E r V s s s a a (effect of state transitions is “included”!)

 Note,
() ()(, ()) ()Q s s V s , i.e., V is a special case of Q

 And it allows to optimize policies!??

24

Q-Values

 () ()V s
 expected disc. future rewards of a given policy ()s

 () (,)Q s a
 expected disc. future rewards of a given policy ()s when

 instead now playing a in s and then again continue to play ()s

 () (,) : | , , ()t t t k kQ s a E G s s a a k t use a s

 ()

1() | ,
t t t t

E r V s s s a a (effect of state transitions is “included”!)

 Note,
() ()(, ()) ()Q s s V s , i.e., V is a special case of Q

 Allows to optimize: *() arg max (,)
t

t
a A

a s Q s a

 cf. policy iteration (!)

25

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a

(2) Update the Q-value estimate

26

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a

(2) Update the Q-value estimate (start with random values or 0) via:

 () () ()

1 1(,) (,) (1) (,)
t t t t t t t t t

Q s a r Q s a Q s a

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t

27

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a

(2) Update the Q-value estimate (start with random values or 0) via:

 () () ()

1 1(,) (,) (1) (,)
t t t t t t t t t

Q s a r Q s a Q s a

 () () ()

1 1(,) (,) (,)
t t t t t t t t

r Q s a Q s a Q s a

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t

(3) If the policy is changed also the Q-values change

(4) Can we find an optimal policy?

28

Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy ()s , i.e., observe , ,t t ts a r and also 1 1,t ts a

(2) Update the Q-value estimate (start with random values or 0) via:

 () () ()

1 1(,) (,) (1) (,)
t t t t t t t t t

Q s a r Q s a Q s a

 () () ()

1 1(,) (,) (,)
t t t t t t t t

r Q s a Q s a Q s a

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t

(3) If the policy is changed also the Q-values change

(4) An -greedy version of () arg max (,)t a A ts Q s a is guaranteed

 to converge to the optimal policy (as all pairs s and a are reachable).

29

Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy ()s , i.e., observe , ,t t ts a r and 1ts

(2) Update the Q-value estimate

30

Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy ()s , i.e., observe , ,t t ts a r and 1ts

(2) Update the Q-value estimate (start with random values or 0 in t=0) via:

 1(,) max (,) (1) (,)t t t t t t t t
a A

Q s a r Q s a Q s a

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t

(3) Can we find an optimal policy?

31

Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy ()s , i.e., observe , ,t t ts a r and 1ts

(2) Update the Q-value estimate (start with random values or 0 in t=0) via:

 1(,) max (,) (1) (,)t t t t t t t t
a A

Q s a r Q s a Q s a

 1max (,) (,) (,)t t t t t t t
a A

r Q s a Q s a Q s a

 where the learning rate t may be reduced over time

 to obtain estimates that remain constant, e.g., using : 1 /t t

(3) An -greedy version of : () arg max (,)t t a A ta s Q s a is guaranteed

 to converge to the optimal policy (as all pairs s and a are reachable).

32

On-Policy vs. Off-Policy Learning

SARSA

 Tuples are generated by the policy

that we want to learn the values for

 Future estimations of a Q-value

still depends on the policy

 The requirements for the policy

forces us to generate the tuples in the

specified order using the most current

iteration of the policy

 If the policy used to generate the

tuples is different, the values will

change

 This style of algorithm is called

on-policy

Q-Learning

 The tuples can be generated

by any policy at any time, the

generated Q-values will be the

same

 The only requirement to

ensure convergence: every

combination of s and a that is

visited repeatedly in endless time

 This style of algorithm is

called off-policy

 Improves SARSA by

shortening the learning process

with off-policy learning

33

Summary (Solving Discrete Time MDPs via ADP)

SARSA & Q-Learning

(+) no system knowledge is required

(+) provides near-optimal solutions for infinite horizon MDPs

(+) guaranteed convergence

(+) numerically simple

(+) general applicable

(+) obtain good heuristics

(–) updates only for single “visited” states (cf. large state spaces)

(–) results are stochastic (due to simulated next states)

(–) hyper parameter tuning (e.g., learning + exploration rate)

Next: Deep QL, allows to attack larger problems

34

Overview

Week Dates Topic

1 April 21 Introduction

2 April 25/28 Finite + Infinite Time MDPs

3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise

4 May 12 Q-Learning (QL) (not Mon May 9)

5 May 16/19 Deep Q-Networks (DQN)

6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)

7 May 30/June 2 Policy Gradient Algorithms

8 June 9 Project Assignments (not Mon June 6 “Pfingstmontag”)

9 June 13/16 Work on Projects: Input/Support

10 June 20/23 Work on Projects: Input/Support

11 June 27/30 Work on Projects: Input/Support

12 July 4/7 Work on Projects: Input/Support

13 July 11/14 Work on Projects: Input/Support

14 July 18/21 Final Presentations

 Sep 15 Finish Documentation

