Data-Driven Decision-Making In Enterprise Applications

Dynamic Programming

Rainer Schlosser

Hasso Plattner Institute (EPIC)

May 25, 2020

Outline

• Today: Learn about Dynamic Optimization

Control of Markov Processes over Time

Use Dynamic Programming

Example: Dynamic Pricing in a Duopoly

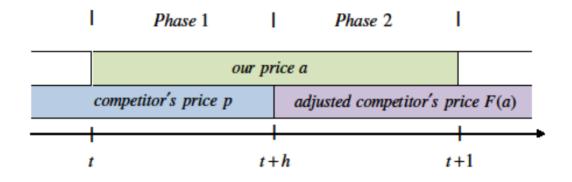
AMPL Code online

Motivation: Dynamic Pricing in a Duopoly

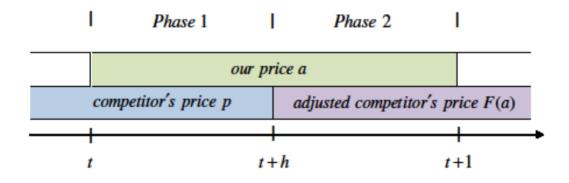
- Assume 2 sellers (duopoly). Assume only one feature: price
- Define different price reaction strategies a(p), i.e.,
 if the competitor's current price is p, we adjust our price to a(p)
 Admissible prices are a(p) ∈ {1,2,...,100}
- Let the competitor's response strategy be given by: $p(a) \coloneqq \max(a-1,1)$
- We adjust our prices a at times t = 1, 2, 3, ...

The competitor adjusts his prices *p* at times t = 0.5, 1.5, 2.5, ...

Sequence of Events (Duopoly Example)



Sequence of Events (Duopoly Example)



- In every interval (t, t+0.5), t = 0, 0.5, 1.0, ..., a sale occurs with probability $1 \min(a_t, p_t) / 100$. With probability $\min(a_t, p_t) / 100$ no sale takes place
- If a sale takes place, our firm sells the item with probability

$$P(1, a, p) = 1_{\{a < p\}} + 0.5 \cdot 1_{\{a = p\}}, \text{ i.e., } P(0, a, p) = 1_{\{a > p\}} + 0.5 \cdot 1_{\{a = p\}} = 1 - P(0, a, p)$$

Duopoly Example

- What is a good counterstrategy to be played against $p(a) \coloneqq \max(a-1,1)$?
- We can simulate different strategies p(a), e.g., until time T=1000. Start with $a_0 = p_0 = 20$ at time t = 0
- Which strategy a(p) performs best, i.e., maximizes expected revenues?
- How to find the optimal strategy?
- Any ideas?

HP

Goals for Today

- We want to optimally solve the duopoly example
- We have a dynamic optimization problem
- What are dynamic optimization problems?
- How to apply dynamic programming techniques?

What are Dynamic Optimization Problems?

- How to control a dynamic system over time?
- Instead of a single static decision we have a *sequence* of decisions
- The system evolves over time according to a certain dynamic
- The decisions are supposed to be chosen such that a certain objective/quantity/criteria is optimized
- Find the right balance between short and long-term effects

Examples Please!

Examples

- Inventory Replenishment
- Reservoir Dam
- Drinking at a Party
- Exam Preparation
- Brand Advertising
- Used Cars
- Eating Cake

Task: Describe & Classify

- Goal/Objective
- State of the System
- Actions
- Dynamic of the System
- Revenues/Costs
- Finite/Infinite Horizon
- Stochastic Components

Example	Objective	State	Action	Dynamic	Payments
Inventory Mgmt.	min costs	#items	#order	entry-sales	order/holding

Example	Objective	State	Action	Dynamic	Payments
Inventory Mgmt.	min costs	#items	#order	entry-sales	order/holding
Reservoir Dam					
Drinking at Party					
Exam Preparation					
Advertising					
Used Cars					
Eating Cake					

Example	Objective	State	Action	Dynamic	Payments
Inventory Mgmt.	min costs	#items	#order	entry-sales	order/holding
Reservoir Dam	provide power	#water	#production	rain-outflow	none
Drinking at Party	max fun	‰	#beer	impact-rehab	fun/money

Example	Objective	State	Action	Dynamic	Payments
Inventory Mgmt.	min costs	#items	#order	entry-sales	order/holding
Reservoir Dam	provide power	#water	#production	rain-outflow	none
Drinking at Party	max fun	‰	#beer	impact-rehab	fun/money
Exam Preparation	max mark/effort	#learned	#learn	learn-forget	effort, mark
Advertising	max profits	image	#advertise	effect-forget	campaigns

Example	Objective	State	Action	Dynamic	Payments
Inventory Mgmt.	min costs	#items	#order	entry-sales	order/holding
Reservoir Dam	provide power	#water	#production	rain-outflow	none
Drinking at Party*	max fun	‰ 0	#beer	impact-rehab	fun/money
Exam Preparation*	max mark/effort	#learned	#learn	learn-forget	effort, mark
Advertising	max profits	image	#advertise	effect-forget	campaigns
Used Cars	min costs	age	replace(y/n)	aging/faults	buy/repair costs
Eating Cake*	max utility	%cake	#eat	outflow	utility
* Finite horizon					

General Problem Description

- What do you want to minimize or maximize (Objective)
- Define the state of your system (State)
- Define the set of possible actions (state dependent) (Actions)
- Quantify event probabilities (state+action dependent) (Dynamics) (!!)
- Define payments (state+action+event dependent) (Payments)
- What happens at the end of the time horizon? (Final Payment)

HP

Dynamic Pricing Scenario (Duopoly Example)

- We want to sell items in a duopoly setting with finite horizon
- We can observe the competitor's prices and adjust our prices (for free)
- We can anticipate the competitor's price reaction
- We know sales probabilities for various situations
- We want to maximize total expected profits

Problem Description (Duopoly Example)

- Framework: t = 0, 1, 2, ..., T Discrete time periods
- State: s = p Competitor's price
- Actions: $a \in A = \{1, ..., 100\}$ Offer prices (for one period of time)
- Dynamic: P(i, a, s)

Probability to sell i items at price a

• Payments: $R(i, a, s) = i \cdot a$ Reality

Realized profit

• New State: $p \xrightarrow{\Gamma(i,a,s)} F(a)$

State transition / price reaction F

• Initial State: $s_0 = p_0 = 20$

Competitor's prices in t=0

Problem Formulation

• Find a *dynamic pricing strategy* that

maximizes total expected (discounted) profits:

•
$$\max E\left[\sum_{t=0}^{T} \underbrace{\delta_{iscount}}_{factor} \cdot \left(\sum_{i_t \ge 0} \underbrace{P(i_t, a_t, S_t)}_{probability \ to \ sell \ i_t \ items \ sales \ price} \cdot \underbrace{i_t \cdot a_t}_{sales \ price}\right) \middle| \underbrace{S_0 = S_0}_{initial \ state} \right], \ 0 < \delta \le 1$$

• What are admissible policies?

Answer: Feedback Strategies

• How to solve such problems?

Answer: Dynamic Programming

Solution Approach (Dynamic Programming)

• What is the **best expected value** of having the chance to sell . . .

"items from time t on starting in market situation s"?

• Answer: That's easy $V_t(s)$! ?????

Solution Approach (Dynamic Programming)

• What is the **best expected value** of having the chance to sell . . .

"items from time t on starting in market situation s"?

- Answer: That's easy $V_t(s)$! ?????
- We have renamed the problem. Awesome. But that's a solution approach!
- We don't know the "Value Function V", but V has to satisfy the relation

Value (state today) = Best expected (profit today + Value (state tomorrow))

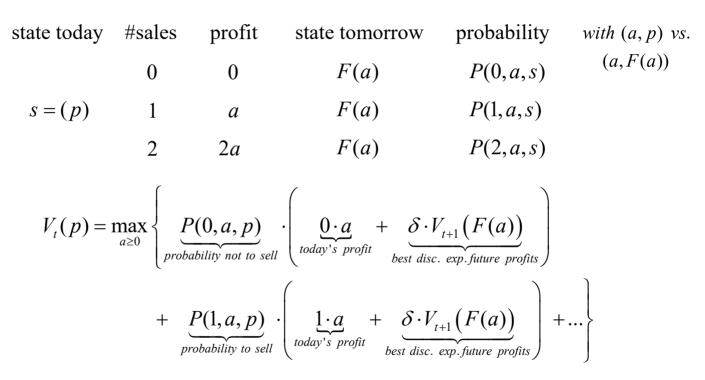
Solution Approach (Dynamic Programming)

- Value (state today) = Best expected (profit today + Value (state tomorrow))
- Idea: Consider the transition dynamics within one period What can happen during one time interval?

state today	#sales	profit	state tomorrow	probability	with (a, p) vs.
	0	0	F(a)	P(0,a,s)	(a,F(a))
s = p	1	а	F(a)	P(1,a,s)	
	2	2a	F(a)	P(2,a,s)	

• What does that mean for the value of state s = p, i.e., $V_t(s) = V_t(p)$?

Bellman Equation



21

Optimal Solution

• We finally obtain the Bellman Equation:

$$V_{t}(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{\text{probability}} \cdot \left(\underbrace{i \cdot a}_{\text{today's profit}} + \underbrace{\delta \cdot V_{t+1}(F(a))}_{\text{best disc. exp. future profits of new state}} \right) \right\}$$

• Ok, but why is that interesting?

Optimal Solution

• We finally obtain the Bellman Equation:

$$V_t(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{\text{probability}} \cdot \left(\underbrace{i \cdot a}_{\text{today's profit}} + \underbrace{\delta \cdot V_{t+1}(F(a))}_{\text{best disc. exp. future profits of new state}} \right) \right\}$$

- Ok, but why is that interesting?
- Answer: Because $a_t^*(p) = \underset{a \in A}{\operatorname{arg\,max}} \{...\}$ is the optimal policy
- Ok! Now, we just need to compute the Value Function!

How to solve the Bellman Equation?

• Using the terminal condition $V_T(p) \coloneqq 0$ for time horizon T (e.g., 1000) We can compute the value function *recursively* $\forall t, p$:

$$V_{t}(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{\text{probability}} \cdot \left(\underbrace{i \cdot a}_{\text{today's profit}} + \underbrace{\delta \cdot V_{t+1}(F(a))}_{\text{best disc. exp.future profits of new state}} \right) \right\}$$

• The optimal strategy $a_t^*(p)$, t = 1, ..., T, p = 1, ..., 100,

is determined by the arg max of the value function

How to solve the Bellman Equation?

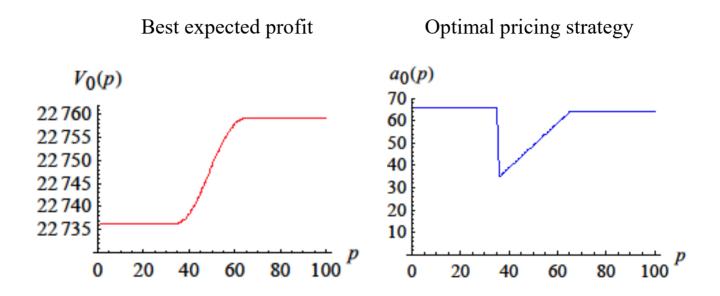
• Using the terminal condition $V_T(p) \coloneqq 0$ for time horizon T (e.g., 1000) We can compute the value function *recursively* $\forall t, p$:

$$V_{t}(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{\text{probability}} \cdot \left(\underbrace{i \cdot a}_{\text{today's profit}} + \underbrace{\delta \cdot V_{t+1}(F(a))}_{\text{best disc. exp. future profits of new state}} \right) \right\}$$

- The optimal strategy $a_t^*(p)$, t = 1,...,T, p = 1,...,100, is determined by the arg max of the value function
- In AMPL:

param V{t in 0..T,p in A}:= if t<T then max {a in A}
sum{i in I} P[i,a,p] * (i*a + delta * V[t+1,F[a]]);</pre>

Optimal Pricing Strategy of the Duopoly Example



Infinite Horizon Problem

•
$$\max E\left[\sum_{t=0}^{\infty} \underbrace{\delta_{discount}}_{factor} \cdot \left(\sum_{\substack{i_t \ge 0 \\ probability \text{ to sell } i_t \\ price a_t \text{ in situation } S_t}} \underbrace{P(i_t, a_t, S_t)}_{sales price} \cdot \underbrace{i_t \cdot a_t}_{i_t \text{ initial state}}\right], \underbrace{0 < \delta < 1}\right]$$

- Will the value function $V_t^*(p)$ be time-dependent?
- Will the optimal price reaction $a_t^*(p)$ strategy be time-dependent?
- How does the Bellman equation look like?

Solution of the Infinite Horizon Problem

•
$$V^*(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{\text{probability}} \cdot \left(\underbrace{i \cdot a}_{\text{today's profit}} + \underbrace{\delta \cdot V^*(F(a))}_{\text{disc. exp. future profits of new state}} \right) \right\}$$

- Approximate solution: Finite horizon approach (value iteration)
- For "large" *T* the values $V_0(p)$ converge to the exact values $V^*(p)$
- The optimal policy $a^*(p)$, p = 1,...,100, is determined by the arg max of the last iteration step, i.e., $a_0(p)$

Exact Solution of the Infinite Horizon Problem

•
$$V^*(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{\text{probability}} \cdot \left(\underbrace{i \cdot a}_{\text{today's profit}} + \underbrace{\delta \cdot V^*(F(a))}_{\text{disc. exp. future profits of new state}} \right) \right\}, \ p \in A$$

- We have to solve a system of nonlinear equations
- Solvers can be applied, e.g., MINOS (see NEOS Solver)

Exact Solution of the Infinite Horizon Problem

•
$$V^*(p) = \max_{a \ge 0} \left\{ \sum_{i \ge 0} \underbrace{P(i, a, p)}_{\text{probability}} \cdot \left(\underbrace{i \cdot a}_{\text{today's profit}} + \underbrace{\delta \cdot V^*(F(a))}_{\text{disc. exp. future profits of new state}} \right) \right\}, \ p \in A$$

- We have to solve a system of nonlinear equations
- Solvers can be applied, e.g., MINOS (see NEOS Solver)
- In AMPL:

subject to NB {p in A}: V[p] = max {a in A}
sum{i in I} P[i,a,p] * (i*a + delta * V[F[a]]); solve;

Questions?

- State
- Action
- Events
- Dynamics & State Transitions
- Recursive Solution Principle
- General concept is applicable to other problems

Overview

XX 7 1				
Week	Dates	Topic		
1	April 27/30	Introduction + Linear Programming		
2	May 4/ (7)	Linear Programming II		
3	May 11	Exercise Implementations		
4	May 18	Linear + Logistic Regression (Thu May 21 "Himmelfahrt")		
5	May 25	Dynamic Programming		
6	June 4	Dynamic Pricing Competition	(Mon June 1 "Pfingstmontag")	
7	June 8/11	Project Assignments		
8	June 15/18	Robust + Nonlinear Optimization		
9	June 22/25	Work on Projects: Input/Support		
10	June 29/2	Work on Projects: Input/Support		
11	July 6/9	Work on Projects: Input/Support		
12	July 13/16	Work on Projects: Input/Support		
13	July/Aug	Finish Documentation (Deadline: Au	g 31)	